28 SK,YT,HT

A generalization of Bochner’s formula

S. Kanemitsu, Y. Tanigawa and H. Tsukada

Dedicated to Professor Yoshinobu Nakai on his sixtieth birthday

Abstract

In this note we expound our general hierarchy theorems by the example of a
Ramified-Type Functional Equarion H, which gives all possbile forms, in terms of se-
ries with H-function coefficients, of the functional equation of higher hierarchy arising
from the original ramified one satisfied by the Dirichlet series. Then by sepcifying the
parameters, we shall deduce a few concrete examples scattered in the literature in the
most natural way.

1 Introduction

S. Bochner, developing the theory of E. Hecke, opened a new entrance to the land of zeta-
functions satisfying the functional equation with multiple Gamma factors, i. e. the modular
relation principle ([2], [3]). We have been trying to interpret the existing formulas of zeta-
functions in the framework of the modular relation, with a diversity of results culminating in
[14]. A breakthrough in research was made by the third author, who, under the suggestion of
the first author to utilize generalized hypergeometric functions, has considered the problem
in an even more general setting, i. e. in the realm of the Meijer G-functions and the Fox
H-functions, resulting in a tremendous success, as is reported in [18] and being put into the
book form [13].

In this note, we shall state a special case of our Main Formula H as the Ramified Type
Main Formula and illustrate it by some concrete examples which are of interest in their
own right. In section 2, we shall give yet another proof of the functional equation for the
Hurwitz-Lerch zeta-function

(1.1) (2, 8,a) Z it a) (0<a<)

in addition to other proofs given in [11] as a Hecke-type zeta-function. Our present method
assumes the L— H formula and deduces the incomplete gamma series (2.17), from which
the functional equation may be deduced in various ways. In section 3, we shall take up the
result of Johnson [8] relating to the functional equation for the generalized Hurwitz-Lerch
zeta-function

© 24 (k+a)?

(1.2) Dy(2,8,a) = Z ¢

- <1,A .
2 Gt a) (0<a<1l,A>0)

Note that ,
#(2,8,a) = Oy (—2miz,s,a)e "%,
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As is explained in [12], it was A. Erdelyi et al. who first gave the Taylor expansion for
By (2, 8,a) — (1 — s) (—2miz)*"" with Hurwitz zeta-function coefficients. They applied the
functional equation twice, namely, they first used one for ®;(z,s,a) and then the Hur-
witz formula (the functional equation for the Hurwitz zeta-function). This gives an answer
to the evaluation problem in the zeta regularization [4, p.63,(1.31)]. Johnson’s argument
of applying the residue theorem is more direct and gives the Taylor expansion itself for
P a(—2miz, s,a) — LT (152) (72m'z)%, which gives a closed form for {}., in [4, (1.28),
p.63], where {}., signifies the contribution from the curved part. He does use the functional
equation for the Hurwitz zeta-function to show that {}., = 0. A similar problem with a =1
for the divisor function d(n) =3_,,, 1 was stated by Hardy [7]:

i dq(;l)e_m{

which was pursued by Walfisz [19], [20] and then by Kanemitsu [9], and will be elucidated
in Concluding Remarks.

Notation. Let I'(s) denote the gamma function. We denote the product Hjil I'(k;) of
K gamma factors by I'(k1, - - , kx), which we further abbreviate by I" ({kj }le)
We choose the path L in such a way that the poles of the gamma factor

I(ay — Ays,...,an — Aps)
[ (ant1 — Any1, o ap — Aps) T (bing1 — B8, ..., by — Bys)

lie to the right of L and the poles of the gamma factor

F(bl +B]_S7,bm+BmS)
[ (ansr — Ang1, o ap — Aps) T (bg1 — Bimg1s, ..., by — Bys)

lie to the left of L. Then the (Fox) H-function is defined by (0 < n < p, 0 < m < g,
4;,B; > 0)

H™n | 4 (1 - alaA1)7 R (1 - a’nvAn)a (an—&—laAn+1)7 ey (apaAp)
P4 (bl,Bl), ey (bm,Bm), (1 — bm+1,Bm,+1), ey (1 — b(qu)

1 T'(by + B1S,... by + Bps)T'(a1 — A18,...,an — Apns)
2mi Jp T(ans1 + Angas, .. ap + ApS)T (b1 — By s, ..., by — Bys)

z %ds.

On the other hand, the (Meijer) G-function is defined as

agmn (4 1_a1>"'11_anaan+la"'7ap
P-4 bl,...,b»n.“l—bm+1,...,1—bq

_ g [ (1—-a1,1),....,(—an,1),(apnt1,1),...,(ap, 1)
X (b1,1), -y (s 1), (1= bg1s 1),y (1= by, 1)

1 L1 +5s,..., by +5)T(a1 —s,...,a, — 5)
2w Sy T(ans1 + 8- yap + 8)D(big1 — 8, ..., by — 8)

z %ds.

(For the properties of G- and H- functions, we refer to [5], [6], [16] and [17].)
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2 The Main Formula

In order to state Main Formula we first introduce some notation. With increasing se-
quences {Ax}, {u](;)} tending to oo (1 < ¢ < I) and complex sequences {«}, {5,(;)} (1<
1 < I), we form the Dirichlet series

N\
(2.1) o) =35
k=1 Mk

which we suppose have finite abscissas of absolute convergence o, oy,, (1 < i < I), respec-
tively.

We assume the existence of the meromorphic function x satisfying the functional equation
for a real number 7:

(2.3)
T ({d; + D;s}}Ly)
T ({c; +Cjs}i_y)

o(s), if R(s) > 0y,

W) =9 T+ ED @ = X)) T (1) - B - s HI)
;F({ff H D0 =N ) T () - B =,

if R(s) < lrélilgl (r—oy,),

Yi(r — s),
)

with C;, D;, B, F{" > 0
We assume further that among the poles of the function
T ({bj — Bjs + Bjw}7,)
r ({aj — AjS + Ajw}§:n+1) r ({bj + BjS — ij}?:m-&-l

)x(’UJ)
in w, only finitely many s (1 < k < L) are not the poles of

T ({b; — Bjs + Bjw}jL,) T ({f V- Fr+ R }MM>

I ({a; — Ajs+ Ajﬂ]};;:n_,’_l) r ({eg-i) E( r+ E(l w}P(NmH)
o 1
i i i) 100 :
T ({b; + Bys — Byw}?_, )T ({f} )+ PO~ F >w}f=m+l)
We define the gamma quotient
I ({b; + Bjw}it,) I' ({a; — Ajw}?
(2.4) A(w) = (o, + Bywhie, ) T (te, Jiz1) (4;, B; > 0),

F ({a’j + Ajw}§=n+1) F ({b B w}J 7n+1)
and assume the growth condition: for any real numbers u1,us (u; < uz), we have

lim A(u+iv—s)x(u+iv) =0

[v|—o0
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uniformly in u; < u < us.
We take two Bromwich paths Ly = Li(s), Lo = La(s) which are deformed in finite part
such a way that the poles of
I ({a]‘ + AjS — Ajw}?zl)
T ({aj — AjS + Aj’w}f:nJrl) r ({bj + BjS - ij}?:erl)

lie to the right of Ly, and s (1 < k < L) lie to the left of Ly and the poles of

T ({bj — BjS + B]w};”: ) ({f 7’ + F( 2 ;M?)
I ({a; — Ajs+ Ajw}é-):nH) r ({ey) — E( Ir + E(Z w}f(])vmﬂ)
1

X

i i (¢ (i)
F({bj—kBjs—ij}?: H)F({f;)—FF;)r ) }]Q <)+1)
lie to the left of Lo, those of

1
I ({a; — Ajs+ Ajw}t_, )T ({e@ EDr + BV} )

J=N@+1
({e(l +E( E('L }N())

7 (i)
r ({bj + Bjs B, w}J m+1) ({f]( g + FJ( g F( )w}? MG >+1)

X

and s (1 < k < L) lie to the right of L.
Under these conditions we define the function X(z, s) by

(2.5) X(z,8) = i ), A(w — 8)x(w)z""dw

Then, we have

(2.6) X(z,s) = %M/L Alw — s)x(w)z"Ydw + 2%” Alw — s)x(w)z™Ydw,

where C is the boundary of a compact set containing sy (1 < k < L), and we have a form of
the functional equation (a variation of the general functional equation in [18]):
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The Ramified Type Formula H:
(2.7)

X(z,s)
0 P
ZakHrﬁ:;MfM Z)\k {(1 A S A )}j 17{( A j S5 A ) j= n+17{(C]70 )}j 1
b {(b; — B s, Bj)}t j= 1-{(dj, Dj) j:lv{( — Bjs, B; )}] =m+1
if Ly can be taken to the right of o,

o0 . i (%)
—r Z Z (i)H'rH—N(’) ;AN [
k ‘H‘Q(i’):P-ﬁ-}B(i) z

=1 k=1

{(1—b; — Bj(r — ), By) Yy {1 — £, F) LD

J

n i (4)
{(a; — A;(r — s), Aj) j:l,{<e§>,E§- >>}§21,

{(b; = By(r = ), B)Y_ 1 {7, %}?“}M - )
{(1—a; = Aj(r = 8), AV L= € BRI L

L
+ ZRes (A(w — s)x(w)z=", w = s,)
k=1

if Ly can be taken to the left of min (r — oy,)

1<i<

or equivalently,

25X(z, s)

8

(6% Hm+M n <Z>\k

{(1 a'JvA ) i= 1’{(aij')}§ n+1){(cj +C'S C‘)}le
/\Z p+P,g+M

{(b B) j= 17{(d +D’SD)] 1?{( b B)}] =m+1
if L, can be taken to the right of o,

I (4) i, _ ()
2 B epmor ()
M(i)T*S q+Q@ ,p+P® 2
i k

i i 7 o7 (i)
{1 =0, B}y (L= £ + F(r — 5), O
7 7 v ()
{(aj, Aoy, {(e) + B (r — 5), BV,

i=1 k=1
- i i )\ Q®
{(bg B o AU + FOr =) EON )
7 % p (i)
. {(l_ajaAj)}§:n+1a{(1_e()+E()( )7Ej( )) f:]\?(iﬁkl
+ Z Res (A(w — s)x(w)2°~", w = s)
k=1

if Ly can be taken to the left of min (r —oy,)
1<4i< I

n m M P
Zj:lA'+Zj:1B'+Z' D'>Z§ n+1A’+Z?:m+1Bj+Zj:1C
@ @
+ +
S A+ B+ O B+ Y )
Pt Q (i)
>Z] n+1AJ+Ej:m+1BJ+ZJ N<l)+1 ZJ M(>+1

In the special case A; = B; =C; = D; = E(Z) Fj( - 1, we have

r ({bj + w};nzl) r ({aj - w}?zl)

S (PY S B (D &
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and the Ramified Type Formula H reduces to

The Ramified Type Formula G:
X(z,s)

o0
Gm+Mn A\ l—a;—s,...,1—a, —5s,ap41 —58,...,ap — 5,C1,...,Cp
kS p Pt | #Nk
k=1

b1—S,...7bm—S7d1,...,dM,1—bm+1—S,...,l—bq—s

if Ly can be taken to the right of o,

T—by—(r—s),....,0=by,1—f7 1 f0

o0
zJZ OGN mt MO (P M@
BTaQUpPO gy —(r—8),. s — (r—s),e, D
= i=1 k=1 1 yeer Un 0 ) €1 7-(~.')’ Ny
3 3

bm—i—l7(T7$)7"'abq*(r75)a 1\?[(0-&-1"“’(@)%” (

1 K3
l—an_H—(r—s),...,l—ap—(r—s),l—eN(i)+1...,1—el5i)

L
+ Z Res (A(’w — s)x(w)zﬂﬂw = Sk) )
k=1

if Ly can be taken to the left of min (r —oy,)
1<i<I '

or equivalently,

2°X(z, 8)
o0
Z%GerMm A l—ay,...;1-an,an41,...,ap,c1 +8,...,cp+s
— )\Z p+Pg+M bl,...,bm7d1+S,...,dM+S,1*bm+1,...717bq

1—by,. o l—bp 1= fD 4 (r—s),...,

if L1 can be taken to the right of o,
al,...,an,egi) +(r—s),... el + (r—2s),

I oo %
S5 A et (1
. i)r—s q-t,-Q(i)J)—i-]s(i) 2 N
N 1-— f](é)m +(r—5),bmat,--- ,bq,f](\;[)(i)+1 +(r—s),..., fg()” + (r—s) >

1—an+1,...,1—ap,1—e(f) +(r—s)...,1—e§;)(i)+(r—s)

—~

N 41

L
+ ZRes (A(w = s)x(w)z*"" w = si) ,
k=1

if Ly can be taken to the left of min (r —oy,)
1<i<I
(2n+2m+M2p+q+P, 2n+2m+2N+2M2p+q+15+Q).

Proof of the Ramified Type Formula H. We note that all the poles of
T ({a; + Ajs — Ajw}i_y)
T ({a; — Ajs + Ajw}i_, 1 {e; + Cw}ily) T ({0 + Bjs — Bjw}i_41)
lie to the right of L; and those of
I ({b; — Bjs + Bjw}jty, {d; + Djw}}ly)
I ({aj — Ajs + Ajw}l_ 1, {ej + Ciw}ly) T ({b; + Bjs — Bjw}i_,, 11)
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lie to the left of Lq. Hence, if the condition on L, is satisfied, then we obtain

(2.8)

X(z,s)
1 I ({b; — Bjs + Bjw} ) T ({a; + Ajs — Ajw}r_,)
Comi )y, T ({a; — Ajs + A JwH 1) T ({bj + Bjs — Bjw}i_, .))
I ({d; + Djw}}L,)
T ({¢j + Cjw}i_y)
1 I ({b; — Bjs + Byw}7"y,{d; + D;w}}))
27 . D ({a; — Ajs + A G s +C’jw}f:1)
F({aj—i-A-s—A-w};‘ 1) = g
T ({b; + Bjs — Bjw}i_,, ) = (z\)"
< it Mn ( {(1—aj — Ajs, ApYi_y, {(a; — Ajs, A Y0, {(e5, G )
- Z arHp p gar ‘
Pt {(bj = Bjs, Bj) Y7, {(dj, Dj)}y iy, {(1 = bj = Bjs, Bj)}i_ s

On the other hand, all the poles of

o(w)z"dw

dw

1

I ({a] A s+ A; w}J n+17{6§'Z) E(Z)TJFE(Z)w}f(J)V()-;-l)

Jj=1

i i D)
r ({bj +Bjs - ij}?:m-H’ {fj( = Fj( ) F( K }? M(w)+1)

P ({a; + A5 — Ay () + B0r - EOw}R)
X

lie to the right of Lo, and those of
i i N ()
({b —Bs+Bw}J 1,{7 @ )T+P() ;71)

r ({a]- —Ajs+ Ajw}§:n+1, {eg 0 _ Ej( )p 4 EJ( w f:(iz)ir(wﬂ)
1

7 (i)
L ({bj + Bjs — Bjw}i_,, 1, {fg( F( }JQ WG )+1)

X

lie to the left of L. Hence under the condition on Ly, we have

(2.9)

X(z, )
:L/ T ({bj — Bjs + Bjw}i)) T ({a; + Ajs — Ajw}i_,)
; F({a] As—|—Aw}j n+1) ({bj—|—Bj5 Bw}j m+1)
Lo T (U = FOr+ FOwHE T ({9 + BPr - B w )

(@) (4) (4) (O] (3) (i) (1) 10®
i:1F<{€j - E'r+ E; }fN()H)F({fj + F;Vr — F; }j V011

X

Yi(r —w)z"Ydw
)



Bochner’s formula 35

L
+ Z Res (A(w — s)x(s)z™", w = si,)
~ Bjs+ By {f — FOr 4+ FOwyit))

27” /LQ {aj Ajs + Ajw}h_ n+1,{e E(l)r—kE w}f(z)va)

({aj + Ajs — Ajwli_y, {6@ + E(.l)r — E(.’)w}]-vm) il (4)

J Jj=1 k
dw
4 4 (@) Z w=r
({b + Bjs — Bjw}i_ mH,{f( —l—F( F( }?M(H-l) k=1 (ui“)

X

4 ZRQS (A(w — s)X(w)Z*w, w = Sk)

oo . .
Z m+M< D n+N© Z
p+P<L> a+Q® ()
k= My

7 [ (i)
{(a; + A (r = ), A Yoo (e ESYLL |
i o1
(U= b+ By — sk B (1 — 10, D) S

7 7 (3)
{(1—aj + A;(r — s), Aj) Y 1,{<1fe“ EO)NMY,

{05+ Bylr = 9 B (01 EONES

Jj=1>

MN

N
Il

-

N

L
+ Z Res (A(w — s)x(w)z™", w = s3)

I oo 7 7 (i)
ST G i | (L= = By(r —s). By} 1,({)@—() BB
S QO PO\ | (a5 — A — 9), A Yoo (e BN
(i)
{(bjiBj(ris)vB])}] m+17{(f 7 )}? M()+1
7 7 (i)
{(1—a;— Aj(r—5), AY_, 0, {(1 - e§> BN

L
+ ) Res (A(w = s)x(w) 27w = sp.),

whence (2.7) follows.

Example. Let

k=1
be the Lerch zeta-function. Then for 0 < a < 1, we have the L—H (Lerch — Hurwitz)
formula

F(l N S) 1-s 14 —los gy
(2.10) ls(a):W<e FTic(1— 5,1 —a) +e '3 g(1—s,a)>.

Now we appeal to Euler’s formula in the form
T . T
1 1 +1
P(s+3)T(3-5) T(s)(1—s)

(2.11) "™ = cos(ms) + isin(ms) =

so as to replace the exponentials in (2.10) by gamma functions, deducing in the first place

1l _ s
ng Is(a) :F g—‘Q(;)Q) (27T12 ¢(1—s,a)+ %%C(l —s5,1— a)>
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which we further transform into

(212) L) = (F?(:)S) ( ((1—s,a)+ 2%%54(1 —s1- a))

LOEHTEE) (i e a1
CFDTa ) (e o)

We interpret (2.12) as in (2.3), for which we use the data:

2 2m 2

For A\, = \/7k, ap = €2 we have (s) = 1% Is(w) and o, = 1,
for ,u,(cl) =ymlk+a—-1), ,il) =1, wehave ¥(s)= 2;% ((s,a) and oy, =1,
for u{? = /7 (k — a), (2) 1, wehave s(s) = ZT%%C(S, 1—a) and oy, = 1,
for ,u,(f) =mlk+a—-1), ,(63) =—%, wehave v3(s)= _27%%«5’@) and oy, =1,
for ,u,(f) = /7(k —a), ,(94) =%, wehave y(s)= 2%%{(3, 1—a) and oy, = 1.
Thus, (2.12) is a special case of (2.3) with r = 1:
r(i-3) r-g)
(2.13) X(8) = ¢(s) = —Z 7211 — 5) + —2 <2 (1 — 5)
r(3) r(3)
L(1+3)T(-3%) L(1+4)r(-3%)
+ . ==3(1 —s) + 2 32 Ya(l —s5)
T3 (+3) T (G+3)
We have to check the condition on poles. The function y has no pole and among the
. . T(w) C(w)P(1+%) .
poles of T'(w)x(w), those which are neither the poles of (g) nor of TE)r(i+%) is only at
S1 = 0.
Thus the Ramified Type Formula H applies to give
o0
Ok ;1.1 (1,1)
(2.14) > o Hpy (mk (5.1) )
k=1 "k
_ i ﬂ;(:) 2 ﬁ ‘ (1-s,1)
b1 /“L](gl)l s 13 z (%7 %a%)a(ovl)v(lfga%)
+ f: Ly (1=s1)
1 ](62)1 s7 L3 z (%_%7%)a(051)7(1_§a%)
+i 6123) 2,2 ﬁ 1 (_%7%)7 1_‘1971)1 1
2 [ (=5,2),(01), (1= 3,5 (53— 5, 3)
= 61(;1) 2,2 Mz(:l) (=5,5), (1—5,1)
+ 22 (B 2:3) )
1§1N1(g4)1 s 724 z (_%7%)7(0a1)7(1_%a%)7(%_%7%)
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+ Res (D'(w)T' (s — w)x(w)z*~", w = s1) .

By [17, 8.3.2.21, p.629], the left-hand side of (2.14) becomes

We appeal to the special cases of the formulas for H-functions. First, by [17, 8.4.2.5, p.

631

(1+2)
By the duplication formula, we have

1-s5,1)
H2,1 <Z 3 ( ) >
1,3 (52, 1),(0,1), (1 - %, 3)
1 31 (2, 3) L a1 ( 2 15
— O = G732 | 12524 1
22—sq 173( (155’%)a(0a%)7(%,%) 2l-sr 1 2 ’0’§

by [17, 8.3.2.22, p. 621], which by [17, 8.4.16.18, p. 649] becomes

where and hereafter until the end of this section, I'(s, z) indicates the incomplete gamma
function of the second kind defined by

mi—22i (1 — s, —22’i) + e—%m—"'hir (1 — s, 222)) s

(o)
(s, z) = / e “uttdu, Rs >0, |argz| <,
z

and

I
[\
et
[ ] =
)
= W
W
N
N
(o]

T s, . ) . ) r
= 21_(5\% (iele’%T(l — 8, —2zi) — je~ TH2ET(] — s,22i)) + L)
ST

25\
Hence, formula (2.14) with z replaced by 1 reads

(2.15) T(s) )

%
o et



58 SK,YT,HT

e
(2 20 % )10

eQu,(Cl)zi )
+(2(1)—ﬂ)1r (1 — s, 2u zz)
wy, zez )i=s

2%

D) & |
- Zs—ls\/;r ;ﬁél) ( I (1 - s, —ng)zz)

00 ) _.

I'(s) (2) e~ 2 # @ .

+ 5z § B — (1 — 8,2 zz)
29 1ﬁk:1 k (2M1(c2)ze_7)1_8 k

eZ/Ll(f)zi @)

+WF (1 — s, 2u zz)
pyzez )ies

(3)

e~ 2y #

I'(s) - (3) 3) .
I 1-s,-2
+ Zs_lﬁkzzlﬁk ( 8, =2y, zz)

o2 zi o .
EPC e (1 — 5,20 zz) +—
(2uy ze2) e
DO Shg (e (1 5, —20)
o Yo (4 _mivi_g — 5, =24, 21
27T k=1 * (QM,(:L)ze*?)l—s k
Z‘62,u,<c4)zi @, 1
T @ =gt (1 — 8,241, zz) +—5
(21 ze2) s

+ Res (D(w)T'(s — w)x(w)z" "%, w = s1) .

Or, more concretely,

> eerika
2.16
( ) kzzl (V7k + 2)3
o e—2ﬁ(k+a—1)zz’

— =T (1 —s,—2Vr(k+a—1)zi)
i\ 2Vl +a—1)ze%)

o2V (k+a—1)zi
* — T (1 5,2v/7(k +a—1)zi)
(2vk+a—1)ze%)
1 i e—2VT(k—a)zi

+ 2z5=1 /7 ; <2ﬁ(k — a)ze—%i)

=T (1— s, —2V7(k — a)zi)

e2ﬁ(k—a)zi
+ —— T (1—5,2y/n(k — a)zi)
(2vlk —a)ze¥)

6—2\/E(k+a—1)zi

1 oo
s ; (Qﬁ(k +a— l)ze*%’)lis

T (1-s,-2ya(k+a—1)z)
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2VF(k—a)zi
+ —— T (1—5,2y/7(k — a)zi)
(2\/77'(/4; - a)ze%)

1 1 1 1
- 4
+2zs7rkz_l<k—a If—l—(z—l)_'—,zso(a)7

after simplification, which, by writing /72 by z becomes

el e2mika 1 0 67271'(k:+a71)zi )
Z CEL = S Z —~ —L(1—s,—2n(k+a—1)zi)
k=1 k=1 (27r(k +a— 1)ze‘7>

e27r(kfa)zi 1

+ (1 —s,2n(k — a)zi) ~ 5
o

zi\ 178
(27r(k - a)zeT)
Thus we have arrived at the incomplete gamma series for ¢(a, s, 2) :

> e—27r(k+a—1)z1',

(2.17)  é(a,s,2) = ! Z

ZS

- I'l—s,—2n(k+a—1)zi)

-1 1-s
k=1 (27r(k +a— 1)26_7)

627r(k7a)zi

+ '(1—s,2r(k —a)zi) | +

N\ 1—s s
(277(k - a)ze%> 2z
The deduction, on the basis of the Fourier series for the Dirac delta function, of the
following functional equation (2.18) can be found in [1], [11] :

(2.18)
T'(l1—3s 0 e—27'r(k+a—1)zi 627r(k—a)zi
¢(aa S,Z) = (2371 ) i\ 1—s + i\ 1-s
k=1 (277(k +a-— 1)26_7) (27r(k: - a)ze?)
I — i o . :
N (2(7'(')1—85) (elTﬂ—Z_QTmZ’LQS(_Za 1- S, (l) +e 12 7rz+27r(1—a)zz¢(z7 1- 5, 1- CL))
0<z,a<l.

3 Johnson’s formula

In this section we shall first state a very special case of (2.3) with I = 1 and then deduce
Proposition from it.

Corollary. Suppose that two Dirichlet series p(s) = > oo % and (s) = > 04 ﬁ" satisfy
k k

the functional equation of Hecke type :

L(s)e(s),  if R(s)> oy,
x(s) =
T (r—s)u(r—s), if R(s) < (r—oy).
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Then we have

(3.1)

(1-a,A) )
(r—s,1),(1-10,B)

L
I'la — As + Aw) —w
+>_Res (I‘(st+Bw)X(w>Z e s’“)’

T — v (r—s,1),(1-s,1)
L
I'(—As + Aw) sew
+ ’;Res ( T(w) x(w) Jw = sk>

Recalling the formula ([16, p.11, (1.7.8)])

(1-a,A) )chl\h( (a+ Ac, A) ._z>7

1,1
B2\ | 1,0 -bB)

i

where W, is the Psi series defined by
A) o~ ['(a+ Ak) 2*
i} (a? . — i
' 1((6,3) Z) ZF(b+Bk) X
we deduce from (3.2) that

Lo @ 4% _ ser N (A(r —s),A)
_ _ k — N\ ._ PR
A}; )\Ze z ;ﬂkl 1( (r,1) ;

z

& I'(—As + Aw) .
+ kz_lRes (F(w))g(w)z RUES sk) )

which is Bochner’s formula ([3]).

Proposition (Johnson). ([8]) The generalized Hurwitz-Lerch zeta-function admits the
expansion

o0 _ AT 1—s
@A(z,s,a)—;g(sflr,a)( j|) +F(AA )2571

the series on the right being convergent at the origin.

Proof. We apply Corollary to the following two functional equations of Hecke type. For
0 < a <1, we have

(3.3) T (s) (735((28, a) + %g(zs, - a))

1 1 1
=1 (2 — $> (15 ll_gs(a) —+ R ll_gs(a))
T2 T2
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with a simple pole at s; = %, and

(3.4) T (s) < 51 C(2s —1,a) — S{l C(251,1a)>

without poles.
By Corollary, (3.3) yields

1 o0 e ¥z w(k+a—1)2 zm(k—a)?
Z; m(k+a— AZ w5 (k —a)?s
_ -1 = 2w ik —2mik (A(l_s)aA) 7Tk2 F(A(%_S)) ;—1
=z’ 2;(6 e te ! a)1q11< 2(%,1) T + F(%) 2°7 2

By making change of variables s «— % s, z + Z, we obtain

1 i e~ /% (k+a—1)2 1 i e~ /7 (k—a)?
_ 4+ —
AL (k+a-1)p A== (k—a)
- S 1-s 21.2 1 s—1
:T(%Z = (627rzka+ —Qﬂlka) 1\111 ( (A(f 17)A) 7_7"' k ) +F (A S) z 2
k=1 2

In the same way, (3.4) yields

o A/enleras iR — e Cha)?
7T5k+a71251 Azﬂ-s 7a)251

1

Mg

k:l

— _3 Z (—Z e27rika +ie—27rika) 1\:[}1 < (A(

k=1

N
—~INlw

—s),A) 7Tk2>
3.1 oz )]

By making change of variables s «— % s+ =

%, z +— £, we obtain
™

— /2 (k+a—1)2 1

i - ie—m

22 A) Tk
(%71) ’ z ’

Combining the above two formulas, we conclude that

1 e e~ Y/ z (k+a—1)2
ZZ (k+a—1)

1 - [eS) ) Al—st 2]{32
% 1 Z 2rika 727rzka) 1\1,1 < ( 2 ) ; s

41



42 SK,YT,HT

3 00 2—s 27.2
T2 s-2 . 2rika —2mika (A 2 ’A) T k
+ 72 2 kg_lzk (—e +e ) 1Yy ( ) —

which, after the substitution A < 7, 2« 22, gives rise to

0o A a_1)A 1 00 —s
Z e (kta—1) w2 45— 1 Z 2rika 727\'%}{}@) ] (114 ’ %) . _7T2k2
(k+a—1)° 1 ) )

1
k=1 b=1 (3,1 z
ﬂ'% 522 S ik 2rika —2mika i} (22\8’%) 2k
_ A p— —
—|—Az kZ:lz (e +e )11 (%71) ; 2
1—s
4 F( A ) Zsfl
A
1 = , s 1 2mik
:Zzs—l Z{eQ‘n—zkalqjo( ( Aiv A) - 7TZZ )
k=1
—s . 1—s
+ 2wika N (1A 7%) .271'7,]15 F( A ) 2871
- "oz A ’
where 1V is another Psi series defined by
Sk
1\1/()( - ) Zr + Ak) 1?

Note that after analytic continuation we have
A 1 a 1 1

1\:[/0( (a) ) ;_Z> = a I\II0< (A7A> ;T 1)7
o AzA o zA

0 67,2‘4 (k+a71)A

> a1

k=1

1—s A
— 55— 1 2rika (17’97‘4) . o
- Z{ (2mik)i- \I’O( ’ (27Tik)A)

1-s A 1—s
—2nika 2 (1_8714) z F( A ) s—1
e (—2mik)l—s " 0( — T Camina)g Tt :

_i e2rika if(l—s—i—Ar) B 24 "
B — (2mik)t—s — 7! (2rik)A

e~2mike T (1—s+ Ar) <_( 24 ) )T}+F(1As) s—1

* (—2mik)t—s — r! —2mik)A

> T (1 — S+ A?") (—ZA)T _1- s+Ar e 277”“7« 1 5+Ar 727rika
- Z (27T)1_S+A7‘ r! Z kl 5+Ar Z 1 T1—s+Ar
1

and therefore,
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= F(l —S+AT) (—ZA) _l-stAr . lostAr .
= ; (27_‘,)1—3+AT r | € 2 6175+Ar(a) +e 2 el*Sﬁ’A’l‘(_a)
T 1—s
+ (AA ) 2871
= 3 (_ZA)T r (1;;) s—1
_éc(s—Ar,a) e+

4 Concluding Remarks

(i) As is mentioned in Introduction, the Taylor expansion for ¢(z, s,a)—I'(1—s)(—2miz)*~*

was first obtained by Erdélyi et al. ([5, 181, p.49)):
oo
(4.1) P(z,8,a) —T(1 — s)(—2miz)* ! =
k=

(s~ ha)(=2miz)¥, (2] < 1),
0
which was referred to by Johnson as an important result and has been generalized as in
Proposition above and by Elizalde [4, (1.31), p.63] as an exact known result. Johnson’s
formula gives Elizalde’s conjectural formula [4, (1.28), p.63].

If we turn our attention to the case a = 1 and ((s) squared, then the corresponding
problem, i.e. the study on > %e‘”ﬁ, first stated by Hardy ([7], footnote, p.7), was
studied in more greater detail by Walfisz [19], [20] and by the first author [9].

Walfisz considered the following generalization of Piltz’s divisor problem. Let K be an
algebraic number field of degree k over Q with Dedekind zeta function (x(s). Let Z(s)
denote the generating series for the m-fold divisor function F'(n):

o0

F(n)

25 = Gl = Y- S,
n=1
m being a natural number. Then the Piltz divisor problem in K asks for finding a series
representation with Bessel function coefficients as well as an asymptotic formula for the

summatory function >, __ F(n). Writing k = mk and

=

n2  2r

(o)=Y S0 v

Walfisz proved the formula (20, (4.6), p.163])

(4.2) U(z) = R(z) + @(2),
where
@ vo= ¥ SV (a7

is a branch of an analytic function regular at the origin and R(z) is the singular part.
The first author considered the product of 7 Dedekind zeta-functions associated to 7
algebraic number fields K;, 1 < j < 7:

2:) = [[ e () = 3 2

n
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and studied Hardy’s original problem in the most general setting:

F(z)=Foalz2) =Y %e_zm,
n=1

for which he deduced the Taylor expansion (]9, (8'), p.215]).

Thus, Hardy’s statement that Zzozl %e’Z”A may be expressed as a main term plus
an integral function should be modified as a main term plus an analytic function regular at
the origin.

As with Hardy for whom the Taylor expansion was just a starting point for establishing
his most famous omega results, so with Walfisz, who, decomposing the ¥(z)-function into a
finite sum of M (z)-functions, expressed M (z)-function as infinite sum of L(z)-functions and
then studied the singularities as in Hardy [7] to establish the omega results. A novel point
is that he appealed to the theory of linear differential equation satisfied by

o pr (L L k)
L — 2 2Kk K k.
(2)=2, Tk+1)
k=0
The first author went further from the Taylor expansion to decompose F(z) into a finite
sum of M, (z)-functions, which he further expressed as an infinite sum of L, (z)-functions,
where I 5K)
— o+ v &
L = _
#(z) k_zz F(k + 1) Z,
k=p (mgd 2v)

and where v signifies the sum of degrees of K;’s over Q. The main result is the expression
of L, (z)-functions as Meijer’s G-functions, a genesis of the recent researches by us ([13], [18]
etc.).

Thus we see that Johnson’s formula is the starting point of further research and can be
proved most easily by residue calculus. However, if we appeal to this, we will lose the most
important point to the effect that the formula is one obtained by applying the functional
equation twice.

Moreover, in the study of L(z)-functions, one can see an interaction of three different
mathematical disciplines, number theory, differential equations and special functions.

(ii) Examples of the class of zeta-functions satisfying the ramified functional equation
are hardly exhausted by what is given in this note. It surely includes the Estermann zeta-
function studied by M. Jutila, the product of the Hurwitz zeta-functions as referred to in
[10], or even the perturbed type series

o d(n)
2 v ay

etc. We shall return to these examples elsewhere.

(iii) Also, some of the zeta-regularization problems may have already been solved in the
study of number-theoretic problems as we have seen above in the case of the Dirichlet divisor
problem and its generalization. We hope to return to elucidation of this area in the future.
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