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Abstract

This paper is concerned with the problem of finding two or more
rational triangles with the same perimeter and the same area. As
the problem of finding two isosceles rational triangles with the same
perimeter and same area has already been solved, in this paper we
obtain several parametric solutions to the problem of finding a pair
of rational triangles with the same area and perimeter when at least
one of the triangles is scalene. We also show that, with certain ex-
ceptions, given an arbitrary scalene rational triangle, a second scalene
rational triangle with the same perimeter and same area may be con-
structed, and by repeated application of this process, we may obtain
an arbitrarily large number of scalene rational triangles with the same
perimeter and same area.

Introduction

A triangle with rational sides and rational area is called a rational triangle
or Heron triangle. This paper is concerned with the problem of finding two
or more rational triangles all of which have the same perimeter and the
same area. A special case of this problem requiring the determination of two
isosceles rational triangles with equal perimeters and equal areas has been
considered by several authors ([2, p. 201], [4]). One infinite family of two
rational triangles, one isosceles and the other scalene, with equal perimeters
and equal areas, is also known [4]. Aassila [1] has given a parametric solution
to the problem of finding two scalene rational triangles with equal perimeters
and equal areas in terms of univariate polynomials of degree 10, and has
stated the following open problem:

“Prove or disprove that for any positive integer £ > 2 there exist k£ mu-
tually incongruent Heron triangles having the same area and semiperimeter”

While Aassila defines a Heron triangle as having integer sides and integer
area, this does not make any essential difference to the present problem since
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rational triangles with equal perimeters and equal areas yield, on appropriate
scaling, triangles with integer sides and integer areas, and having the same
properties.

Guy [3, p. 295] gives a set of 8 rational triangles, obtained by Rathbun,
with the same perimeter and same area. He also mentions that Ronald van
Luijk had “outlined” a proof that there are arbitrarily large sets of Heron
triangles with common perimeter and area. However, no proof of such a
result has been published till now.

In this paper we first obtain a two-parameter solution to the problem
of finding two scalene rational triangles with equal perimeters and equal
areas. This solution is much more general than that given in [1] and yields
simple parametric solutions of degrees 2 and 4. We shall also show how
additional parametric solutions of this problem can be obtained. If in our
method of solution, we impose the further condition that two sides of one of
the triangles become equal, we obtain two new parametric solutions to the
problem of finding two rational triangles, one isosceles and one scalene, with
equal perimeters and equal areas. We also show how more such solutions
can be obtained. Next, we describe a method of constructing a new rational
triangle having the same perimeter and the same area as an arbitrary scalene
rational triangle with certain exceptions. We use this method to obtain
arbitrarily many rational triangles with equal perimeters and the equal areas,
and thus provide an affirmative answer to the open problem stated above.

Section 2 deals with the problem of pairs of rational triangles while Section
3 deals with the case of arbitrarily many rational triangles with the same
perimeter and the same area.

2 Pairs of rational triangles with the
same perimeter and same area

2.1 Both the triangles are scalene

Theorem 1: There exist infinitely many pairs of distinct scalene rational
triangles with equal perimeters and equal areas. Specifically, the two ra-
tional triangles 77 and T, whose sides aq, by, ¢; and as, by, co are defined
respectively by

ap = (rP+1)(s*+s+1)

by = s(s+1)(r2+s2+s5+1), (1)
cTL, = T
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and
a; = (7"2 s?) (s + s+ 1),
by = ( )(7“ + s+ s+1), (2)
o = ris?+ (2 +s+1)7

where r, s are arbitrary positive rational numbers, have the same perimeter,
namely 2(r?>+s*+s+1)(s?+5+1), and the same area namely, rs(s+1)(r?+
24+ s5+1)(s2+s5+1).

Proof: The area A of a triangle is given in terms of its sides a, b, ¢ by the
following formula:

A ={(a+b+c)a+b—c)(b+c—a)(c+a—0b)}/16. (3)

Thus two triangles T and 715, with sides a1, by, ¢; and as, by, ¢o Tespectively,
will have the same perimeter and the same area if and only if the following
two conditions are satisfied:

a; + by + ¢ = as + by + ¢, (4)

and

(a1 + b1 + cl)(al + bl — cl)(al — bl + cl)(—al + b1 + Cl) (5)
= (CLQ + b2 + CQ)((ZQ + bg — 02)((12 — b2 + 02)(—(12 + b2 + 02).

In view of (4), it is easily seen that equation (5) is equivalent to the following
three equations:

a1+b1 —C1 = S(a2+b2—62),
t(a1 — bl + Cl) = a9 — b2 + Ca, (6)
s(—ay + b +¢1) = t(—as+ by + ),

where s and ¢ are arbitrary nonzero parameters. Equations (4) and (6),
considered as four linear equations in the variables ¢, as, by, ¢o, readily yield
the following solution:

ci = 2=t —t)s—thay — {s* — (t* +t)s + t}b]
x{s*+ (t* —t)s—t} !
as = {t(s* —Day — (st = 1) (s — )by }{s* + (> —t)s —t}~',  (7)
by = {(t — 1)(t —s%)ay +t(s* — Dby Hs* + (12 —t)s — t} 7,
co = {(s*—tHay +s(t* — )by }{s* + (> —t)s — t} 7,

where aq, by, s and t are arbitrary parameters. Thus, if two sides a; and b,
of the triangle T} are chosen arbitrarily, and its third side ¢; and the three
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sides of the triangle T3 are given by (7), then T} and T will have the same
perimeter and the same area A which, however, is not necessarily rational.
Using (3), we find that the common area A of the two triangles is given
by
A? = st{(s®—t)a; +t(st — )b H{t(t — V)ay + (s — t)by }
x{(t — s%)ay + s(s — t)b1 }{s(t — 1)a; — (st — 1)by } (8)
x{s?+ (t* —t)s — t} .

For A to be rational, we must make the righthand side of (8) a perfect square.
This may be done by taking ¢t = s? when the righthand side of (8) reduces to

bi(s*+s+1){s(s+1)a;—b) H{—s(s+1)ar + (s’ + s+ )b Hs(s+ 1)}, (9)

and would thus be a perfect square if ay, b1, s and ¢ are rational numbers
such that

(s* +s+D{s(s+1Vay — b))} =r*{—s(s+ Day + (s* + s+ 1)by}, (10)

where r is some rational number. This leads to the values of a; and b; as
stated in (1). Substituting ¢ = s? and the values of ay, b; in (7), we get the
third side ¢; of T} and the sides of T3 as given by (1) and (2).

We note that when both r and s are arbitrary positive rational numbers,
the rational numbers ay, by, ¢; and ay, by, ¢o defined by (1) and (2) are pos-
itive and both sets of numbers a;, b;, ¢;, © = 1, 2 satisfy the three triangle
inequalities so that T} and T’ are indeed triangles with the desired properties.
We also note that, in general, both the triangles are scalene. The conditions
under which one or both the triangles become isosceles are easily worked
out, and are omitted. It is easily verified that the common perimeter and
common area of the two triangles are as stated in the theorem.

The solution given in the theorem is of degree 2 in the rational parameter
r and degree 4 in the rational parameter s, and hence is much more general
and far simpler than the solution given in [1]. In fact, by assigning fixed
numerical values to s, we get solutions of degree 2 in one parameter, and by
fixing numerical values of r, we get solutions of degree 4 in one parameter.

Finally we note that we can obtain more parametric solutions of our
problem by suitably choosing s, ¢, a; and b; such that (8) becomes a perfect
square. A straightforward way of doing this, using a result of Subsection 2.2,
will be outlined at the end of that Subsection. These solutions are, however,
much more cumbersome than the solution obtained above, and are hence
omitted.
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2.2 One triangle is isosceles and one is scalene

Theorem 2: There exist infinitely many pairs of rational triangles, one
isosceles and one scalene, which have equal perimeters and equal areas.
Specifically, the isosceles rational triangle 77 and the scalene rational tri-
angle T,, whose sides ay, by, ¢; and as, by, co are defined respectively by

ar =b, = 2t — 61 + 9% — 4t + 4, (11)
c = 2282 — 3t +2)(t +2),

and
ag = 2t(t + 2)(1? — 2t +2), by = (2 —t)(5t* — 4t + 4),
co = (12 +4)(2t2 — 3t + 2),
where ¢ is an arbitrary positive rational number such that ¢ < 2 and ¢ ¢
{1, 2/3}, have the same perimeter 4(t* — ¢ + 2)? and the same area 2t(t —
2)(t + 2)(t* — ¢t + 2)(2t? — 3t + 2). Further, the isosceles rational triangle T}
and the scalene rational triangle T, whose sides aq, by, ¢; and as, by, co are
defined respectively by

(12)

a; =b = 41° — 8% + 29t* — 643 + 104t — 64t + 16,

e = 8t(3t—2)2—-t)(t? —t+2), (13)

and
as = A" — 4 + 1312 — 12t + 4)(#* — t + 2),

by 16t° — 64¢° + 145t* — 2166 + 216t* — 96t + 16, (14)
Ca (3t —2)(2 — t)(4t* — 443 + 912 + 4t + 4),
where ¢ is an arbitrary rational number such that 2/3 < ¢t < 2, t # 1, have
the same perimeter 2(2¢* — 5t + 12t — 4)? and the same area

At(t — 2)(t +2)(3t — 2)(1* — t +2)(21% — 3t 4 2)(2t> — 5¢% + 12t — 4).

Proof: We have already seen in Subsection 2.1 that (7) gives the sides
1, Qg, by, co of two triangles T} and 75, with equal perimeters and equal areas
in terms of the sides ay, b; of the triangle T} and the arbitrary parameters s
and t. As a; and b; may be chosen arbitrarily, we ensure that the triangle
T; is isosceles by simply choosing b; = ay, and substituting this value of b,
in (9), we find that the common area A of the two triangles is given by

A2 = {P 42t — 1)+ (1P — 212 — 2)s% — 22( — 2)s}

)2 (s — 12{s? + (£ — t)s — £}, (15)
The area A will be rational if the quartic function
sP 2t (t — 1)s7 + (P — 212 — 2)s% — 2t%(t — 2)s (16)
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is made a perfect square. This can be done quite readily following the
standard procedure described by Dickson [2, p. 639], and two values of
s that make this quartic function a perfect square are easily found to be
s =2t(2—1)/(2+1t) and s = (t* + 4t + 4)/{4(t* — t + 2)} which lead to
two distinct solutions. The first solution is given by (11) and (12), and the
second solution is given by (13) and (14). In both cases the parameter ¢ is an
arbitrary rational number satisfying the specified constraints that are neces-
sary to ensure that aq, by, ¢; and as, by, ¢5 are positive rational numbers and
both sets of numbers a;, b;, ¢;, i = 1, 2 satisfy the three triangle inequalities,
and also that the second triangle is not isosceles, so that we actually get the
two desired triangles. The common perimeter and area of the two triangles
is readily verified in both cases to be as stated in the theorem.

We also note that by following the aforesaid standard procedure, we can
find other values of s that make the quartic function (16) a perfect square,
and thus we can find more parametric solutions of our problem.

Finally, reverting to the last remark of Subsection 2.1, we observe that
by fixing s = 2¢(2 —¢)/(2+t) and b, as given by (11) in (8), one value of a;
that makes the quartic function (8) a perfect square is given by (11). Thus,
following the standard procedure, we can find other values of a; that make
the quartic function (8) a perfect square, and hence we can obtain more
parametric solutions of the problem discussed in Subsection 2.1.

2.3 Finding a rational triangle having the same perime-
ter and same area as a given rational triangle

We will now show that, in general, given an arbitrary scalene rational
triangle, a second scalene rational triangle with the same perimeter and same
area may be constructed. Exceptions occur when the sides of the given
triangle satisfy, in some order, a certain diophantine equation. We first prove
a few preliminary lemmas.

Lemma 1: Any three arbitrary rational numbers a, b, ¢ that satisfy the
three triangle inequalities

a+b—c>0, b+c—a>0, c+a—>b>0, (17)

must be all positive.
Proof: Adding the inequalities in pairs proves the lemma.
Lemma 2: The sides a, b, ¢ of a rational triangle satisfy the following in-

24



equalities:

a?+ b +c—ab—bc—ca > 0, (18)
a® + 0> + & — 2a*b — 2b%c — 2c%a + 3abe > 0, (19)
a® +b* + & — 2ab* — 2bc* — 2ca® + 3abe > 0. (20)

Proof: The first inequality holds for any rational numbers a, b, ¢ since
a?+b*+c*—ab—bc—ca={(a—b)?+(b—c)*+ (c—a)*}/2 > 0.

Further, since the rational numbers a, b, ¢ satisfy the triangle inequalities, it
follows that the three rational numbers (a+b—c)?(b+c—a), (b+c—a)*(c+
a—1"0), (c+a—"0)*(a+b— c), are all positive, and hence their arithmetic
mean is greater than their geometric mean, that is,

{la+b—c)*b+c—a)+(b+c—a)(c+a—0b)+ (ct+a—0b)*(a+b—2c)}/3
>(a+b—c)(b+c—a)(c+a—0D),

from which the inequality (19) follows immediately. The inequality (20) is
similarly proved.

Lemma 3: The complete solution in rational numbers of the homogeneous
diophantine equation

at — 23y — 2232 + 32%yz — 2y + 3wy?2

—62y2? + 322 + y* — 2932 + 3y — 2% =0, (21)
is given by

z = plm+n)2m*+m?n+ 2mn? —n?),

y = p(m—n)2m> —m?*n+ 2mn® + n?), (22)

z = 2p(m?+ 3n*)m?,

where m, n are arbitrary integers and p is an arbitrary rational number.
Proof: Without loss of generality, we may substitute y = © — 2m, 2z =
x+n —min (21) which then reduces to a linear equation in z, and is hence
readily solved to get a rational solution. As equation (21) is homogeneous,
we may multiply this solution through by a suitable constant when we get
the solution (22).

Theorem 3: Given any scalene rational triangle 77, whose sides aq, by, ¢
do not, in any order, satisfy the diophantine equation (21), there exists a
second rational triangle T, whose perimeter and area are equal respectively
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to the perimeter and area of the triangle 7, and whose sides ao, by, ¢y are
defined by

as = [ai’(—bl + 261) + bi’(—Cl + 2(11) + c‘;’(—al + 2b1)
+aj(26? — 3¢2) + b} (2¢2 — 3a?) + ¢ (2a2 — 3b2)
—CllblCl{?)(Cl? + b? + C?) — S(Cllb% + blC% + Cla%)
+2(afby + bicy + ciar) + 9arbicy }]
x(a% + b% + C% — albl — b101 — clal)_l
X (a:{’ + b:;) + C:;) — 2(1%[)1 — 2[)%(31 — 2(3%(11 + 3(11[)1(31)71,
bg = [a‘;’(2b1 - Cl) + bi’(261 — (ll) + c‘;’(2a1 — bl)
+af (=30 + 2¢1) + b} (=3¢ + 2a?) + ¢} (—3a? + 203)
—arbicr{3(a + b3 + ) — 8(alby + bicy + clay)
—|—2(alb% + bIC% + cla%) + 9(11[)1(31}]
x(a% + b% + C% —a1by — by — clal)*l
x(a:{’ + b:;) + C:;) — 2(11[)% — 2[)16% — 2(31(1% + 3(11[)1(31)71,
co = {(a3+b+—al(by+c1)—bier +ay)
—c%(al + bl) + 3a1b161}
x{(a] +b] +cf —a3(by + 1) — B3y + ap)
—c:{’(al + bl) + alblcl(al + b1 + Cl)}
X (a:{’ + b:;) + C:;) — 2(1%[)1 — 2[)%(31 — 2(3%(11 + 3(11[)1(31)71
x (a3 4+ b3 + ¢ — 2a,0? — 2012 — 2c1a? + 3aybicy) L.

(23)

Proof: It can be verified by direct computation that (23) is a solution of
equations (4) and (5). We shall now show that as, by, ¢y are, in fact, the
sides of a second rational triangle. Using the relations (23), we find that

as + b2 — Cy = (a1 + b1 - Cl)(bl +c — al)(cl + a1 — bl)

x(a% + b% + c% — a1by — bicy — cla1)2
(a% + b:{ + C:f — Qa%bl — 26%01 — 26%041 + 3a1b101)_1
(a? + b:i’ + c:{’ — 2alb% — 2610% — 261&% + 3&11)101)71,
bo+co—ay = (a:{’ + bi’ + C:f — 2a1b% — 21)16% — 201&% + 3&1()101)2
x(a% + b% + C% —a1by — bicg — clal)_l
X (a? + bi’ + c:{’ — 2a%bl — Qb%cl — 26%&1 + 3&11)101)71,
(a:f + b? + C? - 20%()1 - 2()%61 — 20%041 + 3016101)2

X
X
(24)

co + a9 — b2 =
x(a% + b% + c% — a1by — bicy — Clal)fl
x (a3 + b} + ¢ — 2a16? — 2b1¢2 — 2c1a? + 3aybyey) L
Since aq, by, ¢; are the sides of a triangle, they satisfy the three triangle
inequalities, and also, by Lemma 2, the inequalities (18), (19) and (20).
Therefore it follows from (24) that the rational numbers ay, b, co satisfy the
triangle inequalities

a2+b2—02>0, b2+02—a2>0, 02+a2—b2>0, (25)
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and hence, by Lemma 1, it also follows that as, bs, ¢ are all positive. Thus,
a9, by, co are the sides of a second triangle T, whose area is necessarily ratio-
nal, being equal to the area of a given rational triangle.

It would thus appear that given an arbitrary scalene rational triangle 77,
we can always construct a second rational triangle 75 whose perimeter and
area are equal respectively to the perimeter and area of the given triangle.
The triangle T,, however, turns out to be the same as the triangle 77 in
certain exceptional situations which we now consider. Since ay, by, ¢; are all
distinct rational numbers being the sides of a scalene triangle, it follows from
(23) that as = a; if and only if

aj — a3by — 2a3c; + 3atbic; — a3 + 3a1b3cy
2 3, 14 3 3 4 (26)
and when (26) holds, we also have by = b; and ¢; = ¢;. Similarly, it follows
from (23) that ay = by if and only if

bil — b?cl — 2()?@1 + 3[)%61(11 — blc? + 3[)16%@1 (27)
—6byc1a? + 3bya? + ¢t — 2c3a; + 3cia} — 2a] = 0,

and when (27) holds, we also have by = ¢; and ¢ = a;. Finally ay = ¢; if and
only if

¢} — ay — 2¢3by + 3carby, — c1a} + 3cia2b, 5
—6erand? + 3618 + ab — 2a3by + 3arb? — 264 = 0, (28)
and when (27) holds, we also have by = a; and ¢; = by. On substituting
a=z,b=y,c=2,in(26),a=2,b=z,c=y,in (27) and a=y,b= z,c =
x, in (28), each of these equations reduces to (21). It now follows that the
triangle Ty will be identical to the given triangle 7} if and only if the sides of
the triangle 77 satisfy, in some order, the diophantine equation (21). Thus,
using Lemma 4, it follows that when aq, b, ¢; are given, in some order, by

p(m +n)(2m* + m?n + 2mn? — n?), 99
p(m —n)(2m? — m?n + 2mn? + n?), 2p(m? + 3n?)m? (29)
where m, n are arbitrary integers such that m > n and p is an arbitrary
positive rational number, the triangle 75 is identical to the given triangle T,
and in all other cases, the triangle 75 is distinct. This completes the proof
of the theorem.
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3 Arbitrarily many rational triangles with the
same perimeter and the same area

It has been shown in [4] that for every isosceles triangle, there exists a
unique non-congruent isosceles triangle that has the same perimeter and the
same area. Thus, if there exist more than two rational triangles with the
same area and the same perimeter, at most two of these triangles can be
isosceles. We will now prove that there are arbitrarily many scalene rational
triangles with the same perimeter and same area.

Theorem 4: Given an arbitrary positive integer k£ > 2, there exist k scalene
rational triangles with the same perimeter and the same area.
Proof: We take a scalene rational triangle T whose sides ay, by, ¢; do not,
in any order, satisfy equation (21). We apply Theorem 3 to obtain a sec-
ond scalene rational triangle 7, whose sides as, by, co are given by (23),
and repeat the process, taking as, by, co as the sides of a new given tri-
angle and thus get a third triangle 75 with sides as, b3, c3. Continuing this
process, we get a sequence of k rational triangles Ty, 15, ..., T with sides
ai, bi, ¢;, i =1, 2, ..., k. As these rational triangles have been obtained by
repeated application of Theorem 3, all these triangles have the same perime-
ter and the same area.

Next we will show that we can actually choose a rational triangle T}
whose sides ay, by, ¢; have such numerical values that the above process gen-

erates k distinct scalene rational triangles T;, i =1, 2, ..., k, with the same
perimeter and the same area.

We will first show that no two of the triangles T;, ¢ = 1, 2, ..., k, are
identical for all values of a, by, ¢;. We note a;, b;, ¢;, i =1, 2, ..., k, are all

rational functions of a1, b1, ¢; and we will show that the two sets of functions
Gy, by, ¢y and ay, by, ¢y, where 1 <u <k, 1 <wv <k, u+# v are distinct. It
is easily seen by induction that if we assign the values 1, —1, 0 respectively
to ay, by, ¢, then we get

4y =1/(=3)", by=—1/(=3)", ¢, =0, u=1,2 ...,k  (30)

As the the two sets of functions {ay, by, ¢,} and {a,, b,, ¢, }, where 1 < u <
k, 1 <wv <k, u# v attain distinct values in this special case, they must
necessarily be distinct. It similarly follows that for any u, 1 < u < k, the
functions ay, by, ¢, are also necessarily distinct. Thus the triangles 7}, i =
1,2, ..., k, are, in general, scalene and no two of them are identical for all
values of aq, by, c1.
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Next we note that, as stated by Brahmagupta [2, p. 191], we may take
the sides of the rational triangle T} as follows:

a; = % <a—[: + b) s

o= (% +e), (31)

q = %(a—;—b)wL%(a;—c),
where a, b, ¢ are arbitrary positive rational numbers such that a® > be. The
sides of all the rational triangles T;, 1 = 1, 2, ..., k, are now rational func-
tions of the variables a, b and c¢. We observe that one side of the triangle
T, 1 <wu <k will be equal to one side of the triangle T,,, 1 < v < k where
u # v if any one of 9 equations of the type a, = b, is satisfied. Similarly
the triangle T, 1 < u < k will not be scalene if any one of the 3 equations
ay = by, by, = ¢y, ¢, = a, is satisfied. We assign arbitrary positive numerical
rational values to b and ¢ when all these 12 equations may be written as
polynomial equations in the single variable a. Moreover, for any given value
of k, there are only a finite number values of v and v, and hence only finitely
many such polynomial equations, and these equations in the variable a have
a finite number of roots. Similarly, for the assigned numerical rational values
of b and ¢, the sides ay, by, ¢; of the triangle T; will satisfy equation (21) in
some order only for finitely many values of the variable a. Thus by assign-
ing to the variable a a positive rational value so as to avoid all these finite
number of possible values of a, and also such that a? > bc, we are assured
that all the triangles T}, + =1, 2, ..., k, are distinct as well as scalene. This
proves the theorem.

As a numerical example, if we take the sides of the initial triangle T}

as (a1, by, ¢1) = (3,4, 5), and apply the Theorem 3 two times, we get the
triangles T, and 73 whose sides are given by

(a9, b ) 101 41 156
a )= | ——, —, —
2, V2, L2 21 3 15: 35 J

and

(a3, bs, c3) = <

147311847839141 91856397607001 112134202236876
29415245790105 ° 23156698179195° 37065988023371 )

The three triangles 77, 15 and T3 have the same perimeter 12 and the same
area 6. Multiplying the sides of these three triangles by a suitable integer,
we can obtain three triangles with integer sides and with the same area and
perimeter.
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