Hardy Ramanujan Journal Vol. 28(2005) 30-34

A lower bound concerning subset sums which do not cover all the residues modulo pJean-Marc DESHOUILLERS¹

À la mémoire de S. Srinivasan

ABSTRACT

Let $c > \sqrt{2}$ and let p be a prime number. J-M. Deshouillers and G. A. Freiman proved that a subset \mathcal{A} of $\mathbb{Z}/p\mathbb{Z}$, with cardinality larger than $c\sqrt{p}$ and such that its subset sums do not cover $\mathbb{Z}/p\mathbb{Z}$ has an isomorphic image which is rather concentrated; more precisely, there exists s prime to p such that

$$\sum_{a \in \mathcal{A}} \|\frac{as}{p}\| < 1 + O(p^{-1/4} \ln p),$$

where the constant implied in the "O" symbol depends on c at most. We show here that there exist a constant K depending on c at most, and such sets \mathcal{A} , such that for all s prime to p one has

$$\sum_{a \in \mathcal{A}} \|\frac{as}{p}\| > 1 + Kp^{-1/2}.$$

1 Let p be a prime number and \mathcal{A} be a set of distinct non-zero residue classes modulo p. We denote by \mathcal{A}^* the set of the subset sums of \mathcal{A} , that is to say

$$\mathcal{A}^* = \{\sum_{b \in \mathcal{B}} b, \ \mathcal{B} \subset \mathcal{A}\}.$$

G. A. Freiman and the author proved (cf. [1]) the following result.

 $^{^1 \}rm Supported$ by Université Victor Segalen Bordeaux 2 (EA 2961), Université Bordeaux
1 and CNRS (UMR 5465)

Theorem 1. Let $c > \sqrt{2}$. Let p be a prime number and \mathcal{A} be a subset of $\mathbb{Z}/p\mathbb{Z}$ with cardinality larger than $c\sqrt{p}$, such that its subset sums do not cover $\mathbb{Z}/p\mathbb{Z}$. There exists s prime to p such that

$$\sum_{a \in \mathcal{A}} \|\frac{as}{p}\| < 1 + O(p^{-1/4} \ln p).$$
(1)

In this paper we prove that the error term cannot be arbitrary small. More precisely, we prove the following

Theorem 2. Let $\sqrt{2} < c < 2$. There exists a positive real number K such that for all prime number p which is sufficiently large, there exists a subset \mathcal{A} of $\mathbb{Z}/p\mathbb{Z}$ with cardinality larger than $c\sqrt{p}$, such that its subset sums do not cover $\mathbb{Z}/p\mathbb{Z}$, and such that for every s prime to p, one has

$$\sum_{a \in \mathcal{A}} \|\frac{as}{p}\| > 1 + Kp^{-1/2}.$$
 (2)

2 Notation When a and b are two real numbers, we denote by $\langle a, b \rangle$ the set of the integers x from the interval [a, b]. For a real number u, we use the traditional notation $e(u) = \exp(2\pi i u)$ and $||u|| = \min_{z \in \mathbb{Z}} |u - z|$; when $b \in \mathbb{Z}/p\mathbb{Z}$, the expression e(b/p) (resp. ||b/p||) denotes the common value of all the $e(\tilde{b}/p)$'s (resp. $||\tilde{b}/p||$), where \tilde{b} is any integer representing the class b ; we further let |b| denote the minimum of $|\tilde{b}|$ over all the representative \tilde{b} of b, or equivalently |b| = p ||b/p||.

The letter p denotes a prime number which is sufficiently large to satisfy all the implicit or explicit inequalities.

3 A lemma Before embarking on the construction of \mathcal{A} , we state and prove a preliminary technical lemma.

Lemma 1. Let u and k be natural integers with $2 \le u \le 2k - 3$. Then any integer v in the interval $[k+2, 2k^2 - 3k]$ can be expressed as a sum of at most v/k pairwise distinct elements from the interval [k+2, 5k].

Proof of Lemma 1 The lemma is trivial when $k + 2 \le v \le 5k$ and we may now assume that v > 5k. Let us write v = 2qk + r with $1 \le q \le 2k - 4$ and $3k < r \le 5k$, and let us consider two cases

- if q is even, say $q = 2\ell$, we have $\ell \le k - 2$ and we can write $2qk = \sum_{|h| \le \ell, h \ne 0} (2k + h)$,

- if q is odd, say $q = 2\ell + 1$, we have $\ell \leq k - 2$ and we can write $2qk = \sum_{|h| \leq \ell} (2k + h)$.

In each case, we can represent v as a sum of q + 1 pairwise distinct integers from the interval [k + 2, 5k], whence the result.

4 Construction of A

4.1 We first construct an auxiliary suitable set of integers, \mathcal{E} . We recall that $\sqrt{2} < c < 2$ and let

$$L = \max\{12, \lfloor \frac{4+c^2}{4-c^2}+1 \rfloor\}$$
 and $k = \lfloor \sqrt{\frac{p}{L^2-1}}+1 \rfloor;$

we thus have

$$(L^{2} - 1)(k^{2} - 4k + 4) \le p \le (L^{2} - 1)(k^{2} - 2k + 1).$$

We consider the set $\mathcal{B} = \langle k+1, Lk \rangle$; we have

$$2\sum_{b\in\mathcal{B}} b = (L^2 - 1)k^2 + (L - 1)k,$$

from which one deduces

$$(0.5L - 1)k - 0.5 \le \sum_{b \in \mathcal{B}} b - (k + 1) - (p - 1)/2 \le (L^2 + 0.5L)k.$$

By Lemma 1, when p is sufficiently large, we can find distinct elements in $\langle k+2, 5k \rangle$ the sum of which is $\sum_{b \in \mathcal{B}} b - (k+1) - (p-1)/2$; let us denote by \mathcal{C} the set of those elements and let $\mathcal{D} = \mathcal{B} \setminus \mathcal{C}$. The set \mathcal{D} is included in $\langle k+1, Lk \rangle$, contains $\{k+1\} \cup \langle 5k+1, Lk \rangle$ and satisfies

$$S := \sum_{d \in D} d = (p-1)/2 + (k+1).$$

We finally define \mathcal{E} by

$$\mathcal{E} = \mathcal{D} \cup \{-d/d \in \mathcal{D} \text{ and } d > k+1\}.$$

4.2 Let us now turn our attention to the set \mathcal{E}^* in \mathbb{Z} . Its largest positive element is S (defined as $\sum_{d \in \mathcal{D}} d = (p-1)/2 + (k+1)$), the sum of the positive elements of \mathcal{E} . We have a priori two ways to get the largest element in \mathcal{E}^* besides the one we just mentioned: either we subtract the smallest

positive element of \mathcal{E} (which is k + 1), or we add its negative element with the minimal absolute value (which is at most -(k + 2)); there are thus no element of \mathcal{E}^* between S - (k+1), which is (p-1)/2 and S, which is strictly larger than (p+3)/2. On the other hand, by a similar computation, the smallest element in \mathcal{E}^* is the sum of the negative elements of \mathcal{E} , which is -(S - (k+1)) = -(p-1)/2, and the smallest besides it, is larger than or equal to -(S - (k+1) - (k+2)) = -(p-1)/2 + (k+2).

4.3 Let \mathcal{A} be the canonical image of \mathcal{E} on $\mathbb{Z}/p\mathbb{Z}$. We show that \mathcal{A}^* does not cover $\mathbb{Z}/p\mathbb{Z}$: let us consider the point (p+3)/2 (or more correctly, its canonical image in $\mathbb{Z}/p\mathbb{Z}$). The only integers in \mathcal{E}^* that can cover this point are (p+3)/2, which impossible, or (p+3)/2 - p = -(p-3)/2 = -(p-1)/2 + 1, which is again impossible. Thus \mathcal{A} is different from $\mathbb{Z}/p\mathbb{Z}$.

5 No dilation of \mathcal{A} leads to a small sum It remains to show that relation (2) is satisfied.

5.1 We first consider the case when s is 1 or -1. In this case, we have $\sum_{a \in \mathcal{A}} ||sa/p|| = 2(S/p) - (k+1)/p = 1 + k/p > 1 + ((1/\sqrt{(L^2-1)}).p^{-1/2}).$

5.2 When 1 < |s| < p/(2Lk), we have $||sa/p|| = |s| \cdot ||a/p||$ and so $\sum_{a \in \mathcal{A}} ||sa/p|| > |s| \cdot (1 + k/p) > 2$.

5.3 Let us now consider the case when $p/(2Lk) \leq |s| \leq p/((L-6)k)$. The interval $\langle 5k + 1, 6k \rangle$ is in \mathcal{D} and for any integer d in this interval we have 2/L < |s|d/p < p/2; this implies $\sum_{a \in \mathcal{A}} ||sa/p|| > 2k/L$, which is larger than 2 when p is large enough.

5.4 We finally consider the case when $p/((L-6)k) \leq |s| < p/2$. For any real number x we have $2\pi ||x|| \geq 2|\sin(\pi x)| \geq 2\sin^2(\pi x) = 1 - \cos(2\pi x) = 1 - \Re(e(x))$. Since the interval $\langle 5k + 1, Lk \rangle$ is included in \mathcal{D} , we have

$$\sum_{a \in \mathcal{A}} \|sa/p\| \ge \sum_{h=5k+1}^{Lk} \|sh/p\| \ge \frac{1}{2\pi} \sum_{h=5k+1}^{Lk} (1 - \Re(e(sh/p)))$$
$$= \frac{1}{2\pi} ((L-5)k - \Re(\sum_{h=5k+1}^{Lk} e(sh/p))).$$

We further have

$$|\Re(\sum_{h=5k+1}^{Lk} e(sh/p))| \le |\sum_{h=5k+1}^{Lk} e(sh/p)| \le \frac{2}{2|\sin(\pi s/p)|},$$

and since |s| is less than p/2, we have

$$|\Re(\sum_{h=5k+1}^{Lk} e(sh/p))| \le \frac{p}{2|s|} \le (L-6)k.$$

We thus have

$$\sum_{a \in \mathcal{A}} \|sa/p\| \ge k/(2\pi) \ge 2,$$

as soon as p is sufficiently large.

This ends the proof of Theorem 2.

6 Concluding remarks In order to get a result of the type $\sum_{a \in \mathcal{A}} \left\| \frac{as}{p} \right\| < 1 + \Omega(p^{-1/2})$, we need, with our construction, to have an upper bound for $\operatorname{Card}(\mathcal{A})$ of the type $c\sqrt{p}$ with c < 2, and we believe that when c tends to 2, such a result cannot be valid.

In the other direction, we conjecture that, in Theorem 1, the upper bound for the error term may replaced by $O(p^{-1/2})$. However, our construction may be adapted to show that such an error term cannot be valid when $\operatorname{Card}(\mathcal{A}) = o(p^{-1/2})$.

References

[1] Deshouillers, J-M., Freiman, G. A., When subset sums do not cover all the residues modulo p