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ON AN EXPONENTIAL SUM INVOLVING THE MOBIUS
FUNCTION

H. MAIER() AND A. SANKARANARAYANAN(2)

ABSTRACT. In this paper we study the upper bound for the absolute value of the
exponential sum related to the Md&bius function unconditionally and present some
interesting applications also.

1. Introduction

Let e(a) denote e, We consider the exponential sum

(1.1) S(z,0) = Z w(n)e(nd).

n<lz

R.C. Baker and G. Harman (see [1]) studied this sum under the hypothesis that for
every Dirichlet character x, L(s,x) has no zeros in the half-plane o > a. They proved

THEOREM A. Suppose that the above hypothesis holds for every Dirichlet character
x. Then

max |S(z,0)| < zbt

with
1 : 1 11
a+Z 'Lf §§a<%,
b=1q3% if p<a<i,
sla+1l) if 2<a<1

For other interesting related results we refer to [2], [4], [11] and [13]. Throughout
the paper, the integer d is a divisor of ¢, x* denotes a Dirichlet character modulo ¢,
x4 denotes the principal character modulo d and x denotes a character modulo (%).
The constant A is a generic absolute constant which need not be the same at each
occurrence. € and ¢ denote arbitrarily small positive constants. We use ||6|| to mean

that

LAMS Subject Classification : primary 11 M, secondary 11 M06 , 11 NO5.
2Key words : Dirichlet L-function, M&bius function, Exponential sum, Zero-free region.
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[16]] = min |0 —m|.
mEZ

Throughout the paper, we assume that z > zo (where xg is sufficiently large) and
the modulus ¢ > go (> 10).

Now, the main goal of this paper is to give an unconditional upper bound in terms
of zero density functions of Dirichlet L-functions for |S(z,8)|. Let

(1.2) N(e,T,x) =#{p=B+1iv: Lp,x) =0, 82>2a>0, |y|<T}.
We prove

THEOREM 1. Let q be a positive integer and 6 be a real number. Then for any rational
number ¢ with (r,q) = 1 and for any fived o satisfying + +6 < a <1—6 (with §
being any small positive constant), we have

S =: S(z,0)
_1 . q 1
<q 2x1+10+2(8) -¢(%) (1+$

dlq

[N

=31)~
(1.3)

X max . T (¢T)° /11 T¢ (%) (%)a+€ + (2)0+€ Z N(o,T,xxa) | do

ISTS(% X mod (%)

Here x4 denotes the principal character modulo d and the functions xxq are characters
modulo q.

To strengthen our Theorem 1 above, we present here a few applications as Theorems
2, 3 and 4 in the following. Note that Theorem 2 is unconditional whereas Theorem 3
depends on the Average Zero-Density Hypothesis. Since they depend on the type of 6,
let us recall this notion (see page 121 of [7] for more details). Let ¢ be a non-decreasing
positive function that is defined at least for all positive integers. The irrational number
6 is said to be of type < ¢ if ¢||¢8]|| > ﬁ holds for all positive integers q. If ¢ is a
constant function, then an irrational 8 of type < 9 is also called of constant type. Let
11 be a positive real number or infinity. The irrational number 6 is said to be of type
mq if 1 is the supremum of all §; for which

liminf ¢°*(|gf]| = 0
q—00

where ¢ runs through the positive integers. The relationship between these two def-
initions is that an irrational number 6 is of type 7, if and only if for every 7 >
there is a constant ¢ = ¢(7,6) such that @ is of type < 1 where 9(q) = cq"!. Tt is
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well-known that almost all numbers are of type 1. From Roth’s theorem, we note that
all algebraic irrationalities 6 satisfy

1
> F

o7
q

Therefore all algebraic irrationalities are of type 1.

Just by using the known average zero-density estimates of L(s,x) over all characters
of a fixed modulus, we prove

THEOREM 2. Let @ be of type 1. Then for every arbitrarily small e > 0, unconditionally
we have

S(xz,0) <. z¢ T,

where ¢* = %.

We formulate the zero-density hypothesis for all the characters x* modulo (g) as :

AVERAGE ZERO-DENSITY HYPOTHESIS. For o > %, we have,

(1.4) SN, T,x*) < (¢1)*" " (log(qT))"

where A is an absolute constant.
Now, we prove

THEOREM 3. We assume the Average Zero-Density Hypothesis. Let 0 be of type 1.
Then for € > 0 arbitrarily small, we have

S(xz,0) < zite.

Remark. As we stated earlier, Theorem 1 gives the upper bound for |S(z, )| which
depends on the zero density functions. We observe that Theorem A yields the exponent
% + € (for all real 0) only on the assumption of the Generalised Riemann Hypothesis.
The author(® jointly with M. Ram Murty studied such exponential sums in [13] using
a more general form of Vaughan’s method. It should be mentioned here that they
obtained for example (for § of type 1)

S(z,0) < x%"'e,

in [13]. The approach of the present paper is entirely different and the results here
depend on the zero density functions. As far as Theorem 3 is concerned, we have
assumed a weaker hypothesis and obtain a better result when 6 is of type 1 and it
seems to be new.

As another interesting application of our Theorem 1, we prove
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THEOREM 4. Let x be a character modulo m. For every integer m > 1, we suppose
that there exists a constant g (> 2) such that

(1.5) > N(@T,x) < (mT)*"~ (log (mT))*
x(  mod (m))

uniformly for % < o < 1. Here A is an absolute constant. If 0 is of type 1, then we
have

(1.6) S(z,0) < z"t°
where

13 3 ¢
1. - _Z_Z
(1.7) V=TT, 3

Remark. From the known average zero-density results (see the fundamental work of
H.L. Montgomery [8], [9], precisely for example see Theorem 12.1 of [10], see (2.23)
and a few subsequent lines of [6]), we find that we can take for example g = £ in
(1.4). We also note that the result of Theorem 4 will be having a better exponent v

(which is less than £) unconditionally for all 6 of type 1 when g < £ in (1.4).

2. Some Lemmas

LEMMA 2.1. Let f =6 — 7 and g < x2. We have

_ p(d) (% 5
S(x,) —% Sl H%q/d)x(r)T(x)S (5xxa Bd)

Here x4 denotes the principal character ( mod d) and

Sy, x"m) = Y u(n)x*(n)e(n)

n<y
and
ad md
) = 3 xtme ()
m=1 q
Proof. See Lemma 1 of [1]. O

Remark. The functions xxq appearing in Lemma 2.1 are characters ( mod g). For
the Gauss sum 7(¥), we need the well-known bound

e ()
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K. Ramachandra and A. Sankaranarayanan studied (see Theorems 1 and 2 of [12])
certain upper bound estimates “ locally 7 for the function |log F'(s)| (where F(s) is
any Dirichlet series satisfying certain general conditions) under the assumption that
F(s) is zero-free in a rectangle of the type {0 > 1 + 6,7 — H < t < T + H} of t-
width 2H. Here the parameter H could be chosen as small as H = C'logloglogT. We
again emphasize here that the Theorems 1 and 2 of [12] (see the appendiz of the paper
[12]) are more general and they assume neither the Euler product nor any functional
equation of the Dirichlet series F(s) concerned. We just record a special case of these
general theorems as Lemma 2.2 in the sequel.

LEMMA 2.2. Let £ < a* <1-46. Let H = Cloglog(¢T) and x* be any Dirichlet
character modulo q. Suppose the Dirichlet L-function L(s,x*) # 0 in
{o>a", T-H<t<T+H}.

Then for (a*<a§1—mg§%,T—§§t§T-{-g),wehave :

(2.2.1) llog L(o +it, x*)| < (C2(log(¢T))(loglog(¢T)) ™) -
Proof. Tt is a special case of the Theorems 1 and 2 of [12]. O

LEMMA 2.3. Let m be an integer and 1 < m < x. We have

2+44T w 2
S(m, x*,0) 1/ 1 m—dw+0( )

3

" 2mi a—ir L(w,x*) w T
IO R | w 1
= —/ —— " aw+o(= ,
2mi Jo_ip L(w,x*) w m
with T = m?.
Proof. We apply Lemma, 3.12 of [14] with a,, = u(n)x*(n). O

LEMMA 2.4. Let 0 be of type 1 and € > 0 be arbitrarily small. Then for x sufficiently
large, there exist integers r,q with (r,q) = 1 satisfying :

1

(2.4.1) 27T < g < g?

and

(2.4.2) §— " <200,
q

Proof. In the sequel, let €; > 0 denote fixed but arbitrarily small constants. From the
definition of the type 1-property, it follows that for all €; > 0, there is a gg (€1) such
that

(2.4.3) [lg0]| > q_(l"'“) for g > qo (1) -
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We choose x such that
(2.4.4) 273 < min g
g<qgo(e1)

By the Dirichlet approximation theorem, there is g € Qwith (r,q) =1,1<¢g< SL'%,
such that

1
(2.4.5) ‘0 ~I< — which implies that ||¢gf|| < —.
q qr2 T2
By (2.4.4), we have
(2.4.6) q>qo(er).

From (2.4.3) and (2.4.5), we have

(2.4.7) g~ (%) < ||¢6]| < #~* which implies that z3 < g('*¢1),

This means that

(2.4.8) q> #e7 and hence

60— i‘ < g~
q
This proves the lemma. O

LEMMA 2.5. Let q be a positive integer and d be any divisor of q. Let x denote
a character modulo (%) and xq denote the principal character modulo d. Then for
o> %, we have

N (07 TJ XXd) =N (07 T7 X) -
Proof. We have (for s > 1)
L(s,x) =[] (1 = x@)p~)

p
and

-1

L(s,xxq) = H (1= x@xap)p)
We note that '

_ )0 if p|d,
xa(p) = {1 if p Jd.

Therefore, we have
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L(s,xxa) = [ - x®@p ) " [ (1 - x®)xatp)p) "
pfd pld

=L(s,x) [[ (1 - x(p)p~?) -

pld

We also note that

H (1= x(p)p*) # 0 for Rs > 0.

pld

Hence we obtain

N (o,T,xxa) = N (0,T,X) -

This proves the lemma. O

3. The construction of the contour C of integration

In the following, C* is a generic absolute constant which need not be the same at
each occurrence.

Definition: A zero p =: 8 + i~y of the Dirichlet L-function L (s, x*) is said to be good
ifp<l— m and p is said to be ezceptional otherwise.

Let To < T (< 23) and z > zo where ¢ is sufficiently large. Let G and £ denote
the set of all good and exceptional zeros respectively of all the Dirichlet L-functions
L (s,x*) with |y| < T. We denote |G| and |€| to mean the cardinality of the sets G
and & respectively.

Let a be any fixed constant satisfying £+ < a < 1—§ with § being any arbitrarily
small fixed positive constant. The contour is symmetric with respect to the real
axis. So, it suffices to describe it in the upper half-plane. We assume that |£| = 0.

Therefore, L (s,x*) # 0 in the region {0 >1- m, U<t< ZU} where

C*’is a suitable absolute positive constant and we construct the contour accordingly.
We let T = 2. We choose ¢ with % < ¢ < 1 such that Hy = cloglog(qT) = 2F
with a positive integer L. For I > L, put U = U = 2!. We define the contour
for U <t < 2U. Welet H = HU®) = ¢loglog(qU®) and choose ¢; satisfying
% < ¢ <1 such that 2% is a positive integer. Then we partition the interval [U, 2U]
into % disjoint abutting small intervals I; = I ](-l) of equal length 2H for 1 < j < %
Let Ij = [U] — H,Uj +H] and let

B; =sup{B:p=pB+iy, L(p,x") =0, 8>a, vy€[U; —2H, U; +2H]}

and
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. _ cr
By =8+ (loglog 2q(U + 10))°
We also define (with H) = Hy + 2 (log (¢Ho))?)

Po=sup{B:p=PB+iv, L(p,x") =0, B> a, v€[0, 2H;]}
and
C*
%o =P foglog gHo)
If there is no zero of L (s, x*) in the rectangle

{o0>a, Uj—2H <t<U;+2H},
then we define 87 = . Similar notion applies to g also.
Thus, the contour C consists of vertical pieces

B;+i(U;j—H+e), B;+i(U; + H—e¢)] if B; <min(B} ;,B}1),
(B +i(U;—H—¢), B3 +i(Uj+ H+e)] if B >max(8; |,804,),
B;+i(Uj—H—¢), B} +i(U; + H—¢)]

if min(B5_y,B541) < B7 <max(8;_y,8741),

v =

the vertical piece

o= (Ui i +itHo 0] i1 > i,
(86, Bg +i(Ho +€)] if B <S5,
the horizontal pieces h; with

hj(top) = [8] +i(Uj + H —¢€), By +i(Uj + H —e)]
and

hj(bottom) = [B +i (U; — H +€), B; 1 +i(U; — H+¢)]

provided 87 <min(8} 4, 85;,),

hj(top) = (87, +i(U;+ H+e€), B; +i(U;+ H +¢)]
and
hj(bottom) = [8;_, +i(U; — H —¢€), B +i(U; — H —¢€)]
provided 85 > max(ﬂ;‘_l, ,8;‘+1),

hj(top) = [B; +i(U; + H —€), By +i(U; + H —€)]
and
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hj(bottom) = |: ;_1 +i(Uj —H-—¢)), ,3; +i(Uj —H—E)]
provided 57, < B} < B4,

hj(top) = (871 +i(Uj+ H—¢€), B; +i(U;+ H —¢)]
and

hj(bottom) = [ +i(U; — H —€), Bj_; +i(U; — H —¢€)]

provided B7,; < B < Bj_y, and the similar horizontal pieces ho, (this is just a
notation only) that link the top (respectively the bottom) vertical pieces of the ranges

U <t <20% Y (respectively) UD <t <20W,

4. The treatment of S (y, x*,n)

We keep in mind that the modulus ¢ satisfies the inequality ¢ > go and there is no
exceptional zero in the following.

We have
y—1
41)  S(,xm) =) Sm,x*,0)e(nm) (1 —e(n)) + S(y, x*,0)e(ny).
m=1
By Lemma 2.3, we have (with T = m3(< y* < (%)3 < 23)
y—1 1 2+iT 1 y—1
S(m,x*,0)e m=—,/ -_— m*¥e(nm) | dw + O(lo
5 st 0stm) = ok [ gt (S et ) o+ otoen
(4.2) =TI"+O(logy) (say).

We now replace the path [2 — T, 2 + 4T by the contour C constructed in section 3.
By Lemma 2.2 (for large |t| (> Hp)), we have

(4.3) L (o +it, x")| 7" < (aU)°

for o + it € V; and o + it € h;. The horizontal slab with [¢| € [0, Ho] is treated as
follows. We redefine

* IBS 1 lf |t| € [0727]7
/8 = *, : 3 1
Boo if [t] € [2 ’HO]'

=
For the portion [t| € [25, Ho|, we first observe that the region
C*

10>0> 085, > —_—
{10202 0> o+ e

23s|t|5H6}
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is zero-free for L (s, x*) and hence applying Borel-Caratheodary theorem, we get (for
o
10202 fo+ (logloquo))

(4.4) log L (o +it, x*)| < (log (¢Ho))" ™ < (log (¢T))" ¢,

and so the above estimate holds when 3§ , +it € Vp with ¢ € [25, Hy| provided T > Tg
(where Ty is sufficiently large).

The portion |t| € [0,25] is dealt as follows. Note that by our assumption, L (s, x*)
does not have any exceptional zero. We first observe that the region

C**
2 (loglog q)

is zero-free for L (s, x*) with a suitable absolute constant C**. If ¢ > 1 —
then we have

{102021— > B5.1s |t|§27}

**

2(loglog q)°’

(4.5) L (5,x")| < (logq)' ~*.

If|s—1| < 10(15;71%11)’ then we observe that

IL (5,x*)| < |L(s,x*) = L(1,x*)| + |L (1,x7)|
< (s —1)|(logg)' ¢ + log g
(4.6) < (logq).

Now, we apply the Borel-Caratheodary Theorem suitably to the function
log ((s — 1) L (s,x*)) with concentric circles having centre at 2 + it and radii 1, 1+

29
C**
1
log "
<1 - ﬂo,1>

2(loglog q)
(4.8) L (B, +it,x*)| ™" < (aT)¢

whenever [t| € [0,2°].
By partial summation, we obtain

and conclude that

(4.7 |logL (ﬂg,l + it X*)| < + (logq)' ¢ < (log(qT))l_€ ,

for T > Ty. This implies that

(4.9)

y—1 y—1

Z mPitite(nm) = (y —1)% Z mite(nm) —ﬂ]*/ Z mite(nm) | v ~'du.
m=1 m<y—1 1 m<u

From (4.3) and (4.9), we observe that the contribution of the vertical path V; to I'* is
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y—1
1 1 m*
I*(V:) =: - - 7
0= 3 501 [ ) e
= Vi

(4.10) < HU Y (qU)“y% max sup z mie(nm)|,

USY te[U2U] | hu

an analogous estimate

I* (Vo) < Hy (qT)° 47 x

X ¢ max sup mie(nm)| + max sup mite(nm)| 3 ,
USY gef0,25] Z USY  te[28, Ho] Z

m<u m<u
and the contribution of the horizontal path h; to I* is
y—1
1 1 m"
I (h;) =: | d
( ]) 2—1 o / L(w,x") w e(nm) w
= e
(4.11) LU (qU)*y% max sup Z mte(nm)|.

USY te[U2U] |nZu

For the horizontal pieces hg,, an analogous estimate applies.

5. Zero density functions

We presume that || = 0. As before, we let a be any fixed constant satisfying
% + 6 < a <1-—§ with § being any arbitrarily small fixed positive constant. We now
choose a partition of the interval [a, 1] namely

(51) a:a0<a1<---<aj_1<aj:1,
with
(5.2) a; —aj—1 <€

The number of j— values for which 85 € [a—1, ] is bounded by N (a;-1,2U, x*).
From (4.10) and (4.11), we observe that the total contribution from all the vertical
bits and the horizontal bits to the integral I* (for U <t < 2U) is
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C(I*) =) (I* (V) + I* (hy))
J

< HU ' (qU)° | max sup mite(nm

(U USY te[U,2U] Z m

~—

2%

m<u 7

21

1
< HU'(qU)° | max sup Z mite(nm) (Uyo‘Jre +/ y“ N (o,2U, X*)da) ,

ulY  ¢e[U,2U] a

m<u

3 *
since ﬂj > f;.
Thus we arrive at,

5" =t 3 S(m.x",0)e(m)

m=1

1
< Z HU ! (qU)" max sup Z me(nym) (Uyo‘+€+/ Yy’ TN (0,20, x*) da)

u<
L<i<lo, Y telU,2U] m<u

U=2i

+ Hy (¢T)° { max sup 2 mite(ym)| + max  sup Z mée(nm)| » x

uly  ¢el0,25] usY  te[25,Ho)

1 N 072L7X*
X <2Lya+5+2L/a y"+€7( oL )da +logy
< H (¢T)* max | sup mie(nm)| + sup mite(nm)| | x
uly \ te€f0,2] ngu 2<]-Z<lote[2f—1,2i] ngu
1
N (o,T, x*
X (ya+e+/ y0'+e (U;T7X )dO') +10gy
< max T~ '(¢T)* max | sup méte(nm)| + sup mée(nm)
1<T<y? usy  \ tef0,2] ;L 2<]-2<10t6[2f—172j] W;L

(5.3)

1
X (Tyo‘Jre +/ y° N (o, T, X*)da) + logy.
[e3

We treat S (v, x*,0) e(ny) in a similar fashion and obtain

X
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(5.4)
1
S(y,x*,0)e(ny) < max T~ (qT)™ (Ty“+€+ / yTeN (U,T,x*)d0> + log y.
1<T<y® o

Let t* be the value at which the quantity | > mfle(pm)| attains its supremum.
m<u
We just estimate this sum trivially and get
(5.5) sup E mie(nm)| <u < |n|~ (14 |n|u)
t€[0,2'0] m<u

Remark. Any non-trivial bound to the sum in the left hand side of (5.5) only in terms
of u will surely sharpen Theorem 1.

6. Proof of the Theorems

Proof of Theorem 1. We take x* = xxq which are characters modulo ¢ for various
x modulo 4. Here x4 denotes the principal character modulo d. We fix our n = Ad.
The proof follows on substituting the estimates obtained in (5.3), (5.4) and (5.5) in
Lemma 2.1 appropriately. Thus using the estimates (5.3), (5.4) and (5.5), we first

obtain

1
S@,x"m) < max (1+yln) T~ (7)™ (Tya+f+ / y”fN(a,T,x*)do)
1<T<y3 a

+ logy

1

(6.1) < max_(1+yln) T~ (gT)" (Tya“ré +/ Yy’ TN (o, T, X*)da) ,

1<T<y3 1

provided |£| = 0. Thus, the set G contributes to > S(y,x*,n) precisely an
X( mod %)

amount which is in absolute value

<Y 18w x"n)l
x(3)

and from (6.1) and Lemma 2.1 (with y = %), we observe that this leads to the second
sum term (appearing in the right hand side of (1.3)) over all the divisors d of ¢ with
maximum over T of certain integral involving the zero density functions provided the
set £ is empty.

The case |£| > 1 is dealt as follows. From the density estimates (see for example
(6.4) and (6.5)), we have (for 1 <o <1)
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>N (@ T,x*) < (aT)® 7 (log(qT))*
X*
with an absolute constant A. Therefore we have,

c .
fle2 N ( (loglog(@D))’ X )

< exp <Cl* <%))
(6.2) < any

For each of these exceptional zero from the set £, we estimate S (y, x*,n) trivially and
from Lemma 2.1 (with y = %), we observe that the contribution coming from the set
£ to S(z,0) is in absolute value

(6.3) L q T (qT)¢ @ < g~ 2zt H10e

since, ¢ < 22, T < x3. This leads to the first term appearing in the right hand side of
(1.3). This proves Theorem 1.

Proof of Theorem 2. The fundamental work on zero density estimates of Mont-
gomery (see [8] and [9]) and the methods of [5] and Theorem 1 of [6] (for example
see (2.23) and a few subsequent lines of [6]) enable one to deduce the following zero
density theorem (which is a variation of Theorem 12.1 of [10]).

AVERAGE ZERO-DENSITY THEOREM. Suppose that ¢ > 1 and T > 2. Let x* denote
characters modulo q. For % <o< % + €, we have

64) D N@TX) < (aT)5" (log(aT))* (< (aT) ¥~ (10g(4T))") ,

andfor%—kegagl, we have

(6.5) Y N (0. T,x") < (a0) F 7 (log(qT))"
"
Let f1(0) = o + 20=2 Then, V(o) = 1 — 552 . oy = 2 — (8)?, then
1 : 2(2 a)" > J1 2(2—0)2" 0 2/ >
1(1) (00) = 0 and f1 (00) < 0. We notice that the interval [§,3 + €] is contained in
the interval [%, 2-(3)° ] We find that £V (3) > 0 and hence the function fi (o) is

increasing in the interval [1,2 + ¢]. Therefore

(6.6) max fi(0) = f (% ) < ;_(1) + Be.
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If fo(o) =10+ g(l — o), then we find that (for % +e<o<1)

21
(6.7) fa(0) < 20 + 5e.
We fix our a = % + 6 in Theorem 1 where § is any arbitrarily small positive constant.
Hence from Theorem 1, Lemmas 2.4 and 2.5, we have

-3l)~
(6.8)

| e T [l G +@)™ | ¥ wor||a

ISTS(% x mod (%)

S =: S(z,6)
<<q‘5:c1+1°f+2(%);'¢(1 ] (1+x

q
dlq d

with ¢ > 2705 and ‘0 - % < z=(1=9)_ Now, we split the integral into two integrals,

one in which the range of integration varies from % to % + € whereas the range in the

other varies from % +e€to 1.
Therefore from (6.4), (6.5) and (6.8), we get

(6.9) S(z,0) < 2 (Qo + Q1 + Q2 + Q3)
where

s patote
(6.10) QoK z1 5 Q= ;Llax Jits

_ o (wh) eyt (2ET) T
(6.11) @2 =: max max max T (d) (d) (d)

A<z 1<T<(8)® 3<0<i+e

and

12(1—0)

1\ "3 1
T2 xz\°te [ 22T
6.12 =: T = ad
(G12) Q= Y Ty i (d) () (d)

We observe that the expressions on the right hand side of (6.10), (6.11) and (6.12)
above (without maximums) are decreasing in the variables d and T. Therefore the
maximum is attained for d = 1 and T' = 1. Hence, it is easy to see that



ON AN EXPONENTIAL SUM INVOLVING THE MOBIUS FUNCTION 25

(6.13) Qo € zi ; Q) « piti0o+e
3(1—0)
(614) Q2 < . ma)?’( ;1;0'+€+2(2—u)_% < $%+5€
5So<gte
and
(6.15) Q3 K , max goter Y 4 & pFroe,
5+e<o<1

We note that

3
Thus, from (6.13), (6.14), (6.15) and (6.9), we obtain

(6.16) S(x,0) < x¢ T50+105,
Since € and § are arbitrarily small positive constants, the proof of Theorem 2 is
complete.

Proof of Theorem 3. As in the proof of Theorem 2, we now choose our « here to
be a = 1 + 6 in Theorem 1 so that (for 6 of type 1) we have

O—CD X
q

() ET G| vorw) |w

S =:5(z,0)
< q‘5m1+1°€+2(%)é-¢(11) <1+x
d

dlq

1
X max T~ (qT)"% /

z \3
1<T<(3) 3 x mod ()
.'L'% % .’I}'% -

< q_%$1+10e + 2% max | — — (T4 x

dSm% d d

z3 T\ 3+0+e 1 zy\ote (3 Az
[ ma () G e max (B)7 (G

1<7<(8)* d ) \d dsosi !

< x%+20€

1 2(1—0)+e
—1430e¢ glt10te 1.4 [T\t [ 2
+ax 3 max | ———— ) + max max max d2T - —T
d d<e? 1<T<(8)? 3<0<1 d d
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Observing the monotonicity in d and T, we see that the maximum is attained for
d=1and T = 1. Thus we obtain

S(CL’,G) & $%+506+106‘

Since € and § are arbitrarily small positive constants, this completes the proof of
Theorem 3.

Proof of Theorem 4. From the known density estimates (see Theorem 12.1 of [10],
the methods of [5] and Theorem 1 of [6]), we can very well use the bound

?

3(1-o) A
() = (os(%))" wiso<e-
(6.18) ) mZOd %)N(U,T,X) < (%)gu_a) (log (%))A 23 <0<

for2<g< 15—2 with a suitable absolute constant A. We observe that we can split the
integral in (6.8) into two integrals, one in which the range of integration runs from
3 to 2— 2 and for the other, the range of integration runs from 2 — 2 to 1. We use

= ow

7

the first estimate of (6.18) when o varies in the interval [%, 2—- %} whereas we use

the second estimate of (6.18) when o varies in the interval [2 — %, 1]. We note that

filo) =10 + gg:g% is an increasing function throughout in the interval [%, 2 — g]

Therefore, we have

1 13 3 g
1 - <=2_2_Z
(6.19) 4+<%Sr;1§1;<_%f1(0)) S 5 e
and
1 g 13 3 ¢
. = Z(1- <2_Z_Z4e
(6.20) 4+ (21512<<la+2( 0)) <77 2+€

Thus, we obtain (for 8 of type 1)

(6.21) S(x,0) < z° F¢
where

313 3 g\ 13 3 g
22 - _ 313 3 g\_1B 3 g _
(6.22) c max(4,4 p 2) T g 2 v,

since 15—2 > g > 2. We observe that whenever g < % we obtain a better exponent ¢**
which is strictly less than % provided 8 is of type 1.



ON AN EXPONENTIAL SUM INVOLVING THE MOBIUS FUNCTION 27

7. Concluding Remarks
If 6 is of type m1 (> 1), then we have

llg6l| > ¢~ ) for ¢ > go(e)
and hence we do have (as in Lemma 2.4)

o
g>x1 ¢ and so

9 — f‘ <L« g (Fa—e)
q qr?

Therefore, the proof of Theorem 2 essentially leads to :

CONCLUSION 1. Let n; be a real number satisfying 1 < 1, < =——. Let 0 be of type

2c-—1°
m. Then for every arbitrarily small € > 0, we have

gl 1
S(x,@) & x€ tamyte
where ¢* is the same positive constant as in Theorem 2

and the proof of Theorem 3 leads to

CONCLUSION 2. Let 1 be a real number satisfying 1 < ny < 2. Let 0 be of type n1.
If we assume the Average Zero- Density Hypothesis, then for every arbitrarily small
€ > 0, we have

1

S(z,0) & gimmmte,

From a theorem of Walfisz (see [15]), we have unconditionally

(7.1) M(z) =: S(z,0) € zexp (—C(logm)%(loglogx)’%)

and this is the best unconditional result available till today (when 6 = 0). It is a
well-known fact that The Riemann Hypothesis implies that

(7.2) M(z) =: 8(z,0) < z3t¢

for any small positive constant e.

However, in view of Theorem A (as mentioned earlier in remark 1 of Theorem
2), Even on the assumption of the Generalised Riemann Hypothesis, all that we can
conclude is that (for all real 6)

(7.3) S(z,0) < pite.

It should be mentioned here that the Theorem 1 is powerful and yields definitely a
very nice non-trivial upper bound for |S(z,8)| unconditionally whenever we know the
type of 6 as mentioned in the conclusion 1 (i.e for a certain type of irrational numbers
) and conditionally as mentioned in the conclusion 2. However, we must also note
that the Theorem 1 may yield only the trivial upper bound for |S(z,6)| for example
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when § = 0 (or 6 being any rational integer for that matter) and it looks to be a
disadvantage of Theorem 1.
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