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THE NUMBER OF IMAGINARY QUADRATIC
FIELDS WITH A GIVEN CLASS NUMBER

K. Soundararajan

Gauss asked for a list of imaginary quadratic fields with class number one. This problem
inspired a great deal of work; some of the prominent milestones being the work of Heilbronn
showing that there are only finitely many fields with a given class number, the work of
Landau and Siegel providing good (but ineffective) lower bounds for the class number, the
work of Heegner and Stark showing that there are exactly nine fields with class number
1, and the effective resolution of the class number problem due to Goldfeld, Gross and
Zagier. In this note we investigate the number, F(h), of imaginary quadratic fields with
class number h; thus, F(1) = 9 is the celebrated Heegner-Stark result. From the Landau-
Siegel theorem one could compute F(h) up to an error of 1 relatively easily. The Goldfeld-
Gross-Zagier result permits, with great effort, the calculation of F(h) for any given h, and
Watkins [5] has accomplished this for all h ≤ 100. What is the asymptotic behavior of F(h)
for large h? This question is independent of the Landau-Siegel zero issue; nevertheless it
seems difficult to answer. We establish here an asymptotic formula for the average value
of F(h), a modest non-trivial upper bound for F(h) (together with an application to a
question of Rosen and Silverman on odd parts of class numbers), and we speculate on the
nature of F(h).

Throughout we let −d denote a negative fundamental discriminant, χ−d will denote
the associated primitive quadratic character (mod |d|), and h(−d) will denote the class
number of Q(

√
−d). When d > 4 recall that Dirichlet’s class number formula gives

h(−d) =
√

dL(1,χ−d)/π.

Typically L(1,χ−d) has constant size; rarely does it fall outside the range (1/10, 10).
Therefore we would expect that class numbers below H arise mainly from fields with
discriminants of size about H2, and the number of such fields should be asymptotically a
constant times H2.

Theorem 1. As H → ∞ we have

∑

h≤H

F(h) =
3ζ(2)
ζ(3)

H2 + O
(
H2(log H)− 1

2+ε
)
.
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Theorem 2. For large H we have

F(H) & H2 (log log H)4

log H
.

¿From Watkins [5] we know that there are 42272 fields with class number below 100;
the main term of the asymptotic in Theorem 1 is approximately 41053. By modifying our
argument one could improve the error term in the asymptotic formula of Theorem 1 to
O(H2(log H)−1+ε). Some new ideas seem needed to improve the power of log h appearing
in Theorem 2.

We expect that F(h) is of size about h (the average size), although there is some
variation. More precisely, we conjecture that

(C1)
h

log h
& F(h) & h log h.

Our heuristic reasoning is as follows. Let 2λ denote the exact power of 2 dividing h. By
genus theory, if the class number is h then the fundamental discriminant −d can have
at most (λ + 1) prime factors if −d ≡ 1 (mod 4), and −d/4 can have at most (λ + 1)
prime factors if −d ≡ 0 (mod 4). By the class number formula we also know that these
discriminants are essentially of size h2. If % ≤ λ + 1 then there are ( h2

log h
(log log h)!−1

(#−1)!
fundamental discriminants of size h2 with −d (or −d/4) divisible by exactly % primes. For
such discriminants the class number is of size about h, and constrained to be a multiple of
2#−1. Thus we may think of the probability of the class number being exactly h as roughly
2#−1/h. In other words we expect that there are ( 2#−1h(log log h)#−1/((%−1)! log h) fields
with d (or d/4) composed of exactly % prime factors, and with class number equal to h.
Summing over all % ≤ λ + 1 we arrive at

(C2) F(h) ( h

log h

∑

#≤λ+1

2#−1(log log h)#−1

(% − 1)!
.

The unspecified constant in (C2) seems delicate, and would probably depend on arith-
metical properties of h. For example, the Cohen-Lenstra heuristics [1] predict that the
probability of class numbers being divisible by 3 is larger than 1/3. So we would expect
F(h) to be larger when 3 divides h, rather than when 3 ! h. Similar (smaller) biases would
exist when 5 divides h etc. Inspecting Watkins’ table (page 936 of [5]) we can already see
the bias in favor of multiples of 3.

Conjecture (C2) does not lend itself to numerical testing. To provide falsifiable con-
jectures, we may consider the ratio F(h1)/F(h2) for various choices of h1 and h2. For
example, if h1 and h2 are primes with h1/2 ≤ h2 ≤ 2h1 (say) then it seems safe to
conjecture that

(C3)
F(h1)
F(h2)

∼ h1

h2
.
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Also if h is odd, and large then (C2) suggests that F(h)F(4h)/F(2h)2 should tend to 1/2.
It would be interesting to assemble numerical data on these questions.

This note was motivated by the recent paper of Rosen and Silverman [4] where they ask
for information on N(C;X) which counts the number of fundamental discriminants −d
with 1 ≤ d ≤ X such that hodd(−d) (the odd part of the class number; in other words, the
largest odd number dividing h(−d)) lies below a fixed number C. Rosen and Silverman
wished to know if N(C;X) = o(X) for large X. We show that such is indeed the case.

Corollary 3. For a fixed number C, and large X we have

N(C;X) & X(log log X)6/ log X.

Proof of Theorem 1. We first show that one can restrict attention to discriminants −d with
1 ≤ d ≤ X = H2(log log H). First consider the range X < d < H2(log H)4. If h(−d) < H
then we must have L(1,χ−d) & (log log H)−1/2, and by Theorem 4 of [2] there are at most1
H2/(log H) values of d < H2(log H)4 with such a small value of L(1,χ−d). To handle the
range d > H2(log H)4 we invoke some facts from the classical theory of zeros of L-functions;
for more information see Chapter 11 of [3]. If d > H2(log H)4 then h(−d) can be below
H only when L(1,χ−d) & H/

√
d (≤ 1/(log H)2). Siegel’s theorem shows that there is at

most one such discriminant −d with d > H3, say. In the range H2(log H)4 < d ≤ H3, we
require L(1,χ−d) & 1/(log H)2, which happens only if L(s,χ−d) has an exceptional real
zero very near 1. Precisely, L(s,χ−d) must have a real zero β with β > 1 − c/ log H. By
an argument of Landau, there is at most one such discriminant. Therefore

(1)
∑

h≤H

F(h) =
∑$

d≤X
h(−d)≤H

1 + O
( H2

log H

)
,

where the ' indicates that the sum is over fundamental discriminants −d.
Observe that for any c > 0,

1
2πi

∫ c+i∞

c−i∞

xs

s

( (1 + δ)s+1 − 1
δ(s + 1)

)
ds =






1 if x ≥ 1
(1 + δ − 1/x)/δ if (1 + δ)−1 ≤ x ≤ 1
0 if x ≤ (1 + δ)−1.

Here δ > 0 is a parameter which we shall choose later. By the class number formula and
(1) we get that

∑

h≤H

F(h) ≤ 1
2πi

∫ c+i∞

c−i∞

∑$

d≤X

( π√
dL(1,χ−d)

)s Hs

s

( (1 + δ)s+1 − 1
δ(s + 1)

)
ds + O

( H2

log H

)

≤
∑

h≤H(1+δ)

F(h).(2)

1In fact Theorem 4 of [2] gives a much better bound, but the bound given above suffices for our
purposes.
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We now focus on evaluating the integral in (2) which leads naturally to Theorem 1.
We shall take c = 1/ log H, and δ = (log H)− 1

2 . Set S = log X/(104(log log X)2). The
region |s| > S contributes to the integral in (2) an amount

(3) & X

δ

∫

|s|>S

1
|s(s + 1)| |ds| & H2(log H)− 1

2+ε.

In the region |s| ≤ S we shall use Theorem 2 of [2] in order to evaluate the sum over d.
That result evaluates such sums in terms of a probabilistic model for L(1,χ−d).

For primes p let X(p) denote independent random variables taking the value 1 with
probability p/(2(p+1)), 0 with probability 1/(p+1), and −1 with probability p/(2(p+1)).
Let L(1, X) =

∏
p(1 − X(p)/p)−1. This product converges almost surely, and the main

results of [2] compare the distribution of L(1,χ−d) with the distribution of such random
Euler products. With two caveats that we clarify below, Theorem 2 of [2] gives that for
|z| ≤ log x/(500(log log x)2) and Re(z) > −1

(4)
∑$

d≤x

L(1,χ−d)z =
3
π2 xE(L(1, X)z) + O

(
x exp

(
− log x

5 log log x

))
,

where E stands for expectation. The first caveat is that Theorem 2 of [2] considers both
positive and negative fundamental discriminants, but the arguments given there permit
us to restrict to negative fundamental discriminants as above. Secondly, there we omitted
a small number (& log x) of exceptional Landau-Siegel discriminants. Since L(1,χ−d) +
1/

√
x and Re(z) ≥ −1 the contribution of these exceptional discriminants to our sum is

&
√

x log x, and so (4) holds. Using (4) and partial summation we obtain that for |s| ≤ S
and Re(s) = 1/ log H we have

(5)
∑$

d≤X

(
√

dL(1,χ−d))−s =
3
π2 E(L(1, X)−s)

∫ X

1
x−s/2dx + O

(
X exp

(
− log X

5 log log X

))
.

From (3) and (5) we see that the integral in (2) is, with an error O(H2(log H)− 1
2+ε),

(6)
1

2πi

∫

|s|≤S

3
π2 E(L(1, X)−s)

( ∫ X

1
x−s/2dx

) (πH)s

s

( (1 + δ)s+1 − 1
δ(s + 1)

)
ds.

For 1 ≤ x ≤ X we may see that

1
2πi

∫

|s|≤S

( πH√
xL(1, X)

)s 1
s

( (1 + δ)s+1 − 1
δ(s + 1)

)
ds = O

( L(1, X)−c

(log H) 1
2 −ε

)

+






1 if
√

xL(1, X) < πH

∈ [0, 1] if πH ≤
√

xL(1, X) ≤ πH(1 + δ)
0 if πH(1 + δ) <

√
xL(1, X).
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Integrating this over x from 1 to X we get

O
( H2

(log H) 1
2 −ε

(1 + L(1, X)−c)
)

+ min
( π2H2

L(1, X)2
,X

)
.

Therefore the quantity in (6) equals

(7) E
(

min
( 3H2

L(1, X)2
,
3X

π2

))
+ O

( H2

(log H) 1
2 −ε

)
,

and this is also our integral in (2).
Proposition 1 of [2] reveals that the probability that L(1, X) is less than π2/(6eγτ) is

exp(−eτ−C1/τ + O(eτ/τ2)) for some absolute constant C1. Hence we may see that

E
(

min
( 3H2

L(1, X)2
,
3X

π2

))
= E

( 3H2

L(1, X)2
)

+ O
( H

log H

)
.

Finally, by independence of the random variables X(p) we have

E(L(1, X)−2) =
∏

p

E
((

1 − X(p)
p

)2)

=
∏

p

( p

2(p + 1)

(
1 − 1

p

)2
+

1
(p + 1)

+
p

2(p + 1)

(
1 +

1
p

)2)

=
∏

p

(
1 − 1

p3

)(
1 − 1

p2

)−1
=

ζ(2)
ζ(3)

.

Using these observations in (7), we conclude that the integral in (2) is

3ζ(2)
ζ(3)

H2 + O
( H2

(log H) 1
2 −ε

)
.

This establishes Theorem 1.

Proof of Theorem 2. As before set X = H2 log log H, and S = (log X)/(104(log log X)2).
As in (1) we see that

F(H) =
∑$

d≤X
h(−d)=H

1 + O
( H2

log H

)
.

Since
1
S

∫ S

−S

(
1 − |x|

S

)
e2πixξdx

{
= 1 if ξ = 0,

≥ 0 always,

we deduce, by the class number formula, that

(8) F(H) ≤ O
( H2

log H

)
+

1
S

∫ S

−S

(
1 − |x|

S

) ∑$

d≤X

( πH√
dL(1,χ−d)

)ix
dx.
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As in (5) we have that

∑$

d≤X

(
√

dL(1,χ−d)−ix =
3
π2 E(L(1, X)−ix)

∫ X

1
y−ix/2dy+O

( H

(log H)2
)

& X

1 + |x|+
H

(log H)2
.

Inserting this in (8) we obtain that

F(H) & H2

log H
+ X

log S

S
& H2 (log log H)4

log H
.

Proof of Corollary 3. From Theorem 4 of [2] (with τ there being log log X) we have that
the number of fundamental discriminants −d with 1 ≤ d ≤ X and h(−d) >

√
X log log X

is at most X exp(−c log X/ log log X) for some positive constant c. Therefore

N(C,X) ≤ X exp
(

− c
log X

log log X

)
+

∑

2k#≤
√

X log log X
# odd
#≤C

F(2k%).

The Corollary now follows from Theorem 2.
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