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ABSTRACT. The Hurwitz zeta-function associated with the parameter a(0 < a ≤ 1) is a

generalisation of the Riemann zeta-function namely the case a = 1. It is defined by

ζ(s, a) =
∞∑

n=0

(n + a)−s, (s = σ + it, σ > 1) (A.1)

and its analytic continuation. In fact

ζ(s, a) =
∞∑

n=0

(
(n + a)−s −

∫ n+1

n

du

(u + a)s

)
+

a1−s

s− 1
(A.2)

gives the analytic continuation to (σ > 0). (This remark is due to E.LANDAU (see [EL]).

A repetition of this process several times shows that

ζ(s, a)− a1−s

s− 1
(A.3)

can be continued as an entire function to the whole plane. In Re(s) ≥ −1, t ≥ 2, ζ(s, a) −
a−s = O(t3) and by the functional equation (see §2) it is

O




( |s|
2π

) 1
2
−Re(s)




in Re(s) ≤ −1, t ≥ 2. From these facts we can deduce an ‘Approximate functional equation’

(see §3), which is a generalisation of the approximate functional equation for ζ(s). (The two

are not very much different). Combining this with an important theorem due to van-der-

CORPUT, (see [ECT], Theorem 5.9), we prove

T− 1
3

∫ T+T
1
3

T
|ζ(

1

2
+ it, a)− a−

1
2
−it|2dt ¿ (log T )3 (A.4)
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uniformly in a(0 < a ≤ 1). From this we deduce similar results for quasi- L functions (see

[RB, KR]1) and more general functions: Let a1, a2, . . . be any periodic sequence of complex

numbers for which the sum over a period is zero. Let b1, b2, . . . be any sequence of complex

numbers for which
∑n

j=2 |bj − bj−1| + |bn| ≤ nε for every ε > 0 and every n ≥ n0(ε). Then

we prove

T− 1
3

∫ T+T
1
3

T
|
∞∑

n=1

anbn

(n + a)
1
2
+it
|2dt ≤ T ε (A.5)

for every ε > 0 and every T ≥ T0(ε) Here as usual 0 < a ≤ 1 and T0(ε) is independent of a.

§1. INTRODUCTORY REMARKS. These concern problems on ζ(s, a) which need

serious attention. We begin with M.N.HUXLEY’S recent important achievement [MNH]

ζ(
1

2
+ it) = Oε(t

α+ε), α =
32

205
, t ≥ 2. (1.1)

The earlier important record was also due to him and it was α = 89
570

. We wish him every

success in his venture regarding improvement of (A.5) with 1
3

replaced by 64
205

. The result

1

2π

∫ T

0
|ζ(

1

2
+ it)|2dt =

T

2π
log

T

2π
+ (2γ − 1)

T

2π
+ O(T

1
3 ) (1.2)

is due to R.BALASUBRAMANIAN [RB]. (Here as usual γ =
∑∞

n=1(
1
n
− ∫ n+1

n
du
u

) is the

EULER constant). It remains to consider

∫ T

0
|
∞∑

n=1

anbn

(n + a)
1
2
+it
|2dt

and obtain an analogue of (1.2). Some work in the direction of extending (1.2) to ζ(1
2

+

it, a) − a−
1
2
−it is in progress and it is due to a student of M.JUTILA. This extension gives

(A.4) as a corollary and (A.4) implies

ζ(
1

2
+ it, a)− a−

1
2
−it = O(t

1
6 (log t)3). (1.3)

The result

T− 2
3

∫ T+T
2
3

T
|ζ(

1

2
+ it, a)− a−

2
2
−it|4 dt ¿ε T ε (1.4)

uniformly in a seems to be hopeless at present although N.ZAVOROTNYI [NZ] has proved

∫ T

0
|ζ(

1

2
+ it)|4dt = TP (log T ) + O(T

2
3
+ε). (1.5)
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where P (x) is a certain polynomial of degree 4 in x. (For further work by Y.MOTOHASHI

and A.IVIC see [AI]). Even (1.4) with 1 in place of 2
3

also seems to be hopeless. Mean value

results such as (A.4) imply (by convexity principles)

∑

I

max(
tεI

σ ≥ 1
2

) |ζ(σ + it, a)− a−σ−it|2 ¿ T
1
3
+ε

where I runs over all (abutting) unit intervals into which [T, T +T
1
3 ] can be divided. (Similar

remarks apply to all the mean value upper bounds over short intervals considered in this

paper). It gives, as a corollary, the theorem

|ζ(
1

2
+ it, a)− a−

1
2
−it| < t

1
6
+ε

for all t ≥ t0(ε). (This can certainly be obtained by the WEYL-HARDY-LITTLEWOOD

method (see [ECT] Theorem 5.3)). The most important result in the theory of the Riemann

zeta-function is, undoubtedly, the result

|ζ(σ + it)| ≤ C1t
(1−σ)3/2C2(log t)

2
3 , (

1

2
≤ σ ≤ 1, t ≥ 3) (1.6)

where C1 > 0 and C2 > 0 are absolute constants. This result is due to the Soviet Mathe-

matician I.M.VINOGRADOV. (See the chapter on VINOGRADOFF’s (both the names are

the same) method in [ECT]). He proved (1.6) with (log t)2/3 replaced by a higher power of

log t. Definitely he knew (1.6) and published

ζ(1 + it) = O((log t)
2
3 ) (1.7)

also. Both (1.6) and (1.7) are nearly 50 years old. It is a great challenge to improve even

(1.7). It is well-known that quasi Riemann hypothesis (ζ(s) 6= 0 in σ ≥ 1 − δ for some

constant δ > 0) implies easily

ζ(1 + it) = O(log log t), t ≥ 100. (1.8)

It is not hard to prove (1.6) for ζ(σ + it, a) − a−σ−it, (VINOGRADOFF’s work gives (1.6)

for this function as well). For the latest economical constants C1 = 76.2 and C2 = 4.45 in

(1.6) see KEVIN FORD [KF]. See also [KR, AS]1.

§2 FUNCTIONAL EQUATION. (We borrow the functional equation for ζ(s, a) from

§2.17 of [ECT]). We have

ζ(s, a) =
∞∑

n=0

(n + a)−s, (σ > 1),
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=
∞∑

n=0

((n + a)−s −
∫ n+1

n

du

(u + a)s
) +

a1−s

s− 1
, (σ > 0), (2.1)

and repetition of this process several times shows that ζ(s, a) − a1−s

s−1
is entire. Also in

σ ≥ −1, t ≥ 2 we have ζ(s, a) − a−s = O(t3). Again (see[ECT]) we have the functional

equation

ζ(s, a) =
2Γ(1− s)

(2π)1−s

{
sin(

sπ

2
)
∞∑

m=1

cos(2πma)

m1−s

+ cos(
sπ

2
)

∞∑

m=1

sin(2πma)

m1−s

}
, (σ < 0). (2.2)

Note that |tan ( sπ
2

)| lies between two positive constants for all σ provided t ≥ 2, and so the

conversion factors

ψ1(s) =
2Γ(1− s)

(2π)1−s
sin (

sπ

2
) and ψ2(s) =

2Γ(1− s)

(2π)1−s
cos(

sπ

2
) (2.3)

are nearly the same (as that for the Riemann zeta-function) so far as the magnitudes are

concerned. It is useful to record here that for t ≥ 2, we have

|ψ1(s)|+ |ψ2(s)| ¿
( |s|+ 1

2π

) 1
2
−σ

(2.4)

where the implied constant is absolute.

§3. APPROXIMATE FUNCTIONAL EQUATION

Let 0 < ε ≤ 1
100

, T ≥ T0(ε), L = log T, τ = L4, h = 10
ε
L, 1 ≤ X ≤ T,

1 ≤ Y ≤ T, 1 ≤ H ≤ T
1
2 and XY ≥ T

2π
(1 + ε). (3.1)

Let w = u + iv, s = 1
2

+ it, T ≤ t ≤ T + H, ζ(s, a) =
∑∞

n=0(n + a)−s, (0 < a ≤ 1), σ > 1.

(We put s = 1
2

+ it for trivial simplification. The results are true with trivial modifications

with s = σ + it for any σ uniformly in any fixed interval a0 ≤ σ ≤ b0). Then we have

∞∑

n=1

(n + a)−sExp

(
−

(
n + a

x

)h
)

=
1

2πi

∫

u=2,|v|≤τ
(ζ(s + w, a)− a−s−w)Γ(

w

h
+ 1)Xw dw

w
+ O(T−1) (3.2)

Here we move the line of integration to u = −5L
ε

. (We use |Γ(w
h

+ 1)| ¿ exp(−−|Im(w)|
h

) in

|Re(w)| ≤ h
2
). The pole at w = 0 contributes ζ(s, a) − a−s and the horizontal portions of
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the contour contribute O(T−1). We then use the functional equation and the fact that for

|Im(z)| ≥ 2, we have

|ψ1(z)|+ |ψ2(z)| ¿
( |z|+ 1

2π

) 1
2
−Re(z)

(3.3)

a result mentioned already. We next break off the portion

∑

m≥Y

ms+w−1 cos(2πma)

of the series ∞∑

m=1

ms+w−1 cos(2πma)

and estimate this tail portion by O(Y ( 1−h
2

)), the total contribution from this being

O


Y ( 1−h

2
)X−h

2

(
T + H + τ

2π

) 1
2
+h

2




= O








(
T + H + τ

2π

)h
2

(
1

XY

)h
2

(Y (T + H + τ))
1
2








= O




{
T + H + τ

2π

2π

T
(1 + ε)−1

}h
2

(Y (2T ))
1
2




= O(T (1 + ε)−
h
2 log L)

= O(TExp(−(log(1 + ε)
5L

ε
)) = O(T−1).

We do a similar thing for
∞∑

m=1

ms+w−1 sin(2πma)). Thus we have

∞∑

n=1

(n + a)−sExp(−(
n + a

X
)h)

= ζ(s, a)− a−s +
1

2πi

∫

u=−5L,|v|≤τ
(ψ1(s + w)

∑

m≤Y

cos(2πma)

m1−s−w
)XwΓ(1 +

w

h
)
dw

w

+
1

2πi

∫

u=−sL,|v|≤τ
(ψ2(s + w)

∑ sin(2πma)

m1−s−w
)XwΓ(1 +

w

h
)
dw

w
+ O(T−1)

= ζ(s, a)− a−s − ψ1(s)
∑

m≤Y

cos 2πma

m1−s

+
1

2πi

∫

u= 1
4
,|v|≤τ

(ψ1(s + w)
∑

m≤Y

cos(2πma)

m1−s−w
)Xw Γ(1 +

w

h
)
dw

w
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−ψ2(s)
∑

m≤Y

sin(2πma)

m1−s
+

1

2πi

∫

a= 1
4
,|v|≤τ

(ψ2(s + w)
∑

m≤Y

sin(2πma)

m1−s−w
)XwΓ(1 +

w

h
)
dw

w

+O(T−1). (3.4)

Further if we impose
T + H

2π
(1 + 3ε) ≥ XY

we can throw away

1

2πi

∫

u= 1
4
|v|≤τ

(ψ1(s + w)
∑

m≤(1−9ε)Y

cos(2πma)

m1−s−w
)XW Γ(1 +

w

h
)
dw

w

since it is (on moving the line of integration t0 u = 5L
ε

)

O(X
h
2 ((1− 9ε)Y )

1
2
+h

2 (
T

2π
)−(h+1

2
))

= O((XY (1− 9ε)
h
2 Y

1
2 (

T

2π
)−

h
2 )

= O(((1− 9ε)(1 + 4ε))
h
2 T )−O(T−1).

Collecting we have

THEOREM 3.1 Let 0 < ε ≤ 1
100

, T ≥ T0(ε), s = 1
2

+ it, T ≤ t ≤ T + H, L = log T, τ =

L4, h = 10
ε
L, 1 ≤ X ≤ T, 1 ≤ Y ≤ T, XY ≥ T

2π
(1 + ε), w = u + iv, and let ζ(s, a) be as

before.

Then, we have,

ζ(s, a)− a−s =
∞∑

n=1

(n + a)−sExp(−(
n + a

X
)h)

+ψ1(s)
∑

m≤Y

cos(2πma)

m1−s
+ ψ2(s)

∑

m≤Y

sin(2πma)

m1−s

− 1

2πi

∫

u= 1
4
,|v|≤τ

(ψ1(s + w)
∑

m≤Y

cos(2πma)

m1−s−w
)Xw + Γ(1 +

w

h
)
dw

w

− 1

2πi

∫

u= 1
4
|v|≤τ

(ψ2(s + w)
∑

m≤Y

sin(2πma)

m1−s−w
)XwΓ(1 +

w

h
)
dw

w

+O(T−1) (3.5)

Here, we have, for |Im(z)| ≥ 1, as noted already in (3.3)

|ψ1(z)|+ |ψ2(z)| ¿ (
|z|+ 1

2π
)

1
2
−Re(z).
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Also in the last two integrals we can throw away

∑

m≤(1−9ε)Y

cos(2πma)

m1−s−w
and

∑

m≤(1−9ε)Y

sin(2πma)

m1−s−w

and retain only
∑

(1−9ε)Y≤m≤Y . . . , provided we impose an additional condition

T + H

2π
(1 + 3ε) ≥ XY. (3.6)

§4. PROOF OF (A.4). The proof is very much similar to that of Lemmas 1 to 9 (pages

357-359 putting q = 1) in [RB, KR]2. A key lemma is the following theorem due to van-der-

CORPUT (see theorem 5.9 of [ECT]).

LEMMA 4.1 If f(x) is real and twice differentiable and 0 < λ2 ≤ f ′′(x) ≤ hλ2(or 0 < λ2 ≤
−f ′′(x) ≤ hλ2) through out the interval [a, b] and b ≥ a + 1, then

∑

a≤n≤b

exp(2πif(n)) = O(h(b− a)λ
1
2
2 ) + O(λ

− 1
2

2 ). (4.1)

REMARK. We have quoted theorem 5.9 of [ECT] in the notation employed there. The h

of this lemma (and a) should not be confused with h (and a) of the present paper.

There are five expressions (apart from O(T−1)) on the RHS of (3.5). Denote by F (s)

any of these. It suffices to prove (with H = T
1
3 ) the inequality

1

H

∫ T+H

T
|F (s)|2dt ¿ (log T )2. (4.2)

We do this for

F (s) = ψ1(s)
∑

m≤Y

cos(2πma)

m1−s
, (s =

1

2
+ it). (4.3)

(Note that |ψ1(
1
2

+ it)| = |ψ2(
1
2

+ it)| ¿ 1). The rest of the terms can be handled similarly.

LEMMA 4.2. Let X = Y = T
1
2 , s = 1

2
+ it and

S1 ≡ S1(t) ≡
∑

1≤m≤Y

cos(2πma)

m−s
. (4.4)

Let H ≥ C log T, where C > 0 is a large constant and 0 ≤ ui ≤ H/(4α)(i =

1, 2, 3, ..., α), where α is a natural number at our choice. We put α = [100 log T ] and we

have ∫ T+H

T
|S1|2 dt ≤ (

H

4α
)−α

∫ H
(4α)

0
. . .

∫ H
(4α)

0

(∫ T+H+V

T−V
|S1(t)|2dt

)
du1 . . . duα (4.5)
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where V = u1 + u2 + . . . + uα and the integration with respect to u1, , . . . , uα is over the α−
dimensional cube defined just now.

REMARK. This idea has been used extensively by R.BALASUBRAMANIAN[RB]. The

proof is simple and is left as an exercise to the reader.

We split up the range [1,Y] into m = 1, [2, 4), [4, 8), . . . .

LEMMA 4.3 The right hand side of (4.5) is

≤ 4 log T
(

H

4α

)−α ∑

U

∫ H
4α

0
. . .

∫ H
4α

0

(∫ T+H+V

T−V
|S2(t)|2dt

)
du1 . . . duα (4.6)

where

S2 ≡ S2(t) =
∑

U≤m≤U ′
(cos(2πma))ms−1,

U, U ′ being the initial and final points of the intervals mentioned. The last of these intervals

may be a portion of an interval [2k, 2k+1). Trivially the contribution from m = 1 is O(H log T ).

PROOF. Follows from |S1|2 = |∑
U

S2|2 ≤ 4 log T
∑

U

|S2|2.

Let

f(m1,m2) = cos(2πm1a) cos(2πm2a)
(

m1

m2

)it

(m1m2)
− 1

2

and let D denote the condition defined by

D ≡ {U ≤ m1 ≤ U ′, U ≤ m2 ≤ U ′} .

Then

|S2|2 =
∑

(m1,m2)εD

f(m1,m2)

and ∫ T+H+V

T−V
|S2(t)|2

=
∑

m1,m2εD

cos(2πm1a) cos(2πm2a)(m1m2)
− 1

2

∫ T+H+V

T−V

(
m1

m2

)it

dt.

Here the terms with m1 = m2 contribute

O(H
∑

U≤m≤U ′
(cos(2πma))2m−1) = O(H).
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Consider contributions from non-diagonal terms. Since

| log
m1

m2

| ≥ |m1 −m2

m1 + m2

|

the contribution is

∑

m1 6=m2

(m1m2)
− 1

2 |m1 + m2

m1 −m2

|α.

We dispose of those terms with |m1−m2| ≥ ∆ (a parameter at our choice). These contribute

an amount not more than

(
60αU

H∆

)α ∑
(m1m2)

− 1
2 ¿ T−1, (4.7)

provided ∆ = 100αUH−1. (As stated before we impose on H, the condition H ≥ C log T,

where C > 0 is a large constant). Here the sum of all such terms from all U is O(1). Hence

it suffices to consider those coming from D with

|m1 −m2| ≤ 100αUH−1. (4.8)

(Note that the condition H ≥ C log T ensures that the RHS of (4.8) is ≤ 10−4C−1U and

so ≤ εU for all ε(0 < ε < 1) if C is large enough depending on ε). Of course it suffices to

estimate contributions from those terms (m1,m2) with m1 > m2. (The terms with m1 < m2

can be treated similarly). We have to estimate

−i
∑

m1>m2

(
(
m1

m2

)i(T+H+V ) − (
m1

m2

)i(T−V )
)

(m1,m2)
− 1

2 (log
m1

m2

)−1g(m1,m2) (4.9)

where g(m1,m2) = cos(2πm1a) cos(2πm2a).

In place of g(m1,m2) we can consider Exp(2πa(±m1 ±m2)i) for a fixed combination

of signs ±. We now write m1 = m2 + r. Thus it suffices to estimate

4
∑
r

∑
m2

Exp(it log(1 + r
m2

)) Exp(2πia(±m2 ±m2 ± r))

(m2(m2 + r))
1
2 log(1 + r

m2
)

(4.10)

where the conditions of summation are U ≤ m2 ≤ U ′ and 1 ≤ r ≤ 100αUH−1 and t denotes

a number lying between T
2

and 3T . Because of the summation conditions on r, it is not hard

to verify that for each fixed r

(m2(m2 + r))
1
2 log(1 +

r

m2

) (4.11)
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is monotonic in m2 and lies between two constant multiples of r. (We assume 100αUH−1 ≥ 1.

Other wise there is no r). To estimate the innermost sum in (4.10) we use Lemma 1, which

is very important. We take

f(x) = { t
2π

log(1 + r
x
) + a(±x± x± r),

a = U and b = U′.





. (4.12)

We see that f ′′(x) lies between two positive constant multiples of Trx−3 and so the inner

sum in (4.10) is r−1 times a quantity which is

¿ U
(

Tr

U3

) 1
2

+

(
U3

Tr

) 1
2

. (4.13)

Hence the sum (4.10) is majorised by

∑

r≤100αUH−1





1

r

(
Tr

U

) 1
2

+

(
U3

Tr

) 1
2





¿
(

αT

H

) 1
2

+

(
U3

T

) 1
2

. (4.14)

Summation over U(≤ T
1
2 gives a factor log T for the first term and O(T

1
4 ) for the second.

Collecting we have

LEMMA 4.4. Let S1(t) ≡ S1 ≡
∑

m≤Y

ms−1 cos(2πma), T ≥ H ≥ C log T where C > 0 is a

large constant. Then
∫ T+H

T
|S1(t)|2dt

¿ H log T + T
1
4 (log T )2 + (

T

H
)

1
2 (log T )

5
2 . (4.15)

REMARK. Taking H = T
1
3 we see that the expression (4.15) is O(H(log T )

5
2 ). The two

integrals in (3.5) can be treated by first estimating the sum
∑

m≤Y

. . . and then noting that

∫

u= 1
4
,|v|≤τ

|Γ(1 +
w

h
)| |dw

w
| ¿ log h ¿ log log T. (4.16)

This can be seen as follows. |Γ(1 +
w

h
)| ¿ Exp(−|Im(w)

h
|) ¿ | h

Im(w)
|2 (if u =

1

4
), also

|Γ(1 +
w

h
)| ¿ 1. Again | 1

w
| ¿ min(1, |v|−1) if u = 1

4
. Thus

∫

|v|≤1
|Γ(1 +

w

h
)||dw

w
| ¿

∫

|v|≤1
dv ¿ 1
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and ∫

h≥|v|≥1
|Γ(1 +

w

h
)||dv

v
| ¿

∫ h

1
|dv

v
| ¿ 1

∫

τ≥|v|≥1
|Γ(1 +

w

h
)||dv

v
| ¿

∫ ∞

h
(
h

v
)2dv

v
¿ 1.

Thus compromising a little we get O((log T )
5
2 log log T ) = O((log T )3) for the LHS of (A.4).

We state this as

THEOREM 4.1. We have, for H = T
1
3 ,

1

H

∫ T+H

T
|ζ(

1

2
+ it, a)− a−

1
2
−it|2dt ¿ (log T )3. (4.17)

§5. FURTHER APPLICATIONS OF THE APPROXIMATE FUNCTIONAL

EQUATION. We assume that a1, a2, . . . is a periodic sequence of complex numbers (with

period k) and that the sum over a period zero. We begin with the remark that if α is any

number with 0 < α ≤ 1, (in this section we use α and not a) we have (for σ > 1)

F (s) ≡
∞∑

n=1

an

(n + α)s
=

k∑

l=1

al

ν=∞∑

n = l + νk
ν = 0

(n + α)−s

=
k∑

l=1

al

∞∑

ν=0

(l + νk + α)s =
k∑

l=1

alk
−s

∞∑

ν=0

(ν +
l + α

k
)−s

and so (for s = 1
2

+ it),

|F (s)|2 ≤ 2
k∑

l=1

A2

{
|
∞∑

ν=1

(ν +
l + α

k
)−s|2 + (| k

l + α
|)

}
,

where A = max |al| taken over | ≤ l ≤ k. Thus we have, (for H = T
1
3 ),

1

H

∫ T+H

T
|F (s)|2σ= 1

2
dt ¿ A2(log T )3 + A2k log k

(uniformly in α) by theorem 4.1. (in these calculations we mean the infinite sum to be the

analytic continuation of the Hurwitz zeta-function). We state this as a part of the following

Theorem.

THEOREM 5.1. Let a1, a2, . . . be any periodic sequence of complex numbers with period

k(≥ 1) and the sum over a period zero.
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Let maxj |aj| ≤ A. Then with any α(0 < α ≤ 1) and H = T
1
3 we have (for T ≥ 2)

1

H

∫ T+H

T
|
∞∑

n=1

an

(n + α)s
|2σ= 1

2
dt ¿ A2k(log T )3 + A2k log k (5.1)

uniformly in α. Further let b0 = 0, b1, b2, . . . be any sequence of complex numbers satisfying

N∑

j=1

|bj − bj−1|+ |bN | ¿ N ε (5.2)

for every ε > 0 and every N ≥ 1. Then with H = T
1
3 , we have,

1

H

∫ T+H

T
|
∞∑

n=1

anbn

(n + α)s
|2σ= 1

2
dt ¿ε T ε (5.3)

for every ε > 0 and all T ≥ 1 uniformly in α.

REMARKS. The result (5.1) is already proved. In (5.1) and (5.3) we can assume that

T ≥ T0(ε), since otherwise the LHS expressions are bounded. The rest of this section is

devoted for the proof of (5.3).

We have

N∑

n=1

anbn

(n + α)s
= A1b1 + (A2 − A1)b2 + (A3 − A2)b3 + . . .

. . . + (AN − AN−1)bN

= A1(b1 − b2) + A2(b2 − b3) + . . . + AN−1(bN−1 − bN) + ANbN (5.4)

where

Aj =
∑

n≤j

an

(n + α)s
. (5.5)

So

|
N∑

n=1

anbn

(n + α)s
|2 ≤ 2


 ∑

j≤N−1

|Aj|2|bj − bj+1|

 ∑

j≤N

|bj − bj+1|

+2|AN |2|bN |2

≤ 2 maxj≤N(|A2
j |+ 1)((

∑

j≤N−1

|bj − bj+1|)2 + |bN |2)
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≤ 2 maxj≤N(|Aj|2 + 1)(
∑

j≤N−1

|bj − bj+1|+ |bN |)2

≤ 2 (maxj≤N |Aj|2 + 1)N ε (5.6)

by hypothesis (5.2). Hence it remains to estimate

∫ T+H

T
|Aj|2dt (j = 1, 2, . . .).

(It is not hard to verify the analogue of (5.4) namely

|
M+N∑

M+1

anbn

(n + α)s
| ¿ε

M ε

Mσ

provided N ≤ M, and so the series

∞∑

n=1

anbn

(n + α)s

is convergent for σ ≥ δ uniformly in any compact subset of σ ≥ δ). More over

∑

n≥M

an

(n + α)s
= Oε,δ(M

−σ+ε) (5.7)

for M ≥ T 1+ε(T ≤ t ≤ 2T ) uniformly for σ ≥ δ (see [RB, KR]1).

Although
∞∑

n=1

an

(n + α)s
does not have an approximate functional equation we can split

up (as noted before Theorem 5.1)

F (s) =
∞∑

n=1

an

(n + α)s
=

k∑

l=1

al

∞∑

ν=0

(ν +
l + α

k
)−s

and the innermost sum is the Hurwitz zeta-function and it has an approximate functional

equation. Thus we can attack, (we put σ = 1
2

in the rest of this section),

Aj(s) + O(1) =
j∑

n=1

an

(n + α)s
=

k∑

l=1

alk
−s

[ j
k
]∑

ν=0

(ν +
l + α

k
)−s + O(1).

Here by ν = 0 to [j/k], we mean the truncation at ν = [ j
k
] contribution of the series

∞∑

ν=0

(ν +
l + α

k
)−s.

Now

|Aj(s)| ¿ Ak−
1
2

k∑

l=1

|
[j/k]∑

ν=0

(ν +
l + α

k
)−s|.
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Hence it suffices to estimate

∫ T+H

T
|
[j/k]∑

ν=0

(ν +
l + α

k
)−s|2dt

where j = 1, 2, ..., [T 1+ε] (see [RB,KR]1). In fact we can stop at j = [kT ](T ≤ t ≤ T + H)

see theorem 1.3.2 of [KR]1. (Here ζ(s) has been considered. But argument goes through for

ζ(s, a) by the same method). We do not attempt uniformity in A, k and etc. Hereafter we

write

Bj(s) =
j∑

ν=0

(
ν +

l + α

k

)−s

where l, k and α are fixed (0 < α ≤ 1). We proceed to estimate

∫ T+H

T
|Bj(s)− a−s|2σ= 1

2
dt where a =

l + α

k
. (5.8)

Here 1 ≤ j ≤ kT. We can assume j ≥ 2 since for j = 1 (5.8) is O(1). It is well known

(see[KR]2) that

j∑

n=1

(n + a)−s =
1

2πi

∫ 2+i∞

2−i∞
(ζ(s + w)− a−s−w)

(j + a + 1
2
)w

w
dw

=
1

2πi

∫ C+iT

C−iT,C=1−σ+(log j)−1
(ζ(s + w)− a−s−w)

(j + a + 1
2
)w

w
dw

+O(
∞∑

n=1




(
j + a + 1

2

n + a

)1−σ+(log j)−1

n−σ T−1| log
j + a + 1

2

n + a
|−1


 .

We split the sum inside O-term to
∑

1

=
∑

j/2≤n≤3 j
2

,

∑

2

=
∑

n≤j/2

and
∑

3

=
∑

n≥3 j
2

.

We have (easily)

|∑
1

| ¿ j1−σ

T
log j, and

|∑
2

|+ |∑
3

| ¿
∞∑

n=1

1

T
(j1−σ n−1− 1

log j )

Hence with (T ≤ t ≤ T + H), we have (with any V, 10T
1
3 ≥ V ≥ 1

10
T

1
3 )

∑

1≤n≤j

(n + a)−s =
1

2πi

∫ C+iV

C−iV
(ζ(s + w, a)− a−s−w)

(j + a + 1
2
)w

w
dw
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+O(j1−σ(log j)V −1),

and so (note that it suffices to consider
∑

j≤n≤2j

. . .)

∑

j≤n≤2j

(n + a)−s

=
1

2πi

∫ C+iV

C−iV
(ζ(s + w, a)− a−s−w)

(2j + a + 1
2
)w − (j + a + 1

2
)w

w
dw

+O(
j1−σ log j

V
) (5.9)

=
1

2πi

∫ iV

−iV
(ζ(s + w, a)− a−s−w)

(2j + a + 1
2
)w − (j + a + 1

2
)w

w
dw

+O(j1−σ(log j)V −1) + O(j1−σV −1(log T )100). (5.10)

In arriving at (5.10) we have used the following Lemma.

LEMMA 5.1 Let H = T
1
3 and T ≥ T0. Then

∫ 1

1
2

∫ T+H

T
|ζ(σ + it, a)− a−σ−it|2dt dσ ≤ H(log T )20. (5.11)

PROOF. The proof follows from theorem 4.1 by standard convexity arguments (given for

completeness in §6 of the present paper). We remark that it is possible to sharpen (5.11),

but we do not attempt it here. We would like to mention here that Lemma 3.4 of [KR, AS]2

can be deduced from §6 of the present paper.

We are now in a position to complete the proof of (5.3). We have (by theorem 4.1, the

mean-square of the integral in (5.10)) is ¿ (log T )10) for 1 ≤ j ≤ kT

1

H

∫ T+H

T
| ∑

j≤n≤2j

(n + a)−s|2σ= 1
2
dt ¿ (log T )10 + jV −2 (log T )100 (5.12)

where H = T
1
3 and 10T

1
3 ≥ U ≥ 1

10
T

1
3 . Thus we are through if j ¿ T

2
3 . Now if j ≥ T

2
3
−ε

approximate functional equation (Theorems 3.1 and 4.1) gives with Y = T
2
3
−ε (see (3.6))

the fact that with X = T
1
3
+ε it suffices to prove that

1

H

∫ T+H

T
|
∞∑

n=1

(n + a)−sExp(−(
n + a

X
)h)|2dt ¿ T 2ε
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and this follows by a theorem of H.L.MONTGOMERY and R.C.VAUGHAN (see[KR]3).

Thus (5.3) is completely proved and thus theorem 5.1 is completely proved.

§6.PROOF OF LEMMA 5.1 The notation in this section is different and should not be

confused with that in the earlier sections. Let F (s)(s = σ + it) be analytic in the rectangle

R1 : a ≤ σ ≤ b, T ≤ t ≤ T + H

where a < b and |F (s)| is bounded (above) there by TC (for some constant C > 0). Consider

the rectangle

R2 : a + δ ≤ σ ≤ b− η, T − log T ≤ t ≤ T + H − log T

where δ and η are smaller than T−100 (or some such small or smaller quantities). Note that

if F ′(s) is not too big then
∫ |F (s)|dt does not alter much over any two close vertical lines

contained in R1 and so
∫
(σ)

∫
(t) |F (s)|dt is nearly the same as (

∫
(t),σ=σ0

|F (s)|dt)
∫
(σ) dσ),

where σ0 is any fixed σ.

Hence it suffices to consider upper bounds for

∫

a + δ ≤ σ0 ≤ b− η

∫ T+H−log T

T−log T
|F (s)|dt

in terms of

M1 ≡
∫ T+H

T,σ=a
|F (s)|dt or M2 ≡

∫ T+H

T,σ=b
|F(s)|dt.

Let s0 = σ0 + it0εR2. Then (with a positive parameter X bounded below and also above by

constant powers of T )

F (s0) =
1

2πi

∫

bdR1

F (s)

s− s0

Xs−s0 Exp((s− s0)
2)ds (6.1)

(the integral being taken over the boundary of R1 in the anti-clockwise direction) and so

|F (s0)| ≤ 1

2π

∫

bdR1

|F (s)|
|s− s0| Xσ−σ0|Exp(s− s0)

2)||ds|.

Horizontal portions contribute O(T−1) because |Exp((s− s0)
2)| ¿ Exp(−(log T )2). Thus

|F (s0)| ¿ Xa−σ0

2π

∫ T+H

T

|F (s)|Exp(−(t− t0)
2)

|a− σ0 + i(t− t0)| dt
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+
Xb−σ0

2π

∫ T+H

T

|F (s)|Exp(−(t− t0)
2)

|b− σ0 + i(t− t0)| dt + O(T−1).

Now

∫ T+H−log T

T−log T

Exp(−(t− t0)
2)

|a− σ0 + i(t− t0)|dt0

can be split up into |t − t0| ≤ |a − σ0| and |t − t0| ≥ |a − σ0|. The first portion gives ¿ 1

and the second portion gives

∫ ∞
Exp(−(t− t0)

2)|t− t0|−1dt0 ¿ log
1

σ0 − a−∞
|t− t0| ≥ |a− σ0|

Thus

∫ T+H

t=T

∫ T+H−log T

t0=T−log T
|F (s)|Exp(−(t− t0)

2)|a− σ0 + i(t− t0)|−1dt0dt

¿ M1 log
1

σ0 − a
.

Similarly

∫ T+H

t=T

∫ T+H−log T

t0=T−log T
|F (s)|Exp(−(t− t0)

2)|b− σ0 + i(t− t0)|−1dt0dt

¿ M2 log
1

b− σ0

.

Collecting we have

∫ T+H−log T

t0=T−log T
|F (s0)|dt0 ¿ M1X

a−σ0 log
1

σ0 − a
+ M2X

b−σ0 log
1

b− σ0

+ T−1. (6.2)

Here we can choose X, δ, η such that on the horizontal sides of R1, the contribution is O(T−1)

(or some other smaller function of T if necessary). Now

∫ b−η

a+δ
log

1

σ0 − a
dσ0 ≤

∫ b−η

a+δ
(

1

σ0 − a
)

1
2 dσ0 = 2(σ0 − a)

1
2 ]σ0=b−η

σ0=a+δ (6.3)

and a similar bound for
∫ b−η
a+δ log 1

b−σ0
dσ0. We remark that if |F ′(s)| is not too big then

∫ T+H

T,σ=a+δ
|F (s)|dt
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is not very different from the same integral for any σ in a ≤ σ ≤ a + δ. Thus

∫ a+δ

a

∫ T+H

T
|F (s)|dtdσ ≤ δM1

and a similar thing for ∫ b

b−η

∫ T+H

T
|F (s)|dtdσ ≤ ηM2.

For our purposes it suffices to choose F (s) = (ζ(s, a) − a−s)2, and X = 1 and this gives

Lemma 5.1. It may be noted that by convexity principles we can bound mean square value

of derivatives of
∞∑

n=1

anbn

(n + a)s
. For some more convexity results see [KR]4.
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