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On the periodic Hurwitz zeta-function

A. Javtokas, A. Laurinčikas

Abstract.In the paper an universality theorem in the Voronin sense for the
periodic Hurwitz zeta-function is proved.

1. Introduction

Let N, N0, R and C denote the sets of all positive integers, non-negative
integers, real and complex numbers, respectively, and let a = {am, m ∈ Z}
be a periodic sequence of complex numbers with period k ≥ 1. Denote by
s = σ+ it a complex variable. The periodic zeta-function ζ(s; a), for σ > 1, is
defined by

ζ(s; a) =
∞
∑

m=1

am

ms
,

and by analytic continuation elsewhere. Define

a =
1

k

k−1
∑

m=0

am.
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If a = 0, then ζ(s; a) is an entire function, while if a 6= 0, then the point s = 1
is a simple pole of ζ(s; a) with residue a. The function ζ(s; a) satisfies the
functional equation [22]

ζ(1 − s; a±) =

(

k

2π

)s
Γ(s)√
k

(

exp

{

πis

2

}

ζ(s; a∓) + exp

{

−πis
2

}

ζ(s; a±)

)

,

where Γ(s) is the Euler gamma-function, and

a± =

{

1√
k

k
∑

l=1

al exp

{±2πilm

k

}

: m ∈ Z

}

.

The function ζ(s; a) was studied by many authors. In [3] the function
ζ(s; a) appears as a special case of the periodic Lerch zeta-function with its
functional equation. The papers [7] and [22] are devoted to Hamburger-type
theorems for ζ(s; a). In [6] the Kronecker limit formula for ζ(s; a) is obtained.
The mean square of ζ(s; a) is studied in [11], [18] and [19]. Probabilistic limit
theorems in various spaces are proven in [10] and [12]. The paper [9] contains
some expansions for ζ(s; a) and its derivatives as well as a Voronoi type formula
for

dl(m) =
∑

d1...dl=m

ad1
. . . adl

,

which is obtained by using the properties of ζ(s; a). The zero-distribution
of ζ(s; a) is investigated in [24]. The zero-free regions and formulas for the
number of non-trivial zeroes of ζ(s; a) are established. Moreover, in [25] an
important result on the universality of ζ(s; a) is obtained. Let meas{A} denote
the Lebesgue measure of the set A ⊂ R, and let, for T > 0,

νT (. . .) =
1

T
meas{τ ∈ [0, T ] : . . .},

where in place of dots a condition satisfied by τ is to be written. Suppose that
k is an odd prime, am is not a multiple of a character modulo k, and ak = 0.
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Let K be a compact subset of the strip {s ∈ C : 1/2 < σ < 1} with connected
complement, and let f(s) be a continuous function on K which is analytic in
the interior of K. Then in [25] it is proved that, for any ε > 0,

lim inf
T→∞

νT

(

sup
s∈K

|ζ(s+ iτ ; a) − f(s)| < ε

)

> 0.

Note that the universality of the Riemann zeta-function was discovered by
S.M. Voronin [26]. Later, the Voronin theorem was improved and generalized
by many authors, see, the survey papers [8], [16] and [21].

In this paper we consider a generalization of the function ζ(s; a). Let
0 < α ≤ 1, and, for σ > 1,

ζ(s, α; a) =
∞
∑

m=0

am

(m+ α)s
.

For σ > 1, we have

ζ(s, α; a) =

k−1
∑

l=0

al

∞
∑

r=0
m=l+rk

1

(m+ α)s
=

k−1
∑

l=0

al

∞
∑

r=0

1

(l + rk + α)s

=
1

ks

k−1
∑

l=0

al

∞
∑

r=0

1
(

r + l+α
k

)s =
1

ks

k−1
∑

l=0

alζ

(

s,
l + α

k

)

,

(1)

where ζ(s, α) is the Hurwitz zeta-function. Therefore, the function ζ(s, α; a)
is a linear combination of the Hurwitz zeta-functions, and equality (1) gives
analytic continuation of the function ζ(s, α; a) to the whole complex plane,
where it is regular, except, maybe, for a simple pole at s = 1 with residue a
(if a 6= 0).

If {am} = {1} and k = 1, the function ζ(a, α; a) reduces to the Hurwitz
zeta-function ζ(s, α). If additionally α = 1, then ζ(s, α; a) becomes the Rie-

mann zeta-function. The sequence al =
{

e2πi lm
k , m ∈ N0

}

, (l, k) = 1, clearly,
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is periodic with period k. Therefore, in the case a = al the function ζ(s, α; a)
reduces to the Lerch zeta-function

L(λ, α, s) =

∞
∑

m=0

e2πiλm

(m+ α)s
, σ > 1,

with rational parameter λ. Thus, the function ζ(s, α; a) is a generalization of
classical zeta-functions, and it is reasonable to call ζ(s, α; a) either the periodic
Hurwitz zeta-function, or the Hurwitz zeta-function with periodic coefficients.

The function ζ(s, α; a) has been investigated in [2], true with a small differ-
ence in the definition of ζ(s, α, a). Indeed, in our notation, in [2] the function

F (s) = ζ(s, α; a) − a0

αs

has been considered. Applying their original approximate functional equation
for the function ζ(s, α)− α−s, the authors obtained in [2] the following inter-
esting estimate. Suppose that a = 0, maxj |aj| ≤ A and H = T 1/3. Then, for
T ≥ 2,

1

H

∫ T+H

T

|F (1/2 + it)|2 � A2k log3 T + A2k log k

uniformly in α. Also, in [2] a mean-square estimate for twists of F (s) with
some sequence has been obtained.

The aim of this note is to prove the universality of the function ζ(s, α; a)
for some values of α and certain sequence a.

Theorem 1. Suppose that α is a transcendental number and min0≤m≤k−1 |am| >
0. Let K be a compact subset of the strip {s ∈ C : 1/2 < σ < 1} with
connected complement, and let f(s) be a continuous function on K which is
analytic in the interior of K. Then, for any ε > 0,
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lim inf
T→∞

(

sup
s∈K

|ζ(s+ iτ, α; a) − f(s)| < ε

)

> 0.

Note that the universality theorem for the Hurwitz zeta-function with tran-
scendental parameter was first proved in the Ph.D. thesis of B. Bagchi [1]. He
proposed a new method for the proof of universality for Dirichlet series based
on limit theorems in the sense of weak convergence of probability measures in
the space of analytic functions. We will apply this method of limit theorems
as well as other tools used in [1] for the proof of Theorem 1.

2. The mean square of ζ(s, α; a)

As it was mentioned above, for the proof of Theorem 1 we need a limit
theorem in the sense of week convergence of probability measures on the space
of analytic functions for the function ζ(s, α; a). The proof of theorem of such
a kind is based on the mean square estimate for ζ(s, α; a) in the region σ > 1/2.

Theorem 2. Let σ > 1/2. Then

1

T

∫ T

0

|ζ(σ + it, α; a)|2dt�σ,α,a 1.

Proof. Suppose that max0≤j≤k−1 |aj| ≤ C. Then in view of (1) we find that

|ζ(s, α; a)|2 ≤ k−2σ2k−1
k−1
∑

l=0

|al|2
∣

∣

∣

∣

ζ

(

s,
l + α

k

)∣

∣

∣

∣

2

≤ k−2σ2k−1C2
k−1
∑

l=0

∣

∣

∣

∣

ζ

(

s,
l + α

k

)∣

∣

∣

∣

2

.

(2)

By Theorems 3.3.1 and 3.3.2 from [16], for σ > 1/2,
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∫ T

1

|ζ(σ + it, α)|2dt�σ,α T.

Therefore, taking into account (2), we obtain the theorem.

3. A limit theorem

Let D = {s ∈ C : 1/2 < σ < 1}. Denote by H(D) the space of analytic on
D functions equipped with the topology of uniform convergence on compacta.
Let B(S) stand for the class of Borel sets of the space S.

Define

Ω =
∞
∏

m=0

γm,

where γm is the unit circle γ = {s ∈ C : |s| = 1} for every m ∈ N0. With the
product topology and pointwise multiplication the infinite-dimensional torus
Ω is a compact topological Abelian group. Therefore, on (Ω,B(Ω)) the proba-
bility Haar measure mH can be defined, and this leads to a probability space
(Ω,B(Ω), mH). Denote by ω(m) the projection of ω ∈ Ω to the coordinate
space γm.

For σ > 1/2, define

ζ(s, α, ω; a) =

∞
∑

m=0

amω(m)

(m + α)s
.

Since {ω(m), m ∈ N0} is a sequence of pairwise orthogonal random variables
and

∞
∑

m=1

|am|2 log2m

(m+ α)2σ
<∞,
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we obtain by Rademacher’s theorem [19] on series of pairwise orthogonal ran-
dom variables that the series

∞
∑

m=1

amω(m)

(m+ α)s

for almost all ω ∈ Ω with respect to the measure mH converges uniformly
on compact subsets of the half-plane {s ∈ C : σ > 1/2}. This is obtained
similarly to the proof of Lemma 5.2.1 [17]. Therefore, ζ(s, α, ω; a) is an H(D)-
valued random element defined on the probability space (Ω,B(Ω), mH). Let V
be an arbitrary positive number, and DV = {s ∈ C : 1/2 < σ < 1, |t| < V }.
Then, clearly, ζ(s, α, ω; a) is also an H(DV )-valued random element on the
probability space (Ω,B(Ω), mH). Denote by Pζ the distribution of ζ(s, α, ω; a),
i.e.

Pζ(A) = mH (ω ∈ Ω : ζ(s, α, ω; a) ∈ A) , A ∈ B(H(DV )).

Theorem 3. The probability measure

PT (A) = νT (ζ(s+ iτ, α; a) ∈ A) , A ∈ B(H(DV )),

converges weakly to Pζ as T → ∞.

We begin the proof of Theorem 3 with the following statement.

Lemma 4. The probability measure

QT (A) = νT

((

(m + α)−iτ , m ∈ N0

)

∈ A
)

, A ∈ B(Ω),

converges weakly to the Haar measure mH as T → ∞.
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Proof. The dual group of Ω is

∞
⊕

m=0

Zm,

where Zm = Z for all m ∈ N0.

k = (k1, k2, . . .) ∈
∞
⊕

m=0

Zm,

where only the finite number of integers kj are distinct from zero, acts on Ω
by

x → xk =
∏

m=0

xkm

m , x = (x1, x2, . . .) ∈ Ω.

Therefore, the Fourier transform gT (k) of the measure QT is

gT (k) =

∫

Ω

∞
∏

m=0

xkm

m dQT =
1

T

∫ T

0

∞
∏

m=0

(m+ α)−iτkmdτ

=
1

T

∫ T

0

exp

{

−iτ
∞
∑

m=0

km log(m+ α)

}

dτ.

(3)

Since α is transcendental, the system {log(m + α), m ∈ N0} is linearly inde-
pendent over the field of rational numbers, and in view of (3)

gT (k) =







1, if k = 0,
1−exp{−iT

P

∞

m=0
km log(m+α)}

iT exp{−iT
P

∞

m=0 km log(m+α)} , if k 6= 0,

where in the second case only a finite number of kj are non zero. Thus,
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lim
T→∞

gT (k) =

{

1, if k = 0,

0, if k 6= 0,

and therefore the measure QT converges weakly to mH as T → ∞.

Proof of Theorem 3. We will give only a sketch of the proof, since it only in
some places differs from the case of the Lerch zeta-function [17].

Let σ1 > 0, and

v(m,n) = exp

{

−
(

m+ α

n+ α

)σ1
}

.

Define the Dirichlet polynomials

ζn,N(s, α; a) =
N
∑

m=1

amv(m,n)

(m+ α)s

and

ζn,N(s, α, ω; a) =
N
∑

m=1

amω(m)v(m,n)

(m+ α)s
, ω ∈ Ω.

Since the function h : Ω → H(DV ) given by the formula h(ω) = ζn,N(s, α, ω; a)
is continuous and ζn,N(s+ iτ, α, ω; a) = h(ωτ ) where
ωτ = (α−iτ , (1 + α)−iτ , (2 + α)−iτ , . . .), Lemma 4 and Theorem 5.1 of [4] show
that the probability measure

PT,n,N(A) = νT (ζn,N(s+ iτ, α, ω; a) ∈ A) , A ∈ B(H(DV )),

converges weakly to the measure Pn,N = mHh
−1 as T → ∞. In view of
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the invariance property of the Haar measure mH , this is also true for the
probability measure

P̂T,n,N(A) = νT (ζn,N(s+ iτ, α, ω; a) ∈ A) , A ∈ B(H(DV )).

Thus, both the measures PT,n,N and P̂T,n,N converge weakly to Pn,N as T → ∞.

Now let

ζn(s, α; a) =
∞
∑

m=1

amv(m,n)

(m+ α)s

and

ζn(s, α, ω; a) =
∞
∑

m=1

amω(m)v(m,n)

(m+ α)s
, ω ∈ Ω.

It is not difficult to see that the series for ζn(s, α; a) as well as for ζn(s, α, ω; a)
converge absolutely and, therefore, uniformly in t for σ > 1/2. Define on
(H(DV ),B(H(DV ))) two probability measures

PT,n(A) = νT (ζn(s+ iτ, α; a))

and

P̂T,n(A) = νT (ζn(s+ iτ, α, ω; a)) .

Then, using the weak convergence of the probability measures PT,n,N and

P̂T,n,N to Pn,N as T → ∞, we can prove that on (H(DV ),B(H(DV ))) there

exists a probability measure Pn such that both the measures PT,n and P̂T,n

converge weakly to Pn as T → ∞.
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In the next step we approximate ζ(s, α; a) and ζ(s, α, ω; a) in the mean by
ζn(s, α; a) and ζn(s, α, ω; a) respectively. Let K be a compact subset of DV .
Then, applying Theorem 2, we find that

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

sup
s∈K

|ζ(s+ iτ, α; a) − ζn(s+ iτ, α; a)|dt = 0. (4)

To obtain a similar relation for ζ(s+ iτ, α, ω; a), we use the Birkhoff-Khinchine
theorem, see, for example, [4]. Let aτ = ((m+ α)−iτ , m ∈ N0), τ ∈ R. Then
{aτ : τ ∈ R} is a one-parameter group. Define a one-parameter group {hτ :
τ ∈ R} of measurable transformations of Ω by hτ (ω) = aτω, ω ∈ Ω. We recall
that a set A ∈ B(Ω) is called invariant with respect to {hτ : τ ∈ R} if for
each τ the sets A and Aτ = hτ (A) differ at most by a set of zero mH -measure.
All invariant sets form a σ-field. A one-parameter group {hτ : τ ∈ R} is
called ergodic if its σ-field of invariant sets consists only of sets having mH-
measure equal to 0 or 1. In [10] it was proved that the one-parameter group
{hτ : τ ∈ R} is ergodic. Hence we deduce that the process |ζ(σ+ it, α, ω; a)|2
is ergodic. Therefore, the Birkhoff-Khinchine theorem shows that, for σ > 1/2,

∫ T

0

|ζ(σ + it, α, ω; a)|2dt�σ,α,a T

for almost all ω ∈ Ω. Now, from this we find the analogue of relation (4):

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

sup
s∈K

|ζ(s+ iτ, α, ω; a)− ζn(s+ iτ, α, ω; a)|dt = 0 (5)

for almost all ω. Now we are ready to prove limit theorems for ζ(s, α; a) and
ζ(s, α, ω; a). Define

P̂T (A) = νT (ζ(s+ iτ, α, ω; a) ∈ A) , A ∈ B(H(DV )).

Since the probability measures PT,n and P̂T,n both converge weakly to the mea-
sure Pn as T → ∞, we deduce from (4) and (5) that on (H(DV ),B(H(DV )))
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there exists a probability measure P such that the measures PT and P̂T both
converge weakly to P as T → ∞. For this, as well as for the measures PT,n

and P̂T,n, the Prokhorov theorems, see [3], are applying. Thus it remains to
identify the limit measure P . For this, we fix a continuity set A ∈ B(H(D))
of the measure P , and define a random variable θ on (Ω,B(Ω)) by

θ(ω) =

{

1, if ζ(s, α, ω; a) ∈ A,

0, if ζ(s, α, ω; a) /∈ A.

Then the expectation E(θ) is

E(θ) =

∫

Ω

θdmH = mH (ω : ζ(s, α, ω; a) ∈ A) = Pζ(A). (6)

Since the one-parameter group {hτ : τ ∈ R} is ergodic, the process θ (hτ (ω))
is also ergodic. Therefore, the Birkhoff-Khinchine theorem yields

lim
T→∞

1

T

∫ T

0

θ (hτ (ω))dτ = E(θ) (7)

for almost all ω ∈ Ω. On the other hand,

1

T

∫ T

0

θ (hτ (ω)) dτ = νT (ζ(s+ iτ, α, ω; a) ∈ A) .

This, (6) and (7) show that

lim
T→∞

νT (ζ(s+ iτ, α, ω; a) ∈ A) = Pζ(A).

However,

lim
T→∞

νT (ζ(s+ iτ, α, ω; a) ∈ A) = P (A).
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Therefore, P (A) = Pζ(A) for all continuity sets A of the measure P . Since
the continuity sets constitute a determining class, hence P (A) = Pζ(A) for all
A ∈ B(H(D)). The theorem is proved.

4. Proof of Theorem 1

We begin with the support of the probability measure Pζ. We recall that
the support of Pζ is a minimal closed set A ⊂ H(DV ) such that Pζ(A) = 1.
Since Pζ is the distribution of the random element ζ(s, α, ω; a), its support
coincides with the support of ζ(s, α, ω; a).

By the definition, {ω(m) : m ∈ N0} is a sequence of independent complex-
valued random variable, defined on the probability space (Ω,B(Ω), mH), and
the support of each ω(m) is the unit circle γ. Hence the support of amω(m)/(m+
α)s, m = 0, 1, 2, . . . is the set

{

g ∈ H(DV ) : g(s) =
ama

(m+ α)s
, |a| = 1

}

.

{amω(m)/(m+ α)s, m ∈ N0} is a sequence of independent H(DV )-valued ran-
dom elements, therefore by Theorem 1.7.10 of [13], which was first used in [1]
as Lemma 5.2.11, the support of the random element ζ(s, α, ω; a) is the closure
of the set of all convergent series

∞
∑

m=0

ama(m)

(m + α)s
, a(m) ∈ γ. (8)

Lemma 5. The support of the measure Pζ is the whole of H(DV ).

Proof. We will apply Lemma 5.2.9 of [1], see also Theorem 6.3.10 of [13]. Let
K be a compact subset of DV . Then, clearly, for |b(m)| = 1,
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∞
∑

m=0

sup
s∈K

∣

∣

∣

∣

amb(m)

(m + α)s

∣

∣

∣

∣

2

<∞.

Moreover, in Section 3 we have seen that the series

∞
∑

m=0

amω(m)

(m + α)s

converges uniformly on compact subsets ofDV for almost all ω ∈ Ω. Therefore,
there exists b(m), b(m) ∈ γ, such that

∞
∑

m=0

amb(m)

(m + α)s

converges in H(DV ). Thus we have that conditions 2◦ and 3◦ of Theorem
6.3.10 from [13] for the sequence {amb(m)/(m + α)s, m ∈ N0} are satisfied. It
remains to verify its condition 1◦.

Let µ be a complex Borel measure with compact support contained in DV

such that

∞
∑

m=0

∣

∣

∣

∣

∫

C

amb(m)

(m+ α)s
dµ(s)

∣

∣

∣

∣

<∞. (9)

Since the sequence {am} is periodic and min0≤m≤k−1 |am| > 0, (9) shows that

∞
∑

m=0

∣

∣

∣

∣

∫

C

dµ(s)

(m + α)s

∣

∣

∣

∣

<∞.

Hence we have that
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∞
∑

m=0

|%(log(m + α)| <∞, (10)

where

%(z) =

∫

C

e−szdµ(s) =

∫

C

eszdµ̂(s),

and µ̂(A) = µh−1(a) = µ(h−1A), A ∈ B(C), h(s) = −s. It is clear that the
support of the measure µ̂ is contained in {s ∈ C : −1 < σ < −1/2, |t| < V }.
Since

∫

C

eszdµ̂(s) � eV ,

the function %(z) is of exponential type. Therefore, in view of Lemma 5.2.2
from [1], see also Lemma 6.4.10 of [13], either %(z) ≡ 0, or

lim sup
r→∞

log |%(r)|
r

> −1.

This and Lemma 5.2.5 of [1], see also Theorem 6.4.14 of [13], imply

∑

p

|%(log p)| = ∞, (11)

where the summing runs over all primes p. Clearly, for m ≥ 2,

log(m+ α) − logm� m−1,

and consequently,
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%(log(m + α)) − %(logm) � m−3/2.

Thus, taking into account (10), we have that

∞
∑

m=2

|%(logm)| <∞.

However, this contradicts (11). Therefore, the case %(z) ≡ 0 takes place, and
the differentiation of %(z) ≡ 0 at the point z = 0 yields

∫

C

srdµ(s) = 0

for r ∈ N0. This is condition 1◦ of Theorem 6.3.10 from [12], and we have that
the set of all convergent series

∞
∑

m=0

amb(m)a(m)

(m+ α)s
, a(m) ∈ γ,

is dense in H(DV ). Obviously, this shows that the set of all convergent series
(8), has the same property. Since the support of the random element is the
closure of the latter set, the lemma is proved.

Proof of Theorem 1. Clearly, there exists V > 0 such that K ⊂ DV . Suppose
that the function f(s) is analytically continuable to the region DV . Define an
open set G by

G =

{

g ∈ H(DV ) : sup
s∈K

|g(s) − f(s)| < ε

4

}

.

Since by Lemma 5 the function f(s) belongs to the support of the measure
Pζ , we have by Theorem 2.1 of [3] that
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lim inf
T→∞

νT

(

sup
s∈K

|ζ(s+ iτ, α; a) − f(s)| < ε

)

≥ Pζ(G) > 0.

Now let f(s) satisfy the hypotheses of the theorem. Then by the Mergelyan
theorem, see, for example, [23], there exists a polynomial pn(s) such that

sup
s∈K

|f(s) − pn(s)| < ε

2
.

Moreover, since pn(s) is an entire function, by the beginning of the proof we
have that

lim sup
T→∞

νT

(

sup
s∈K

|ζ(s+ iτ, α; a) − pn(s)| < ε

2

)

> 0.

This proves the theorem.
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6. T. Funakura, On Kronecker’s limit formula for Dirichlet series with pe-
riodic coeficients, Acta Arith. 55(1990), 59–73.

7. P. Gérardin, W.L. Wen-Ching, Functional equations and periodic se-
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15. A. Laurinčikas, The universality of the Lerch zeta-function, Lith. Math.
J. 37(3)(1997), 275–280.
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17. A. Laurinčikas, R. Garunkštis, The Lerch Zeta-Function, Kluwer, Dor-
drecht, 2002.
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