A REMARK ON A THEOREM OF A.E.INGHAM BY K.G.BHAT and K.RAMACHANDRA

ABSTRACT. The theorem of INGHAM $[\mathrm{AEI}]_{1}$ refered to is:
For all $N \geq N_{0}$ (an absolute constant) the inequality

$$
N^{3} \leq p \leq(N+1)^{3}
$$

is solvable in a prime p. (It may be noted that the corresponding theorem for squares is an open question even if we assume RIEMANN HYPOTHESIS). Actually INGHAM proved more, namely

$$
\pi(x+h)-\pi(x) \sim h(\log x)^{-1}
$$

where $h=x^{c}$, where $c\left(>\frac{5}{8}\right)$ is any constant. The purpose of this note is to point out that even this stronger form can be proved without using the functional equation of $\zeta(s)$.
§1.INTRODUCTION. The three main ingredients in the proof of INGHAM'S theorems are
(A) I.M.VINOGRADOV's deep result

$$
\begin{equation*}
\zeta(s) \neq 0(s=\sigma+i t), \sigma \geq 1-K_{1}(\log t)^{-\frac{2}{3}}(\log \log t)^{-\frac{1}{3}} \tag{1}
\end{equation*}
$$

$t \geq 100$, where $K_{1}>0$ is an absol]ute constant.
(B) Explicit formula for

$$
\begin{equation*}
\sum_{p \leq x} \log p\left([\mathrm{AEI}]_{2}\right) \tag{2}
\end{equation*}
$$

(C)

$$
\begin{equation*}
N(\sigma, T)<T^{\left(\frac{8}{3}\right)(1-\sigma)}(\log T)^{100} \tag{3}
\end{equation*}
$$

where $\frac{1}{2} \leq \sigma \leq 1, T \geq 1000$. The precise power of $\log T$ is unimportant. Any constant in place of 100 will do. $N(\sigma, T)$ denotes the number of zeros $\beta+i \gamma$ of $\zeta(s)$ with $\beta \geq \sigma$ and $|\gamma| \leq T$.

1) The toughest part is (A). It follows from the deep result (due to I.M.VINOGRADOV)

$$
\begin{equation*}
|\zeta(\sigma+i t)| \leq\left(t^{(1-\sigma)^{\frac{3}{2}}} \log t\right)^{K_{2}} \quad\left(\frac{1}{2} \leq \sigma \leq 1, t \geq 100\right) \tag{4}
\end{equation*}
$$

where $K_{2}>0$ is an absolute constant and (1) follows from this in a relatively simple way by a method due to E.LANDAU $[\mathrm{KR}]_{1}$. For a proof of (4) without using the functional equation see $[\mathrm{KR}, \mathrm{AS}]$.
2) Explicit formula uses the functional equation, but an alternative approach is due to $[\mathrm{KR}]_{2}$ by the introduction of HOOLEY-HUXLEY contour.
3) The proof of (3) uses

$$
\begin{equation*}
\zeta\left(\frac{1}{2}+i t\right)=O\left(t^{\frac{1}{6}} \log t\right), t \geq 100 \tag{5}
\end{equation*}
$$

where the O-constant is absolute. The main work in the present note is to sketch a proof of this without using the functional equation of $\zeta(s)$.
§2. SOME REMARKS In fact we write

$$
\begin{equation*}
\zeta(s, \alpha)=\sum_{n=0}^{\infty}(n+\alpha)^{-s} \quad(0<\alpha \leq 1, s=\sigma+i t, \sigma>1) \tag{6}
\end{equation*}
$$

and next if X is any positive integer we have

$$
\begin{align*}
\zeta(s, \alpha)=\alpha^{-s}-\sum_{n=1}^{X}(n+\alpha)^{-s} & +\sum_{n>X}\left((n+\alpha)^{-s}-\int_{n}^{n+1} \frac{d u}{(u+\alpha)^{s}}\right) \\
& +\int_{X+1}^{\infty}(u+\alpha)^{-s} d u . \tag{7}
\end{align*}
$$

Since the last term in (7) is

$$
\begin{equation*}
\frac{(X+1+\alpha)^{1-s}}{s-1} \tag{8}
\end{equation*}
$$

and the rest is analytic in $\sigma>0,(7)$ gives the analytic continuation in $\sigma>0$ of (6). We prove our main theorem which is as follows.

THEOREM. We have

$$
\begin{equation*}
\zeta\left(\frac{1}{2}+i t, \alpha\right)-\alpha^{-\frac{1}{2}-i t}=O\left(t^{\frac{1}{6}} \log t\right),(t \geq 10) \tag{9}
\end{equation*}
$$

uniformly in the real parameter α. (Note that $\zeta(s, 1)=\zeta(s)$).
§3. PROOF OF THE THEOREM We use van-der Corput's theorems (Theorems 5.9 and 5.11 of $[\mathrm{ECT}]$) and after the proof of the theorem we make some comments about the Weyl-Hardy-Littlewood method of proof of (9).

THEOREM 5.9. If $f(x)$ is real and twice continuously differentiable and

$$
0<\lambda_{2} \leq f^{\prime \prime}(x) \leq h \lambda_{2}\left(\text { or } 0<\lambda_{2} \leq-f^{\prime \prime}(x) \leq h \lambda_{2}\right)
$$

throughout the interval (a, b) and $b \geq a+1$, then

$$
\begin{equation*}
\sum_{a<n \leq b} e^{2 \pi i f(n)}=O\left(h(b-a) \lambda_{2}^{\frac{1}{2}}\right)+O\left(\lambda_{2}^{-\frac{1}{2}}\right) \tag{10}
\end{equation*}
$$

THEOREM 5.11. If $f(x)$ is real and thrice continuously differentiable and

$$
0<\lambda_{3} \leq f^{\prime \prime \prime}(x) \leq h \lambda_{3}\left(\text { or } 0<\lambda_{3} \leq-f^{\prime \prime \prime}(x) \leq h \lambda_{3}\right)
$$

throughout the interval (a, b) and $b \geq a+1$, then

$$
\begin{equation*}
\sum_{a<n \leq b} e^{2 \pi f(n)}=O\left(h^{\frac{1}{2}}(b-a) \lambda_{3}^{\frac{1}{6}}\right)+O\left((b-a)^{\frac{1}{2}} \lambda_{3}^{-\frac{1}{6}}\right) \tag{11}
\end{equation*}
$$

We now apply these to

$$
\begin{equation*}
E \equiv \sum_{a \leq n \leq b(\leq 2 a)}(n+\alpha)^{-i t} \text { with } a \geq 10 \tag{12}
\end{equation*}
$$

Here $f(x)=-\frac{t}{2 \pi} \log (x+\alpha)$. We have

$$
f^{\prime}(x)=-\frac{t}{2 \pi(x+\alpha)}
$$

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{t}{2 \pi(x+\alpha)^{2}} \\
\text { and }^{\prime \prime \prime}(x) & =-\frac{2 t}{2 \pi(x+\alpha)^{3}} .
\end{aligned}
$$

Thus

$$
\begin{align*}
& C_{1} \leq f^{\prime \prime}(x) a^{2} t^{-1} \leq C_{2} \\
& \text { and } C_{3} \leq f^{\prime \prime \prime}(x) a^{3} t^{-1} \leq C_{4} \tag{13}
\end{align*}
$$

where C_{1}, C_{2}, C_{3} and C_{4} are absolute positive constants. Thus we have

$$
\begin{align*}
& \sum_{a<n \leq b(\leq 2 a)}(n+\alpha)^{-i t}=O\left(t^{\frac{1}{2}}\right)+O\left(a t^{-\frac{1}{2}}\right) \tag{14}\\
& \sum_{a<n \leq b(\leq 2 a)}(n+\alpha)^{-i t}=O\left(t^{\frac{1}{6}} a^{\frac{1}{2}}\right)+O\left(t^{-\frac{1}{6}} a\right) . \tag{15}
\end{align*}
$$

Hence by partial summation we have

$$
\begin{equation*}
\sum_{a<n \leq b(\leq 2 a)}(n+\alpha)^{-\frac{1}{2}-i t}=O\left(\left(\frac{t}{a}\right)^{\frac{1}{2}}\right)+O\left(\left(\frac{a}{t}\right)^{\frac{1}{2}}\right) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
t\left(\sum_{a<n \leq b(\leq 2 a)}(n+\alpha)^{-\frac{3}{2}-i t}\right)=O\left(\left(\frac{t}{a}\right)^{\frac{3}{2}}\right)+O\left(\left(\frac{t}{a}\right)^{\frac{1}{2}}\right) . \tag{17}
\end{equation*}
$$

Also we need

$$
\begin{equation*}
\sum_{a<n \leq b(\leq 2 a)}(n+\alpha)^{-\frac{1}{2}-i t}=O\left(t^{\frac{1}{6}}\right)+O\left(t^{-\frac{1}{6}} a^{\frac{1}{2}}\right) \tag{18}
\end{equation*}
$$

which follows from (15). From (18) there follows

$$
\begin{equation*}
\sum_{1 \leq n \leq t^{\frac{2}{3}}}(n+\alpha)^{-\frac{1}{2}-i t}=O\left(t^{\frac{1}{6}} \log t\right) \tag{19}
\end{equation*}
$$

From (16) there follows

$$
\begin{equation*}
\sum_{t^{\frac{2}{3}} \leq n \leq t^{\frac{4}{3}}}(n+\alpha)^{-\frac{1}{2}-i t}=O\left(t^{\frac{1}{6}} \log t\right) \tag{20}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sum_{1 \leq n \leq t^{\frac{4}{3}}}(n+\alpha)^{-\frac{1}{2}-i t}=O\left(t^{\frac{1}{6}} \log t\right) \tag{21}
\end{equation*}
$$

We now fix $X=\left[t^{\frac{4}{3}}\right]$. The term (8) contributes $O\left(t^{-\frac{1}{3}}\right)$. We note that (with $\left.s=\frac{1}{2}+i t\right)$

$$
\begin{aligned}
& \sum_{n>X}\left((n+\alpha)^{-s}-\int_{n}^{n+1} \frac{d u}{(u+\alpha)^{s}}\right) \\
& =\sum_{n>X} \int_{n}^{n+1}\left((n+\alpha)^{-s}-(u+\alpha)^{-s}\right) d u \\
& =\sum_{n>X} s \int_{0}^{1}\left(\int_{0}^{u}(n+v+\alpha)^{-s-1} d v\right) d u
\end{aligned}
$$

and so its absolute value is

$$
O\left(\sum_{a>t^{\frac{4}{3}}}\left(\left(\frac{t}{a}\right)^{\frac{3}{2}}+\left(\frac{t}{a}\right)^{\frac{1}{2}}\right)=O\left(t^{-\frac{1}{6}}\right) .\right.
$$

This proves our main theorem.
REMARK 1 Let X be an arbitrary positive integer $\geq 20(|t|+20)(K+1)$. Then by iteration of the method by which we continued $\zeta(s, \alpha)$ in $\sigma>0$ (incidentally the method is due to E.LANDAU (Handbuch der primzahlen) we can get the analytic continuation in $|\sigma| \leq(K+1)$ (K being arbitrary constant) and also the inequality

$$
\zeta(s, \alpha)=\alpha^{-s}+\sum_{n \leq X}(n+\alpha)^{-s}+\frac{X^{1-s}}{s-1}+O\left(X^{-\sigma}\right)
$$

where $s=\sigma+$ it (σ arbitrary). $(O$ constant depends on $K)$. For this see $[\mathrm{KR}]_{1}$.

REMARK 2 A remark on Weyl-Hardy-Littlewood method is necessary here. The proof of Theorem 5.5 of [ECT] goes through to prove
$\sum_{1 \leq n \leq t^{\frac{2}{3}}}(n+\alpha)^{-\frac{1}{2}-i t}=O\left(t^{\frac{1}{6}} L\right)$ except for trival complications arising from the presence of the real parameter α. This uses the integer parameter k to be 2 . However if we use the case $k=1$ simple computations show that

$$
\sum_{t^{\frac{2}{3}} \leq n \leq C t}(n+\alpha)^{-\frac{1}{2}-i t}=O\left(t^{\frac{1}{6}} L\right)
$$

whatever the constant $C \geq 10$ be. Here L is some fixed power of $\log t$. These considerations prove the main theorem in view of Remark 1 above. We stress once again that functional equations for $\zeta(s)$ or $\zeta(s, \alpha)$ are not necessary in the proof of INGHAM's theorems. L can be any fixed power of $\log t$ and this is enough to prove INGHAM's asymptotic formula mentioned in the abstract.

REFERENCES

$[\mathrm{AEI}]_{1}$ A.E.INGHAM, On the difference between consecutive primes,, Quart. J. Oxford(1937), 255-266.
$[\mathrm{AEI}]_{2}$ A.E.INGHAM, The distribution of prime numbers, Stechert-Hafner Service Agency, New York and London, (1964).
$[\mathrm{KR}]_{1}$ K.RAMACHANDRA, Riemann zeta-function, Publ. RAMANUJAN INSTITUTE (1979).
$[\mathrm{KR}]_{2}$ K.RAMACHANDRA, Some problems of Analytic Number Theory, Acta Arith, Vol.31(1976), 313-324.
[KR,AS] K.RAMACHANDRA and A.SANKARANARAYANAN, A remark on Vinogradov's Mean Value Theorem, The J. of Analysis, 3(1995), 111129.
[ECT] E.C.TITCHMARSH, The Theory of the Riemann Zeta-function (second edition, revised and edited by D.R.HEATH-BROWN) Clarendon Press, Oxford (1986).

ADDRESS OF THE AUTHORS

K.G.BHAT,

N I A S, IISc CAMPUS
BANGALORE-560012
Email: kishor@nias.iisc.ernet.in
K.RAMACHANDRA

N I A S, IISc CAMPUS
BANGALORE-560012
Also

TIFR CENTRE
P.O.BOX 1234, IISc CAMPUS

BANGALORE-560012
Email: kram@math.tifrbng.res.in

Accepted on 17-07-2006

