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A REMARK ON A THEOREM OF A.E.INGHAM
BY

K.G.BHAT and K.RAMACHANDRA

ABSTRACT. The theorem of INGHAM [AEI]1 refered to is:

For all N ≥ N0 (an absolute constant) the inequality

N3 ≤ p ≤ (N + 1)3

is solvable in a prime p. (It may be noted that the corresponding theorem for
squares is an open question even if we assume RIEMANN HYPOTHESIS).
Actually INGHAM proved more, namely

π(x + h) − π(x) ∼ h(log x)−1

where h = xc, where c(> 5
8
) is any constant. The purpose of this note is

to point out that even this stronger form can be proved without using the
functional equation of ζ(s).

§1.INTRODUCTION. The three main ingredients in the proof of ING-
HAM’S theorems are

(A) I.M.VINOGRADOV’s deep result

ζ(s) 6= 0 (s = σ + it), σ ≥ 1 −K1(log t)−
2

3 (log log t)−
1

3 , (1)

t ≥ 100, where K1 > 0 is an absol]ute constant.

(B) Explicit formula for
∑

p≤x

log p ([AEI]2). (2)
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(C)

N(σ, T ) < T ( 8

3
)(1−σ) (log T )100 (3)

where 1
2
≤ σ ≤ 1, T ≥ 1000. The precise power of log T is unimportant. Any

constant in place of 100 will do. N(σ, T ) denotes the number of zeros β + iγ
of ζ(s) with β ≥ σ and |γ| ≤ T.

1) The toughest part is (A). It follows from the deep result
(due to I.M.VINOGRADOV)

|ζ(σ + it)| ≤ (t(1−σ)
3
2 log t)K2 (

1

2
≤ σ ≤ 1, t ≥ 100) (4)

where K2 > 0 is an absolute constant and (1) follows from this in a relatively
simple way by a method due to E.LANDAU[KR]1. For a proof of (4) without
using the functional equation see [KR,AS].

2) Explicit formula uses the functional equation, but an alternative approach
is due to [KR]2 by the introduction of HOOLEY-HUXLEY contour.

3) The proof of (3) uses

ζ(
1

2
+ it) = O(t

1

6 log t), t ≥ 100, (5)

where the O-constant is absolute. The main work in the present note is to
sketch a proof of this without using the functional equation of ζ(s).

§2. SOME REMARKS In fact we write

ζ(s, α) =

∞
∑

n=0

(n+ α)−s (0 < α ≤ 1, s = σ + it, σ > 1), (6)

and next if X is any positive integer we have

ζ(s, α) = α−s −
X
∑

n=1

(n + α)−s +
∑

n>X

((n+ α)−s −
∫ n+1

n

du

(u+ α)s
)

+

∫ ∞

X+1

(u+ α)−s du. (7)

Since the last term in (7) is

(X + 1 + α)1−s

s− 1
(8)
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and the rest is analytic in σ > 0, (7) gives the analytic continuation in σ > 0
of (6). We prove our main theorem which is as follows.

THEOREM. We have

ζ(
1

2
+ it, α) − α− 1

2
−it = O(t

1

6 log t), (t ≥ 10) (9)

uniformly in the real parameter α. (Note that ζ(s, 1) = ζ(s)).

§3. PROOF OF THE THEOREM We use van-der Corput’s theorems
(Theorems 5.9 and 5.11 of [ECT]) and after the proof of the theorem we
make some comments about the Weyl-Hardy-Littlewood method of proof of
(9).

THEOREM 5.9. If f(x) is real and twice continuously differentiable and

0 < λ2 ≤ f ′′(x) ≤ hλ2(or 0 < λ2 ≤ −f ′′(x) ≤ hλ2)

throughout the interval (a, b) and b ≥ a+ 1, then

∑

a<n≤b

e2πif(n) = O(h(b− a)λ
1

2

2 ) +O(λ
− 1

2

2 ). (10)

THEOREM 5.11. If f(x) is real and thrice continuously differentiable and

0 < λ3 ≤ f ′′′(x) ≤ hλ3 ( or 0 < λ3 ≤ −f ′′′(x) ≤ hλ3)

throughout the interval (a,b) and b ≥ a+ 1, then

∑

a<n≤b

e2πf(n) = O(h
1

2 (b− a)λ
1

6

3 ) +O((b− a)
1

2λ
− 1

6

3 ). (11)

We now apply these to

E ≡
∑

a≤n≤b(≤2a)

(n+ α)−it with a ≥ 10. (12)

Here f(x) = − t
2π

log(x+ α). We have

f ′(x) = − t

2π(x + α)
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f ′′(x) =
t

2π(x+ α)2

and

f ′′′(x) = − 2t

2π(x+ α)3
.

Thus

C1 ≤ f ′′(x)a2t−1 ≤ C2

and C3 ≤ f ′′′(x )a3t−1 ≤ C4 (13)

where C1, C2, C3 and C4 are absolute positive constants. Thus we have

∑

a<n≤b(≤2a)

(n+ α)−it = O(t
1

2 ) +O(at−
1

2 ) (14)

∑

a<n≤b(≤2a)

(n + α)−it = O(t
1

6a
1

2 ) +O(t−
1

6a). (15)

Hence by partial summation we have

∑

a<n≤b(≤2a)

(n + α)−
1

2
−it = O((

t

a
)

1

2 ) +O((
a

t
)

1

2 ) (16)

and

t





∑

a<n≤b(≤2a)

(n+ α)−
3

2
−it



 = O((
t

a
)

3

2 ) +O((
t

a
)

1

2 ). (17)

Also we need

∑

a<n≤b(≤2a)

(n+ α)−
1

2
−it = O(t

1

6 ) +O(t−
1

6a
1

2 ) (18)

which follows from (15). From (18) there follows

∑

1≤n≤t
2
3

(n + α)−
1

2
−it = O(t

1

6 log t). (19)
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From (16) there follows

∑

t
2
3 ≤n≤t

4
3

(n+ α)−
1

2
−it = O(t

1

6 log t) (20)

Thus
∑

1≤n≤t
4
3

(n+ α)−
1

2
−it = O(t

1

6 log t). (21)

We now fix X = [t
4

3 ]. The term (8) contributes O(t−
1

3 ). We note that (with
s = 1

2
+ it)

∑

n>X

(

(n+ α)−s −
∫ n+1

n

du

(u+ α)s

)

=
∑

n>X

∫ n+1

n

(

(n+ α)−s − (u+ α)−s
)

du

=
∑

n>X

s

∫ 1

0

(
∫ u

0

(n+ v + α)−s−1dv

)

du

and so its absolute value is

O(
∑

a>t
4
3

(

(
t

a
)

3

2 + (
t

a
)

1

2

)

= O(t−
1

6 ).

This proves our main theorem.

REMARK 1 Let X be an arbitrary positive integer ≥ 20(|t| + 20)(K + 1).
Then by iteration of the method by which we continued ζ(s, α) in σ > 0
(incidentally the method is due to E.LANDAU (Handbuch der primzahlen)
we can get the analytic continuation in |σ| ≤ (K + 1) (K being arbitrary
constant) and also the inequality

ζ(s, α) = α−s +
∑

n≤X

(n+ α)−s +
X1−s

s− 1
+O(X−σ)

where s = σ + it (σ arbitrary). (O constant depends on K). For this see
[KR]1.

REMARK 2 A remark on Weyl-Hardy-Littlewood method is necessary here.
The proof of Theorem 5.5 of [ECT] goes through to prove
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∑

1≤n≤t
2
3

(n+ α)−
1

2
−it = O(t

1

6L) except for trival complications arising from the

presence of the real parameter α. This uses the integer parameter k to be 2.
However if we use the case k = 1 simple computations show that

∑

t
2
3 ≤n≤Ct

(n+ α)−
1

2
−it = O(t

1

6L)

whatever the constant C ≥ 10 be. Here L is some fixed power of log t. These
considerations prove the main theorem in view of Remark 1 above. We stress
once again that functional equations for ζ(s) or ζ(s, α) are not necessary in
the proof of INGHAM’s theorems. L can be any fixed power of log t and this
is enough to prove INGHAM’s asymptotic formula mentioned in the abstract.
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