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A Carmichael number (or absolute pseudo-prime) is a composite positive
integer n such that n|a™ — a for every integer a. It is not difficult to prove that
such an integer must be square-free, with at least 3 prime factors. Moreover
if the numbers p = 6m + 1, ¢ = 12m + 1 and r = 18m + 1 are all prime,
then n = pgr will be a Carmichael number. However it is not currently known
whether there are infinitely many prime triplets of this form. Indeed it is not
known whether or not there are infinitely many Carmichael numbers with 3
prime factors. None the less it was proved by Alford, Granville and Pomerance
[1] that there are infinitely many Carmichael numbers.

Let C3(x) denote the number of Carmichael numbers n < x having w(n) = 3.

It has been conjectured by Granville and Pomerance [3] that
2173

Cs(z) ~ Cma

with an explicit positive constant c. Various upper bounds approximating this
have been given, the best available in the literature being the estimate

Cy(x) <. 2?14,

for any fixed € > 0, due to Balasubramanian and Nagaraj [2]. The goal of the
present paper is to improve this as follows.

Theorem For any fized € > 0 we have
03(1,) <. $7/20+5.
Note that 1/3 < 7/20 < 5/14. Indeed
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Thus our results reduces the previous excess in the exponent by 30%.

Suppose that n = pgr is counted by Cs3(z), where p < g < r. We write
m=p-1,¢g—1,r—1)and p=1+am,q=1+bm, r =1+ c¢cm. Since
p—1=am divides n — 1 = abem? + (ab + ac + be)m? + (a + b + ¢)m, we must
have

al(ab+ ac+bcym+a+b+ c. (1)

Thus (a,b)|c, and since we know that (a,b,c) = 1 we deduce that a and b are
coprime. Similarly a and ¢ are coprime, and also b and c¢. In analogy to (1) we
see likewise that both b and ¢ divide (ab + ac + bc)m + a + b + ¢. Since a, b
and ¢ have been shown to be coprime in pairs we conclude that the product abc
divides (ab+ ac + be)m + a + b+ c. We may therefore write

(ab+ ac + bc)m + a+ b+ ¢ = abck, (2)



say, for some integer k. We proceed to divide the available ranges for a, b, c,m
and k into O((logz)®) dyadic ranges (A,2A4], (B,2B], (C,2C], (M,2M] and
(K, 2K]. We shall write C3(z; A, B,C, M, K) for the corresponding contribution
to C3(z). Since 2 < p < ¢ < r we may suppose that

1<A<B<C. (3)
Moreover, since pgr < z we will have
M?*ABC < x. (4)
Finally we observe from (2) that
ABCK < abck = (ab+ ac+bc)ym +a+ b+ c < BCM,

whence
K < MJ/A. (5)

To prove our result we give three different bounds for Cs(x; A, B,C, M, K).
The first two are completely elementary, and appear in a slightly different form
in the work of Balasubramanian and Nagaraj [2].

For our first estimate we count the 5-tuples (a,b, ¢, m, k) according to the
values of a,b and k. We multiply (2) by a + b and re-write the answer as

{abk — 1 — (a + b)m}{(a+b)c+ ab} = Ny, with Ny = a®b’k + a® + b* + abk.

One readily sees that Ny = O(x) by (3), (4) and (5). Hence the number of
possible divisors of Ny is Oc(z°). Moreover, given a,b and k, each pair of
divisors determines ¢ and m uniquely. We therefore conclude that

Cs(z;A,B,C,M,K) <. 2*ABK <. 2*BM, (6)
by (5).
For our second estimate we substitute h = ak — m into (2), to deduce that
hbe =ma(b+c¢)+a+b+c. (7)
It follows that
h>1 and h< (BC) '.MAC = MAB™'. (8)

We proceed to count solutions according to the values of h and m, there being
O(M?AB~') such pairs. Given h and m we have ak = h + m. However
h + m has O (zf) divisors, since h + m < z, by (3), (4) and (8). Thus we
have O.(z* M2AB~!) possible 4-tuples (a,m, k,h). For each such 4-tuple we
multiply (7) by h to obtain

{hb —ma — 1}{hc—ma —1} = Ny with Ny = (ma+1)* —ha. (9)

If Ny = 0 then a = 1, since a|Na — 1. We would then have h = (m + 1),
However if No = 0 then (9) would imply hb — ma —1 =0 or h¢ —ma — 1 = 0.
However, since we must have a = 1 and h = (m + 1)? these would entail either
(m+1)2b=m+1or (m+1)%c =m+ 1, which are impossible for m > 1. Thus
we must have Ny # 0 in (9). However it is also clear that Ny < z, by (3), (4)



and (8). Thus N, has O.(z°) pairs of divisors, and each such pair determines b
and ¢, once the 4-tuple (a, m, k, h) has been specified. It therefore follows that

Cs(x:;A,B,C,M,K) <. * M*AB™*. (10)
We proceed to present a new estimate.
Lemma For any fized ¢ > 0 we have
C3(w; A, B,C,M,K) <. MA + 2 AY?BC + 2° A*’B/?C'/2, (11)

Before proving this we show how the theorem follows. We consider three
cases. If
max{MA, AY?BC, A’B/>C'/?} = MA

in (11), then it suffices to observe that M A < (M3ABC)'Y/? « 2'/? by (3) and
(4), so that Cs(z; A, B,C, M, K) < /3. If

max{MA, AY?BC, A2BY?C'/?} = AY?pC,
then (11), in conjunction with (6) and (10), yields

Cs(x;A,B,C,M,K) <. z*min{BM,M*AB~"', A'?BC}
<. xZE(BM)ll/ZO(M2ABfl)1/4(Al/ZBc)l/S
— .’EZE(MSABC)7/2O(B071)3/2O
< g2t/

by (3) and (4). Finally, if
max{MA, AY2BC, A2BY/?C'/?} = A2B'/2C1/?,
then (6), (10) and (11) yield

Cs(z;A,B,C,M,K) <. z*min{BM,M?>AB~", A2B'/?2C"/?}
<. 1‘25(BM)3/4(M2A371)3/20(A2Bl/201/2)1/10
— $25(M3ABC)7/20(B071)3/10
< g2t/

by (3) and (4). Thus Cs(z;A,B,C,M,K) <. x>**77/20 in every case. The
theorem then follows on replacing ¢ by £/3 and summing over the O(log z)® sets
of dyadic ranges for A, B,C, M and K.

We turn now to the proof of the lemma. From (2) we have

ab+cm+a+b+c=0 (mod be). (12)

For coprime positive integers u and v we now define (") by the conditions
0 <7 < v and um™ =1 (mod v). Where the context is clear we shall write
@ for @Y. Since a, b and ¢ are coprime in pairs we may now re-write (12) as
m = —(b+¢) —a (mod be), where the inverses are taken modulo be. For a
given triple (a,b,c), each solution m of this congruence, with m in the range
M < m < 2M, corresponds to at most value of k. We now write r := —(b+ ¢)—a




for brevity, and observe, using the familiar transformation formula for the theta-
function, that

#{me (M,2M]:m=r (mod be)}
< ¢ Z exp{—m*M~?}
MmEZ
m=r (mod bc)
= ¢ Z exp{—(r + nbc)> M ~?}

nEZ

= 4\/_ Z exp{ (mnM/bc)?}

= 4\/_ Zebc n(b+ ¢) — na) exp{—(mnM/bc)?}.

nGZ

Here we use the standard notations e(t) := exp(2mit) and e, (t) := exp(2nit/q).
We may now deduce that

C3(x; A, B,C, M, K)
< 4\/_2 Zebc n(b+ ¢) — na) exp{—(xnM/bc)*}

abc neZ
= 4\/_2 Zebc b+c)exp{ (mnM /bc) }Zebc —na)
b,c neZ

< BC ZZexp{ (mnM /be) }‘Zebc na‘

b,c n€Z
< BCZZexp{ (mnM/4BC)*} Zebc na‘
b,c n€Z
< MA+— Zexp{ (mnM /4BC) }‘Zebc —na)
b,c n=1

where the variables a, b, c are restricted to be coprime in pairs, and to lie in
the intervals A < a < 24, B < b < 2B and C < ¢ < 2C. At this point we
combine the variables b and ¢, writing bc = f, say. Thus f lies in the range
BC < f <4BC(C, and is coprime to a. Moreover each available value of f arises
at most d(f) <. z° times, so that

Cs(z; A, B,C, M, K)

£ M - 2 —
L MA+zx BC Z Zexp{—(ﬂ'nM/4BC) }‘ Z ef(—na)‘.
BC<f<ABC n=1 ’?Q})SEIA

We proceed to apply Cauchy’s inequality, whence

M
Cs(z; A, B,C, M,K) <. MA+m€%Sll/2521/2, (13)

where

Sii= Y. > exp{—(mnM/4BC)*}

BC<f<4BC n=1



and
0 2
Sy = Z Zexp{—(ﬂnM/4BC)2}‘ Z ef(—na)‘ .
BC<f<4BC n=1 A(<a)§2A
a,f)=1

Since

[ee]
Z exp{—n’t7?} < t (14)
n=1
uniformly for ¢ > 0, we trivially have
S, « B*C*M~. (15)

To handle S, we expand the square, and rearrange the sum to produce

Sy =Y exp{—(enM/4BC)*} > Ss(a1,a;n), (16)
n=1 A<a1,a2§2A
with
Ss(ar,azsm):= Y ep(n(@r - a@)).
BC< f<4BC
(f,a1a2)=1

To deal with this last sum we observe that
a; — az = (as — aj)agaz  (mod f).
Moreover we have
arasarazsd) + ff(alaz) =1 (mod ajasf),

whence
UL L
f B aiaz a1a2f

for some integer v. It follows that

—+ v

er(n(ar — az)) = ep(n(az — a1)a1az) = €qya, (nar — a2)7(a1a2))6(%_2;1)).

We may therefore write

Ss(ar,anm) = > ey (rT)e(8/ 1),
BC< f<4BC
(f.9)=1

where we have written g := ajaz, r :=n(a; — as) and § := n(az — a1)/ayas for
brevity. An elementary estimate for Ss(a1,a2;n) will suffice for our purposes.
By partial summation we have

. 9] +(9)
Sg(al,aQ,n)<<(1+BC)BCgllran430‘ E eg(rf )‘-
(R
29)=

10



Moreover, on writing

o)=Y e0f”)= 3 ulg/dd < (5.1
0<f<yg dlg,d|r
(fvg)zl
for the Ramanujan sum, we have
—(9) B
Z eg(rf™) = [T] cg(r) +O(g)

BC<f<F
(f.9)=1

BC .
<. 7(9,7“)9 +g.

Thus, on recalling the definitions of g, r and 4, we deduce from (3) that

n BC
Sa(ar,azin) < (1+ m){ 12 (araz,n(ar — ag)) A* + A%}
BC
<« g (@asn(ar - a2) A% + A7 4 S {BOA™ + A7)

ABC
< BC( ( _ ))A25+A2+ A71+25
A2 ajaz,nia; as n 9
in view of the fact that (aias,n(a1 — a2)) < ajas.
We are now ready to perform the summation over n in (16).We begin by

noting that (a1a2,n(a1 - az)) < (alag, (a1 — aQ))(alaQ,n). If we now classify
integers n according to the value of (aja2,n) we find, using (14), that

Z aras,n(a; — 02)) exp{—(mnM/ABC)?}

< (alag, a1 — az) Z d Z exp{— 7mM/4BC) }

dlaras n: d\

= (aias, (a1 — a) Z d Zexp{ (rsdM /4BC)*}

d\alag s=1

<<5 (alag, ap —ag Z d

d\alag

BC
<Le (a1a2, (a1 — a?))ﬂwga

since the number of divisors of ajas is <. (ajasz)® <. z°. Thus

Z ig (alaz,n(al — az))A25 exp{—(mnM/4BC)*}

n=1
< (alag,(al —GQ))B202A72M71£625.
A second application of (14) shows that

> A?exp{—(mnM/4BC)*} < A>’BCM ™,

n=1

11



while the bound -
Z nexp{—n’t7?} < t*,

n=1
which holds uniformly for ¢ > 0, implies that
Z nA 1% exp{—(mnM/ABC)*} < A B*C* M *2°.
n=1

On combining these bounds we find that

> exp{—(mnM/ABC)*}S3(a1, az;n)

n=1
<. (alag, (a1 — ag))BQCQA*QMfla:QE
+A’BCM ' + A"'B*C*M *a”.
To complete our bound for Sy, we must investigate
Z (0102;(01 —02))-
A<a17a2§2A

When a; = as we have (alag, (a1 — 02)) = a1ay < A2, while for a; # ay we
have (ajaz, (a1 — az)) < |ay —az| < A. It follows that the sum above is O(A?).
We therefore deduce from (16) and (3) that

Sy, <. AB?C’M™'z* + A'BCM~! + AB*C*M~24°
<. AB?C’M'2* + A'BOM .
If we combine this with (13) and (15), we deduce that
Cs(z;A,B,C,M,K) <. MA+ z**AY?BC + z° A>’B'/*C"/?,

and the lemma follows on replacing ¢ by /2.
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