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Vanishing of Poincaré series for congruence subgroups

Noam Kimmel

Abstract. We consider the problem of the vanishing of Poincaré series for congruence subgroups. Denoting by Pk,m,N the

Poincaré series of weight k and index m for the group Γ0(N), we show that for certain choices of parameters k,m,N , the Poincaré

series does not vanish. Our methods improve on previous results of Rankin (1980) and Mozzochi (1989).
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1. Introduction

For k,m,N ∈ N, k even, we denote by Pk,m,N (z) the Poincaré series of weight k and index m at i∞
for

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) , N | c

}
.

That is, we define

Pk,m,N (z) =
∑

γ∈Γ∞\Γ0(N)

j(γ, z)−ke(mγz)

where

Γ∞ =

{
±
(

1 ∗
0 1

)
∈ SL2(Z)

}
, j

((
a b
c d

)
, z

)
= cz + d,

and e(z) = e2πiz.
It is currently not known when these Poincaré series identically vanish, a problem which dates

back to Poincaré’s memoir on Fuchsian groups [Poi1882, Page 249]. For level N = 1 and weight
k = 12, Lehmer (1947) conjectured that these Poincaré series never vanish, equivalently that the
coefficients τ(n) of the modular discriminant are never zero [Lehm47].

For level N = 1 and large weight k, a partial answer to the non-vanishing question was given by
Rankin [Ran80] where he showed that for sufficiently large even k one has Pk,m,1 6≡ 0 for all

m ≤ exp
(
−B log k

log log k

)
k2

for some absolute constant B > 0. This result was later extended by Lehner [Lehn80] to general
Fuchsian groups with a weaker result, and by Mozzochi [Moz89] to Pk,m,N with N > 1.

In this paper we improve Rankin’s result, proving the non-vanishing of Pk,m,1 for m ≤ (k−1)2

16π2 . We
then generalize the method to give an improvement of Mozzochi’s results for N > 1. In extending
our methods from Pk,m,1 to Pk,m,N , we are led to the problem of providing lower bounds on certain
Kloosterman sums.
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Notations

We use the notation f(x) � g(x) to indicate that there is some constant C > 0 such that
|f(x)| < Cg(x) for all valid inputs x. If the constant C depends on some parameters, this will
be indicated using subscripts such as f(x)�ε g(x).

We will use ω(N) to denote the number of unique prime factors of N .
We will use ‘∗’ to denote a number in Z where the precise value is not important.
We will denote by µST the Sato-Tate distribution on [0, π], that is

µST =
2

π
sin2 θdθ.

Throughout, k will always denote a positive even integer.

2. Main results

We will be interested in showing that Pk,m,N 6≡ 0 for various choices of parameters k,m,N .
We begin with the case N = 1, for which we prove

Theorem 2.1. Let k ∈ N be a sufficiently large even integer. Then for 1 ≤ m ≤ (k−1)2

16π2 we have

v∞ (Pk,m,1) = 1,

and in particular Pk,m,1 6≡ 0.

Here v∞(f) is the order of vanishing of f at the cusp i∞. This gives an improvement of Rankin’s
result [Ran80].

We then give a generalization to any square-free N :

Theorem 2.2. Let N ∈ N be square-free. Then for all k �N 1 one has v∞ (Pk,m,N ) = 1 for all

1 ≤ m ≤ (k − 1)2N2

16π2
,

and as a consequence, Pk,m,N 6≡ 0.

This theorem gives an improvement of [Moz89, Theorem 3] where Mozzochi shows that for k �N 1
one has Pk,m,N 6≡ 0 for m �ε k

1−εN1−ε, or m � k2−εN2−ε in the case where gcd(m,N) = 1 (the
precise statement in Mozzochi’s work is slightly more involved).

In the case where N is prime, we also give a result about the non-vanishing of Pk,m,N for sufficiently
large k independent of N .

Theorem 2.3. Let ε > 0. Then for all k �ε 1, all primes p, and all:

m�ε k
2p

3
2
−ε, m 6= p

we have v∞ (Pk,m,p)�ε p
1
2

+ε (and in particular Pk,m,p 6≡ 0).

This result can be compared with [Moz89, Theorem 2] where Mozzochi shows that for k � 1 one has
Pk,m,N 6≡ 0 for m� exp

(
−B log k

log log k

)
k2, and its improvement in [DaGa12, Theorem 5.2] to the range

m� N exp
(
−B log k

log log k

)
k2. Thus, 2.3 provides a further improvement when N is prime, both in the

k aspect and in the N aspect.
2.3 can also be extended to the case where N is square-free in the following sense:
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Theorem 2.4. Let ε > 0, and let r ∈ N. Then for all k �ε,r 1, all N = p1 · p2 · · · · · pr with
p1 < p2 < · · · < pr primes, and all:

m�ε,r
k2N2

p
1
2

+ε
r

, gcd(m,N) = 1

we have v∞ (Pk,m,N )�ε,r p
1
2

+ε
r (and in particular Pk,m,N 6≡ 0).

Theorems 2.3 and 2.4 use Katz’s results [Kat88] regarding the distribution of Kloosterman angles
in order to show the existence of large Kloosterman sums. Using more elementary bounds (looking
only at the second moment), we give another version of 2.4. This gives a weaker result, but makes
the dependence on r = ω(N) more concrete.

Theorem 2.5. Let N ∈ N be square-free. Then for all k � ω(N) and all 1 ≤ m ≤ 1
32π2N(k − 1)2

with gcd(m,N) = 1 we have v∞ (Pk,m,N ) ≤ 2N (and in particular Pk,m,N 6≡ 0).

3. Preliminary lemmas

3.A. Fourier expansion of Pk,m,N

We will denote by pk,N (m;n) the n-th Fourier coefficient of Pk,m,N so that

Pk,m,N (z) =
∑
n≥1

pk,N (m;n)e(nz).

It is known that

pk,N (m;n) = δm,n + 2πik
( n
m

) k−1
2
∑
c≥1

K(m,n, cN)

cN
Jk−1

(
4π
√
mn

cN

)
(3.1)

where δm,n is the Kronecker delta function, J is the Bessel function of the first kind, and K(a, b, c) is
the Kloosterman sum:

K(a, b, c) =
∑

1≤x≤c
gcd(x,c)=1

e

(
ax+ bx

c

)
(3.2)

where x is the inverse of x in (Z/cZ)∗.

3.B. Kloosterman sums

We will require some known results regarding Kloosterman sums. First, we note that Kloosterman
sums satisfy the following twisted multiplicativity property: For c1, c2 with gcd(c1, c2) = 1 one has

K(a, b, c1c2) = K(ac2, bc2, c1)K(ac1, bc1, c2) (3.3)

where c2 is the inverse of c2 mod c1 and c1 is the inverse of c1 mod c2.
One also has the equality

K(a, bc,N) = K(ac, b,N) (3.4)

if gcd(c,N) = 1.
From (3.3) and (3.4) we also get

K(a, b, c1c2) = K(ac2
2, b, c1)K(ac1

2, b, c2) (3.5)

whenever gcd(c1, c2) = 1.
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Lemma 3.1. For a square-free N ∈ N and any a, b ∈ Z one has

K(a, b,N) 6= 0.

Proof. This is a known result, see for example [Iwa97, Page 63]. We present the proof here for
convenience.

For a prime p, consider K(a, b, p) for some a, b ∈ Z. We look at K(a, b, p) mod (1− ζp) in Q(ζp),
(where ζp is a primitive p-th root of unity). The element 1− ζp is a prime of norm p, and we have

K(a, b, p) ≡ −1 mod (1− ζp).

Thus K(a, b, p) 6= 0 for all a, b ∈ Z. The statement then follows from the twisted multiplicativity of
Kloosterman sums (3.3).

In the next lemma we give an upper bound for the size of Kloosterman sums of the form
K(m,n, cN) in a form which will be useful later. The main input for this bound is Weil’s bound
for Kloosterman sums, which states that |K(a, b, p)| ≤ 2

√
p for any prime p with p - ab. Combined

with more elementary bounds for Kloosterman sums with prime power moduli, it was shown in
[Ran80, Lemma 3.1] that for any a, b, c with d = gcd(a, b, c) one has

|K(a, b, c)| ≤ 2ω(c/d)+ 1
2
√
c
√
d.

Using this, we prove the following bound.

Lemma 3.2. Let N, c ∈ N. Then for m,n ∈ Z with gcd(n,N) = g we have

|K(m,n,Nc)| ≤ 2ω(N)+ 1
2 c
√
N
√
g.

Proof. Write c = ds where gcd(s,N) = 1 and p | d ⇒ p | N . Then from the twisted multiplicativity
of Kloosterman sums (3.5) we get

K(m,n, cN) = K(∗, ∗, s)K(∗, n, dN).

For K(∗, ∗, s) we use the trivial bound |K(∗, ∗, s)| ≤ s. For K(∗, n, dN), using ω(dN) = ω(N) and
the fact that gcd(n, dN) ≤ gcd(n,N) gcd(n, d) ≤ gd, we get from [Ran80, Lemma 3.1] that

|K(∗, n, dN)| ≤ 2ω(N)+ 1
2

√
dN
√
gd = 2ω(N)+ 1

2d
√
N
√
g.

Combining these bounds, we get

|K(m,n, cN)| ≤ 2ω(N)+ 1
2 sd
√
N
√
g = 2ω(N)+ 1

2 c
√
N
√
g.

Lemma 3.3. Let m,N ∈ N, N square-free, gcd(m,N) = 1. Then there exists some 1 ≤ n ≤ 2N
such that n 6= m, gcd(n,N) = 1 and

|K(m,n,N)| ≥
√
N

2
1
2
ω(N)+1

.

Proof. We begin with the well known computation of the second moment of Kloosterman sums mod
N . For m ∈ Z we denote

S2(m;N) =
∑

n∈(Z/NZ)∗

K (m,n,N)2 .
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From the twisted multiplicativity of Kloosterman sums (3.5), we have that S2(m;N) is multiplicative
in N . Furthermore, for a prime p with p - m we have

S2(m; p) = p2 − p− 1

(see [Iwa97, Section 4.4]). Since p2 − p− 1 ≥ 1
2p

2 for p ≥ 3, it follows that for square-free N we have

S2(m;N) ≥ N2

2ω(N)+1 . This implies that there is some 1 ≤ n ≤ N with gcd(n,N) = 1 such that

|K(m,n,N)| ≥
√
N

2
1
2
ω(N)+1

.

We can further ensure that n 6= m by replacing n with n + N if necessary, so that we still have
n ≤ 2N .

We will also require the result of Katz regarding the distribution of Kloosterman angles, and its
generalization via the Pólya–Vinogradov method to short intervals.

Lemma 3.4. For a prime p and some a, b ∈ Z, p - ab, It follows from Weil’s bound that there exists
θp,ab ∈ [0, π] such that

K(a, b, p) = 2
√
p cos (θp,ab) .

Let ε > 0, then for any I(p) ≥ p
1
2

+ε and any m(p) with p - m, the angles

{θp,mn : 1 ≤ n ≤ I(p)}

become equidistributed according to the Sato-Tate measure µST as p→∞.

Proof. This follows from [Mic95, Corollary 2.9] and the comment following it. There, it was shown
that for i+ j > 0 one has ∑

1≤n≤I(p)

symi(θp,n)symj(θp,mn)�i,j p
1
2 log(p)

where

sym`(θ) =
sin((`+ 1)θ)

sin(θ)
.

Taking i = 0 and j ≥ 1, this gives ∑
1≤n≤I(p)

symj(θp,mn)�j p
1
2 log(p).

It follows that for all j ≥ 1:
1

I(p)

∑
1≤n≤I(p)

symj(θp,mn)
p→∞−−−→ 0. (3.6)

The functions symj with j ≥ 1 together with the constant function 1 form an orthonormal basis of
L2 ([0, π], µST ). And so, from Weyl’s criterion, (3.6) implies that the angles {θp,mn : 1 ≤ n ≤ I(p)}
become equidistributed according to the Sato-Tate measure µST as p→∞.
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3.C. Bessel functions

We will also require some bounds for the J Bessel function.

Lemma 3.5. For ν ≥ 0, 0 < δ ≤ 1 we have

Jν (νδ)� ν−
1
3 δν .

Proof. We use the following bounds:
Jν(νδ) ≥ Jν(ν)δν

valid for all 0 < δ ≤ 1, ν ≥ 0 [NIST Dig.Lib, (10.14.7)]. We also have that

Jν(ν) =
Γ
(

1
3

)
48

1
6π
ν−

1
3 +O

(
ν−

5
3

)
[Wat44, eq.(2), pg. 232]. Combining these bounds gives the required result.

Lemma 3.6. For ν ≥ 1 and δ ≥ 0 we have

|Jν (νδ)| � ν−
1
2

(e
2
δ
)ν
.

Proof. This is [Ran80, Lemma 4.1].

Lemma 3.7. For ν ≥ 2, δ ≥ 0 and c0 ∈ N we have∑
c≥c0

∣∣∣∣Jν (ν δc
)∣∣∣∣� ν−

1
2

(
e

2c0
δ

)ν
.

Proof. Using the upper bound from 3.6, we get∑
c≥c0

∣∣∣∣Jν (ν δc
)∣∣∣∣� ν−

1
2

(e
2
δ
)ν ∑

c≥c0

c−ν

� ν−
1
2

(e
2
δ
)ν (

c−ν0 +

∫ ∞
c0

x−νdx

)
� ν−

1
2

(
e

2c0
δ

)ν
.

4. Proofs of main results

We begin by proving 2.2. 2.1 then follows as a special case by taking N = 1.

Proof of 2.2. Let k ∈ 2N, N ∈ N square-free, and

1 ≤ m ≤ (k − 1)2N2

16π2
.

We wish to show that v∞(Pk,m,N ) = 1 for sufficiently large k (depending on N), or equivalently that
pk,N (m; 1) 6= 0.

Assume first that m > 1. In this case, from (3.1) we have

pk,N (m; 1) = 2πikm−
k−1
2

∑
c≥1

K(m, 1, cN)

cN
Jk−1

(
4π
√
m

cN

)
.

https://dlmf.nist.gov/10.14#E7


Noam Kimmel, Vanishing of Poincaré series 41Noam Kimmel, Vanishing of Poincaré series 41

And so, showing pk,N (m; 1) 6= 0 is equivalent to showing that the sum

S =
∑
c≥1

K(m, 1, cN)

cN
Jk−1

(
4π
√
m

cN

)

is non-zero. We denote ν = k − 1, δ = 4π
√
m

Nν so that we have

S =
∑
c≥1

K(m, 1, cN)

cN
Jν

(
ν
δ

c

)
.

Note also that from our choice of m we have δ ≤ 1.
We begin by considering the first summand in S corresponding to c = 1. From 3.1 we have that

K(m, 1, N) 6= 0 for all m ∈ Z. Denote

εN = min
m
|K(m, 1, N)| .

Then we have, using 3.5, that

K(m, 1, N)

N
Jν (νδ)� εN

N
ν−

1
3 δν .

As for the rest of the summands in S, using the trivial bound

|K(m, 1, cN)| ≤ cN

and 3.7 we get ∑
c≥2

K(m, 1, cN)

cN
Jν

(
ν
δ

c

)
�
∑
c≥2

∣∣∣∣Jν (ν δc
)∣∣∣∣� ν−

1
2

(e
4
δ
)ν
.

Since e
4 < 1, we have that for sufficiently large k (in terms of N) the lower bound that we got for

the first summand will be larger than the upper bound we got for the rest of the sum. And so, for
k �N 1 we have pk,N (m; 1) 6= 0.

We now consider the case m = 1. In this case we have

pk,N (1; 1) = 1 + 2πik
∑
c≥1

K(1, 1, Nc)

Nc
Jk−1

(
4π

Nc

)
.

Denote ν = k − 1 and δ = 4π
Nν . Using the trivial bound |K(1, 1, Nc)| ≤ Nc and 3.7 we get∣∣∣∣∣∣

∑
c≥1

K(1, 1, Nc)

Nc
Jk−1

(
4π

Nc

)∣∣∣∣∣∣ ≤
∑
c≥1

∣∣∣∣Jν (ν δc
)∣∣∣∣ ≤ ν− 1

2

(
2eπ

Nν

)ν
.

This tends to 0 as k →∞. It follows that pk,N (1; 1) 6= 0 for large enough k.

We now give a proof of 2.5.

Proof. Let m,N ∈ N with N square-free, 1 ≤ m ≤ 1
32π2N(k−1)2 and gcd(m,N) = 1. From 3.3 there

exists some 1 ≤ n ≤ 2N satisfying gcd(n,N) = 1, n 6= m and

|K(m,n,N)| ≥
√
N

2
1
2
ω(N)+1

.
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We consider pk,N (m;n):

pk,N (m;n) = 2πik
( n
m

) k−1
2
∑
c≥1

K(m,n, cN)

cN
Jk−1

(
4π
√
mn

cN

)
.

Thus, it is enough to show that the sum above is non-zero. The first term in the sum (corresponding
to c = 1) can be bounded from below using 3.5:

K(m,n,N)

N
Jν (νδ)� 1

N

√
N

2
1
2
ω(N)

ν−
1
3 δν =

1
√
N2

1
2
ω(N)

ν−
1
3 δν

where ν = k − 1, δ = 4π
√
mn

N(k−1) , and we have δ ≤ 1 from n ≤ 2N and our restriction on m.
As for the rest of the sum, using 3.2 and 3.7 we get∑

c≥2

K(m,n, cN)

cN
Jν

(
ν
δ

c

)
�
√
N2ω(N)

N

∑
c≥2

∣∣∣∣Jν (ν δc
)∣∣∣∣� 2ω(N)

√
N

ν−
1
2

(e
4
δ
)ν
.

It follows that if ν is large enough so that
(
e
4

)ν � 2−
3
2
ω(N) then the lower bound we got for the first

summand will be larger than the upper bound we got for the rest of the sum, and the result follows.

We now prove 2.4, 2.3 then follows as a special case by taking r = 1.

Proof. Let N = p1 · p2 · · · · · pr with p1 < p2 < · · · < pr primes. We begin by considering K(m,n,N)

for various n’s satisfying n�ε,r p
1
2

+ε
r .

From the twisted multiplicativity of Kloosterman sums (3.5), there exist integers m1,m2, . . . ,mr

such that

K(m,n,N) =

r∏
i=1

K(mi, n, pi). (4.7)

We note that the condition gcd(m,N) = 1 further implies gcd(mi, pi) = 1.
Let δr be some small positive constant such that

Prob (| cos(θ)| > δr , θ ∼ µST ) > 1− 1

r + 1
.

From 3.4 it follows that for all sufficiently large primes pi, the proportion of n’s satisfying

n�ε,r p
1
2

+ε
r such that K(mi, n, pi)� 2δr

√
pi is at least 1− 1

r+1 .
There might be a finite set of primes Qr,ε for which this is not true. However, if q ∈ Qr,ε is such a

prime, we know from 3.1 that K(∗, ∗, q) is never zero. Thus, we can replace δr with a smaller positive
constant δr,ε such that |K(a, b, q)| ≥ 2δr,ε

√
q for all q ∈ Qr,ε and all a, b.

And so, we conclude that there is some δr,ε > 0 such that |K(mi, n, pi)| ≥ 2δr,ε
√
pi for a proportion

of at least 1− 1
r+1 of all n�ε,r p

1
2

+ε
r .

From the pigeonhole principle, it follows that there is some n�ε,r p
1
2

+ε
r such that

|K(mi, n, pi)| ≥ 2δr,ε
√
pi

for all 1 ≤ i ≤ r. It follows from (4.7) that

|K(m,n,N)| ≥ (2δr,ε)
r
√
N.

In fact, since there is a positive proportion of such n’s, we can further add the restrictions that n 6= m.
We also note that from our construction of n we have that gcd(n,N) is divisible only by primes from
Qr,ε. Since Qr,ε depends only on r, ε, we have that gcd(n,N)�ε,r 1 (since N is square-free).
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For the n we chose, we consider pk,N (m;n). We have that

pk,N (m;n) = 2πik
( n
m

) k−1
2
∑
c≥1

K(m,n, cN)

cN
Jk−1

(
4π
√
mn

cN

)
.

Denote ν = k − 1 and δ = 4π
√
mn

νN . The restriction m �ε,r
k2N2

p
1
2+ε
r

ensures that δ < 1 since we have

n�ε,r p
1
2

+ε
r . In order to show that pk,N (m;n) 6= 0 it is enough to show that the sum

S =
∑
c≥1

K(m,n, cN)

cN
Jν

(
ν
δ

c

)
is non-zero.

We begin by giving a lower bound on the first summand in S corresponding to c = 1. We have
shown that K(m,n,N)�ε,r

√
N . From this and from 3.5 we get

K(m,n,N)

N
Jν (νδ)�ε,r

1√
N
ν−

1
3 δν . (4.8)

We now consider the rest of the summands in S. Using 3.2, and the fact that gcd(m,N) �ε,r 1,
we get: ∑

c≥2

K(m,n, cN)

cN
Jν

(
ν
δ

c

)
�ε,r

∑
c≥2

1√
N

∣∣∣∣Jν (ν δc
)∣∣∣∣

Using 3.7 we then have ∑
c≥2

K(m,n, cN)

cN
Jν

(
ν
δ

c

)
�ε,r

1√
N
ν−

1
2

(e
4
δ
)ν
.

For sufficiently large k (in terms of ε, r) this upper bound will be smaller than the lower bound
we got for the first summand (4.8). Thus, for k �ε,r 1 we conclude that pk,N (m;n) 6= 0.
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[Ran80] R.A. Rankin, The vanishing of Poincaré series, Proc. Edinburgh Math. Soc. (2) 23(2) (1980), 151–161.

[Wat44] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge; The Macmillan

Company, New York, 1944.

Noam Kimmel
Raymond and Beverly Sackler School of Mathematical Sciences
Tel Aviv University
Tel Aviv 69978, Israel.
e-mail : noamkimmel@mail.tau.ac.il


	Introduction
	Main results
	Preliminary lemmas
	Fourier expansion of Pk,m,N
	Kloosterman sums
	Bessel functions

	Proofs of main results

