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Abstract

In this paper we shall give various contributions to the theory of the
Hurwitz zeta-function. In §1 we shall continue our previous study and give
integral representations (for the derivatives as well) which give another
basis of the theory of gamma and related functions. In §2 we shall give the
sixth proof of the Ramanujan formula with two examples which supersede
those results presented in the book of Srivastava and Choi. In §3 we shall
give two more proofs of the closed formula for the integral of the psi-
function, thus recovering the recent result of Episona and Moll. Finally,
in §4 we shall give another proof of the functional equation. Hereby we
put all existing literature in the hierarchical and historical perspective.
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0 Introduction

This is partially a sequel to our previous papers [16]-[18], supplementing
the material therein, but in other respects we shall go further and show that
many results which are published after [16]-[18] are already contained in our
framework.

In §1 we shall present the integral representation for the partial sum

Ly(z,a) = Z (n+a)*

0<n<z
of the Hurwitz zeta-function
oo
((—u,a) = Z(n +a)* (Reu< -1)
n=0

and for ( itself. The proof as presented in [17] is quite simple, but the result is
far-reaching and we may even base the whole theory of the gamma and related
functions on our results (Theorem 1 and its corollaries). We shall develop this
aspect of our theory further [24],[49], and we shall present only a few special
cases. The special feature of Theorem 1 is that the derivatives may be computed
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by differentiating with respect to u and the whole results may be inherited (for
more details, cf. the introductory remark at the beginning of §1).

In §2, we are going to give the sixth proof of a far-reaching formula of Ra-
manujan. This proof, incorporating the structure of the Hurwitz zeta-function
as the principal solution of the difference equation, seems one of the most natural
ones.

We give two examples which list up summation formulas going beyond those
in [45] (cf. Remark 2.1).

In §3, we shall give two more proofs of the closed formula for the inte-

z )\ . . .
gral [ t*)p(t + a) dt, thus recovering the seemingly most important formula of
Episona and Moll [9]. We also give two enlightening remarks, the latter of which
clarify the relation between Episona and Moll’s results and Mikolas’ results.

In §4, we shall sum up the existing proofs of the functional equation (3.13) for
the Hurwitz (Lerch) zeta-function and reveal the hierarchal relationship among
them, referring to Laurincikas and Garunkstis [30] for the Lerch zeta-function
aspects. We shall add one more proof of (3.13) based on the Dirac delta-function.
Since from the delta-function, we may deduce the Poisson summation formula,
we might regard our proof more fundamental.

Thus, “contributions” in the title signifies that we put the existing literature
on the Hurwitz zeta-function in their hierarchical and historical perspective,
with our recent contributions [16], [17], [18] as touchstones.

We shall use the following notation and known results freely in what follows,
without referring to them on each occasion (all can be found e.g. in Erdélyi

[11)).

Notation:
C(Saa):z_:m, Res=0>1, a>0

— the Hurwitz zeta-function;
((s) =((s,1) = E ol o>1

n=1

— the Riemann zeta-function (both are meromorphically continued over the
whole plane with a simple pole at s = 1);

00 .
€2mna

ls(a)zz — c>1, 0<a(<])

n=1

— the Lerch zeta-function or the polylogarithm function;
[ee]
I(s) = / et tdt, o>0
0

— the gamma function;

o

a
(s, a) :/ et dt, T(s,a) :/ ettt
0 a
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— the incomplete gamma functions of the 1st and the 2nd kind, which satisfy
v(s,a) + (s, a) = I'(s);

v(e) = Tt = 55 0sT()

— the psi function or the Euler digamma function;
n

Hy =+ 1) = o(1) =4+ 1) 7= 1
k=1

— the n-th harmonic number, where v signifies Euler’s constant (see below as
the Laurent constant (1) = —t(1) = —7).

Bo(z) = é (Z) Byt

— the n-th Bernoulli polynomial with Bj, the k-th Bernoulli number defined
through

= —z |z| < 2m;

B,(2) = B,({z}) =Bp(z —[¢]) forzeR

— the n-th periodic Bernoulli polynomial, with [z] and {z} signifying the integral
and fractional parts of z, respectively.

Known formulas:
B, (z) = —m{(1 —m, z), m €N,

P (2) = ()™ mi{(m +1,2), meN

The Laurent expansion of {(s,a) at s = 1 is given by

lo.0) = 5 @) + 3 T gy

n!
The finite difference equation satisfied by the Hurwitz zeta-function:
C(Sa a+ 1) - C(Saa) =—a"".

The addition formula for the Bernoulli polynomial

n

Bu(z+y) =) <Z> By(z)y"*.

k=0
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1 Integral representations

For complex v and a and = > 0 let

Ly(z,a) = Z (n+a)",

0<n<z

where for negative values of u, the possible value of n for which n +a = 0 is to
be excluded.

We proved in [17] an integral representation for L, (z,a) (restated as Theo-
rem 1 below), which has the following far-reaching features shared by the deriva-
tives %Lu(m,a) as well, i.e. all statements about the function in u (L,(z,a)
and ((—u,a)) are valid for their derivatives as in the form of (i) below.

(i) It gives an analytic expression for L,(z,a), which entails an integral
representation for each derivative %Lu(a:, a) = Y genca @+ a)*logh(n + a)
(the differentiation of the integral being carried out under the integral sign).

(ii) It gives an asymptotic formula for L,(z,a) in z by estimating the integral
trivially, which is feasible for applications in the divisor problems.

(iii) It gives a generic definition of {(—u,a) for u # —1 (and for yg(a) =
—¢(a) for u = —1).

(iv) It gives an integral representation for the associated Hurwitz zeta-
function ((—u,a) (and its derivatives %C(—u,a) = (W) (—u,a)) for u # —1,
and for v = —1, it gives an analytic expression for the generalized Euler con-
stant yx(a) (the k-th Laurent coefficient of ((s,a) at s = 1), which follows by
simply putting = 0 in the integral representation.

(v) The integral representation for ((s,a) (or v¢(a)) in (iii) yields an asymp-
totic formula for the {(s,a+ z) in z with Bernoulli polynomial coefficients (The-
orem 2 [17]) as given by M. Katsurada [26].

Theorem 1 (Integral Representations). Let
L@ = Y (n+a),
0<n<z

where u is a complex variable, and a is another complex variable, and where in
the case Reu < 0, the possible value of n which is equal to —a is to be excluded.
Then, for anyl € N with l > Reu + 1 and for any x > 0,

! T
00 me =Y S B
1! U 0
+ ( l}) F(]‘:L‘L(+—; i)l)/m Bl(t)(t+a)u7l dt
+ { u}rl(“’””‘)qul +{(-uwa), w1
log(z + a) = (a), u=—1.
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Also the asymptotic formula

(1.2) Lu(z,a) = Z (_:)T (T E 1) Bo(2)(z+a)" " + 0 (wRe (u)fl)

. 1(:1: +a)*t +({(~u,a), u# -1
+

log(z + a) - ¥(a), w=-1

holds true as x — oo.
Furthermore, the integral representation

1
1. _ — % _ u+1
(13) ((-wa)=a*~ —
_Z (_l)r u B aufrJrl
=T r—1)7"

U *_
+ (-1t <l> / Bi(t)(t +a)* dt,
0
which follows from (1.1) by putting x = 0, holds true for all complex u # —1,
where | can be any natural number subject only to the condition thatl > Reu+1.

Since the integrals appearing in Theorem 1 are analytic in the region, Reu <
1—1, we may differentiate (1.1) and (1.3) in u there. We state the counterparts
of (1.1) as the following corollaries:

Corollary 1. For any complex u and a > 0,

(1.4) %Lu(mva)
= Y (n+a)log(n +a)
0<n<zx
! —-1)"— u—r+1
= ( r!) B (z)(x +a)"
g %{ww 1) = $(ut2—r) +log(z +a)}
_1)¢ oo
+E [ B o
X et 1) = 1= D)+ log(e -+ )}t
wtl o a u+1
u+1(m+a) log (z + a) (u+1)2( +a)
i 1 —('(~u,a), ur
5{10g($+a)}2+71 (), net
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Corollary 2. For any complex u and a > 0,

2

(1.5) Ly(z,a)

du?

ZE:ijFA@@+aV”“

+ /(1) = ¢ (2 -7

NS
4 “1) / But)(t + a)"~!

T(u+1) 2
e B R—r 1) — 1—1) + log(t
Tl 1o [P0+ D = bt 1= +log(t + )}
P utl) = (w1 l)] dt
(z +a)" ™ s 2(z+a)vt?
T g _AETY
e {loga + @)y XL log (2 + )
2(x + a)vt!
+ s = "ne__ -1
5 {log(@ +a)}’ + 7(a), u=—1,
We note that Theorem 1 is the most informative for L, (z,a), so are Corol-
laries 1 and 2 for %Lu(m, a) and %Lu(m, a), respectively. Care should be
taken in interpreting the coefficients like 4D _(4(y +1) — ¢h(u+ 1 —1)) when

T'(u+1-1)
u is a negative integer; it is to be taken as one without singularities (cf. (1.7)
below).

We shall illustrate these by the first derivative (
in the special case of u = m, m € NU {0}. For N
eventually yields (cf. [33])

suLu(z,a) or —('(=u,a))
31

> m + 1, Corollary 1

N
(1.6) —C'(=m,a) = lim (Z(n+a)mlog(n+a)

N—o0
n=0
1

_ N m+11 N m—+1

—m—f-l( +a) og( +a)+7(m+1)2( +a)

m—+1

1 m m \ B,

—§(N+a) log(N + a) — g <T—1>W

1 1 m—r+1
<m+ +m_r+2+log(N+a)>(N+a) .
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1
= 1am+1 loga
]' m—+1 m 1 m—1
_ (m+1)2a 2@ loga+ﬁa loga
m—+1 r—2
B 1
+ — (=1)/ <m> 7 + ( 1) loga
=1 " \i=o J7r=41=) -
1 ! - r—m—-2\ 1
- B (_1)]< ) am—r+1

where (1.6) and (1.7) correspond to (iii) and (iv), respectively.
We shall show that, in view of Lerch’s relation

[(a)

V2or

(1.6) with m = 0 gives Euler’s product formula (??) for I'(a).
Indeed,we eventually tramform (1.6) into

log =('(0,a),

T(@) _ . (v 1
(1.8) —log ol A}linoo (nz:O log(n + a) — <N + 5) log N

+ N — alogN).

Subtracting from (1.8) its special case with a =1 yields

N
. n+a
(1.9) —logT(a) = 1\}1_1;1100 <loga + E log = alogN) .

n=1

whence we conclude that

(1.10) F(la) Z“ﬁ{<1+%)a(1+%>}’

i.e. Euler’s product formula (cf. [45, (7), p. 2]).

Remark 1.1. Our procedure is a reverse to that of Berndt [7] in which he starts
from one of the equivalent definitions of the gamma function given by
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N N
1.11 logI'(a) = i — 1 1 log(N +1
(1.11) ogT(a) Ngn@( ,;]Og(n+a)+,; ogn + alog(N + ))
and deduces Lerch’s formula by comparing (1.11) with (1.8). Of course, we can
cover (1.11) in the same way as above.

We may recover Deninger’s Theorem 2.3 [8], especially, the Gaussian repre-
sentation

(112)  =¢"(0,0) = —¢"(0) — log*a
N
. 2 A7 2 a2
+A}gnoo <a10g N ; (log*(n + a) — log n)) .
by Corollary 2, which eventually leads to
(1.13) —¢"(0,a) = —¢"(0) — log* a + alog® N

N 2
- Z (logQ(n +a) — log® n) + 0 <10gNN>
n=1

We may also recover the Weierstrass representation ([8, (2.3.2)]) by Corol-
lary 1 with wu =—1,a=1and z = N € N (we write N for N + 1):

N

logn 1. , log N

1.14 = — —log" N .
(1.14) m= DB e N 0 (1

n

(ck. [17, (8)))-
Solving (1.14) for log® N and substituting it in (1.13), we deduce that

(1.15)  —¢"(0,a) = —¢"(0) — 27, loga — log® a
N 2
1 log® N
B nzzl (10g2(n +a)—logn =2 oin> o < OgN ) ’

which gives the Weierstrass representation.

2 A formula of Ramanujan
In this section we are going to give the sixth proof of the fundamental sum-

mation formula (Ramanujan’s formula) based on the use of finite differences,
which has been applied successfully in recent researches [18], [19].
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Theorem 2. For 0 < A € Z and |z| < |a| we have

. (m’am)\_)\ A\ A—k
(2.1) 2 + _kz::o<k><(_k’a_2)2
uNg |
=Y 2k =X a)z
k:lk
¥ %Hw(a) — Hy)

Proof. Let A, f(a) = f(a+1)— f(a) be the difference operator. We apply this
to the sum S on the LHS of (2.1) to obtain

—m

Cma A = a A
A, Ay 2T = — m
5= z:: mEA §m+AZ

[ 1 2\

— A -

- Z m(a)
m=A+2

The resulting infinite series is nothing but

Sen(1-2)- 2 1 (2)"

or
A+l
_<log(a—z loga—f—z ( ) >
whence
A+1 )\_
(2.2) A,S = a*log(a — z) — o loga + Z

Rewriting the first term on the RHS of (2.2) in the form 22:0 (z)zA*k(a —
2)Flog(a — 2) and telescoping (2.2), thereby noting that

((s,a+1) = ((s,0) = a "loga,

we get
O\
(2.3) S=>" <k> C(=k,a—2)22F = ¢'(=\, Q)
k=0
A
-3 -+ YOy e 0,
k=1
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where f(z,a) is the function satisfying the conditions

(2.4) Ayf(z,0) =0
and
(2.5) f(0,a) =0.
It remains to determine f(z,a) (to be —)\H—ﬁz”l). First note that

d , 00
&C (—k,a—2)= &&C(s,a—z) |s=—&

0
= —sC(s+1,a—2) ey

[l -ka-z)—k{(1-ka—-2z), keN
_{ _'QZJ(Oé—Z), k=0.

With this in mind, we differentiate (2.3) with respect to z to obtain

20 55 :Z_: (2) (A= k)¢ (—k,a = 2)22 7k
*’22 (2)4(1 ko z)z*k—-Z; (2)(%1-—k,a-—2)2Ak

We note that the two sums on the RHS of (2.6) containing ¢’ cancel each other,
while the second sum, say Ss, becomes, in view of the addition formula,

A

@1 s=-3 (}) Buta -2
SO S (neca - () e
= Sy1 + Saa,

say. Using
AN [k (A (A1
EJ\l)  \0)\k=1
and changing the order of summation in S5 1, we have
A

o (o £ 072

=1
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Invoking the formula

LK\ (-D)F KIT()
k:0<k> k+l TI+K+1)

we deduce that

Bi(a) A A—l -1
28)  Supu=-> 2 = S =Lt = (=N a)
=1

=1

For S, 2, we use another formula

B0

to obtain

(2.9) Sy = Hy2™.

From (2.7), (2.8) and (2.9) it follows that
A

(2.10) Sy = ((l=Xa)t + Hyz
=1

Substituting (2.10) in (2.6), we conclude that

0 o_ RSN A r, 0
(2.11) aS = —Y(a—2)z" +P(a)z* + Haz" + azf(z,oz).
On the other hand, from (2.3) we know that
9 A
(2.12) 5,5 =~ (Wla—2) —(a)) 2~

Hence, comparing (2.11) and (2.12), we obtain

9 f(ea) = —H\,

0z
whence o
_ X
f(z,0) = 117 +C.
By condition (2.5), C =0, and
_ Hy A+1
(2.13) f(z,a) = Tt

Substitution of (2.13) into (2.3) completes the proof.
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Example 1. (i) ([17, Corollary 1], [45, (720), p. 250])

(=DM, @) pa
Z m(m+1) ot

=logTla(z+a)+ (z+a—1)logl(z + a)
—logI'y(a) — (@ — 1) log I'(a)
1

- <logf(a) +a-— %10g27r - %) z— 5(@/}(04) +1)22,

(ii) (cf. [45, (569), p. 227 and (712), p. 248], [47, (4), p. 91])

i mcma) Zm+2
m(m+1)(m + 2)

m=2

=logTs(z + a) + <z+a— §> logTy(z + a) + %(z+a— 1)?logT(z + )
3 1 9
—logT3(a) — a-g log Ty (« )—i(a—l) log I'(«)
logTa(@) + (& — 1) ogT(a) + ~a® — 2a + ¢'(~1) + =
ogTs(a o ogl(a) + 70"~ 7a 51 ) ?
1 3 1 3 5, 1 3\ ;
~3 <logF(a)+§a—§log2ﬂ—Z>z ~ % <1/)(a)+§>z,

(iii) (cf. [45, (569), p. 227 and (712), p. 248] and [47, (6), p. 92])

- (=1)"((m, a) 3
> m(m + 1) (m + 2)(m + 3) "

=logTs(z+a)+ (z4+a—2)logT3(z + )

+ % (3(z+a)? —9(z + @) + 7) logT2(2 + @)

+ %(z+a —1)%logT(z + a)

—logTy(a) — (a —2)logTs3(a) — é (3a® — 9a + 7) log s ()
- é(a —1)%logT(a)

- % (2logN's(a) + (2a — 3)log > () + (a — 1) log I'(x)

+1a la +ia+C( ))z

6 18
1 5 , 5 5\
-3 <10gF2 (a—1)logT(a) + 3¢ 12a+(( )+72>z
1 1y , 1 11\
~ 3 <logF a 10g2 12) 51 <1/)(a) + 5 ) z*.
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Example 2. ([17, Corollary 2]).

(i) 3 C;mf;) Zm

(i) 3y C;m;a) ZmH3
1)

w

3logT(a — 2) + (3a® — 9a + 7)log Ts (a — 2)
+(6c — 12) log's(a — 2) + 6logT'4(a — 2)
—(a—1)*logT(a) — (30 — 9a + 7) log Tz ()

(6a — 12)logT'3(a) — 6log T'4(cx)

1 1
+- <a3 - §o¢2—+——oz— 9 (3)) z

3 2 2 472

1 1
+7 a2—a+12C'(—1)+6 22

1 3 1 1 11
3 5 %8 > =Ty (dj( ) 6 ) ?

Remark 2.1. (i) As should be clear from our papers [16], [17], [18], the for-
mulas in Examples 1 and 2 are mutual counterparts which transform into the
other under a combinatorial principle. Unfortunately, this situation has never
been noticed in other works and there have appeared many papers rediscover-
ing these series. Also, as remarked in [20, 21] those formulas in Example 1 are
not so rapidly convergent and those coming from Ramanujan are more rapidly
convergent.

(ii) This supplements Remark 3 of [17], where comparison was made of the
works of Wilton [47] and Srivastava and Choi [45].

Regarding Example 1, (ii), while Srivastava and Choi’s formula ([45, (569),
p. 227]) might not be viewed as a closed form, involving the unknown integral
of Barnes’ G-function, ([45, (712), p. 248]) equals Wilton’s [47, (4), p. 92].
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Regarding Example 1, (iii), which is the highest summit of [45], superseding
previous minor ones ([45, (713), (714), (715)]) corresponds to Wilton’s [47, (6),
p. 92].

3 Some definite integrals

On p. 455, lines 7-11 of [10], Episona and Moll state “The derivative of the
Hurwitz zeta function has appeared before in connection with integrals of InT'(q)
[6], and in a number of related contexts, such as the studies of polygamma
functions of negative order [1], the Barnes function [2] and the multiple gamma
function [10], and other unrelated (underlined by us) ones such as the evaluation
of sums of the type 3 <, 2™((m,a) [7]". Here “[7]” refers to our paper [16].

The last part of this statement is not very precise in the sense that although
in the evaluation of the sums of the type mentioned, the derivative of the Hurwitz
zeta function does not appear, it does appear in the evaluation of the sum of the
type ZmZQ g—_BC(m,a), A =0,1,2,..., and this evaluation is essential in all
the relevant problems ([18], [45]), including the first proof of Theorem 3 below.

To establish this opinion, we shall give two proofs of [10], Theorem 4.3,
which seems the highest summit of the paper (because Theorem 4.1 follows
from it by differentiation), and coincides with our Corollary 3 (i) [18]; the first
proof depends on the penultimate formula ([18], (9)) of Ramanujan, which we
state as Lemma 1 while the second depends on a more antecedent one, i.e. the
intermediate formula toward the proof of Proposition 1 [16, p. 10] (reproved as
[10,(2.3)], whence follows [10,Theorem 4.3] by differentiation), which we state
as Lemma 2.

Theorem 3 ([18], Corollary 3 (i) = [10], Theorem 4.3). For A € NU{0},
we have

(3.1) /Uzt)‘z/)(t +a)dt

Y <2) (—1)kAF {C'(—kaa +2) - H’“W}

D),

- {eenn - 2

(3.1) should be compared with our previous result ([18, Corollary 3]): (i)
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For A € NU {0} and |#| < a,

/Z tMp(a + t)dt

0

A
= (-1)* > Cx(r,)logTryi (a + 2)/Thpa ()

r=0

A )\ ’ B)\,l 1(&) ZAJrl
D2 { (z) =2+ M} W
(ii) For \ € N

,\/ t* ' logT(a + t)dt
0
A
=2 ogT(a+ 2) — (=1)* Z Cx(rya)logTry1(a+ 2)/Tryi(a)

r=0

A )\ ’ B)\,l 1(&) ZAJrl
_1)A§(—1)l{<l>C(l—/\)+7l()\_?+l)}zl—)\—ﬂﬂ>\
Lemma 1 ([18], (9)). We have

A

Cma JmAA _ A Nk
G2 2 S —g(,{){cm )

+ Hpl(—k,a—2)}2*F

—({'"(=\, @) + Hxy((=\, ) + P(@) AL

A+1
First proof of Theorem 3. We start from the Taylor expansion (|z| < &)

> ™ (q
(3.3) Y(z+a) = Z v n‘( )z"
n=0 )

Multiplying both sides of (3.3) by z* and integrating over [0, z] with respect to
z, we deduce that

(3.4) / uMp(a + u) du
0
= a)du + 1)™((m,a) / uMmldy
/0 > v |
o A1
P (m @) 2)mHA z
Z m+)\ +>\+1¢(a)'

m=2
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Substituting (3.2) with —z in place of z into (3.4), we obtain

(3.5) /02 uMp(a + u) du
A

=Dy (2) {('(=k,a + 2) + Hp((—k,a + 2)} (—2)* *

k=0

¥(a) 1, Y(@) 1
+ )\—H(—l)A(—Z))\+ + )\—_*—IZAJr

= (CDMC (=X ) + Ha((=), a)),
which is (3.1). O
Lemma 2. ([16,p.10];[10,(2.8)]) For 0 < X\ € Z we have

(3.6) (=M1 /Oz u (s,a 4+ u)du

1 /A T2 - s)k! )
:mz<k>ﬁ€b(s—k—l,a+z)(—z))‘ k

k=0
1 ANI(2-5s)
T ioiTh—2-s) AT L)

Second proof of Theorem 3. Subtracting (ijr;rl foz uMdu from the left-side,

(*3181“ 2;:11 from the right-side, of (3.6), we deduce that

and

(3.7) (—1)M /0 ” (C(s,a +u)— ﬁ) du=—1F(s),

— s—1
where
A
['(2-s) (=M
_)\!F(/\+2—3)C( —A-bLa -7

We are to take the limit of (3.7) as s — 1. For this we first contend that
F(1) = 0. Indeed,

A 1
(3.9) F(1)=— Z (2) M(_z),\w n Byti(a) (=)™ _

= k+1 A+1 A+1
Rewriting (2‘) kl? as AL—H (z‘ﬁ) and writing k for k+1, we derive from (3.9) that
A1
1 A+1 s1—k . Bayi(a)
3.10 F(l)= ——— B —p)MTh g o
1) FO =y > (M) B B

46



where we incorporated the last term in (3.4) in the first sum of (3.10). Not-
ing that the fist sum of (3.10) is nothing but the expansion of the Bernoulli
polynomial Byy1(a + 2z — z) = Byy1(a), we conclude F(1) = 0.
Hence, we may take the limit as s — 1 of (3.2). On the left side we have
—1)* [ u* 1(a+u) du by the Laurent expansion of (s, a+u), and on the right-
side we just differentiate F'(s) with respect to s, thereby noting the formula

re-s)
(3.11) (I‘(k+1—s)> _
_ T'@2-5s)
= m(—d)@ —s)+ Yk +2—3)) .
1
= EHIW
to obtain
A
(3.12) Z ( ) —koa+z)+ HyC(—k,a+2)} (—2)>F

- {C (_Aaa) + H)\C(_)‘va)} 3

which is equal to (—1)* foz up(a + u) du. By multiplying by (—1)* completes
the proof. O

Remark 3.1. In the notation of [10, (3.1), (3.28)],

(e + )¢~k 0) — HiBiia (@)
= (k+ 1)l (g),

and our Theorem 3 coincides with Theorem 4.3 of Episona and Moll.

((=k.q) + Hi((=k, q) =

Remark 3.2. (i) Episona and Moll [9] developed the Hurwitz transform

[ sicts.man

and deduced several results for special types of f(u) which can be expanded
into Fourier series as consequences of their Theorem 2.2, which in turn is a
consequence of the “Fourier series”:

[ee]
78
3.13 =2I'(1 - (2 (2 —
(3.13) (s, s) E: 7n)* ! sin(2rnu + 2)

or, more commonly known as the Hurwitz formula. Although they use the name
“Fourier series,” they do not quote Mikolds’ most relevant paper [38], in which
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he gave the simplest proof of (3.13) as the Fourier series, whereby he computed
the Fourier coefficients

(3.14) / Cs,u)e™ 2™ dy b))

(27rw)1 (2miv)i—s’

0<s<1,0#v¢7Z. From (3.14) we immediately deduce

1 1
/ ((s,u) cosQﬂ'Vudu—i/ ((s,u) sin 2wvu du

/CS’LL 27rwud ( )331 1 — 1
4T (s) cosfs sinfs)’

whence follows Formulas (2.2) and (2.3) of Episona and Moll.
(if) Although Episona and Moll [9] refer to Mikolds’ paper [37] and quote
the result

' _ o2y $(25) ((a,0))"
| = s taac = s, oa) da =207 e (1))
((a,b) = g.c.d. of a and b, and [a,b] = l.c.m.)

for Re(1 —s) < %, they do not refer to yet another paper of Mikolds’ [36], in
which he obtained the result:

(3.15) / C(s,u)((s",u)du
2(27)5+¥' 2T (1 — $)I(1 — s') cos g(s — )@ —s—5)

for max{0, Re s} + max{0,Res'} < 1; the region of validity wider than that of
Episona and Moll who have only s < 0, s’ < 0. The proof of (3.15) in the case
Res < 0 and Res’ < 0 is based on (3.13) and Fourier analysis (the Parseval
formula).

This result of Mikolds’, combined with our recent developments of the prod-
uct of zeta-functions [22], may shed some new light on the asymptotic formula
for mean square of zeta-functions. In fact, it looks like the region is one of the
excluded one in Katsurada [25] and Katsurada and Matsumoto [28].

The proof of (3.15) in the remaining cases are subtler and essentially depends
on the Mellin transform M (s, z) fo u?~1¢(s,u) du, proved to exist for Re s <
1,max{0,Res} < Rez < 1.

Formula (3.6) suggests that considering the partial integral fom w*=1((s,u) du
may yield a counterpart of (3.15).

4 The functional equation

In [17] statements were made about the proof of the functional equation, or
the Hurwitz formula (3.13), for the Hurwitz zeta-function, using the absolutely
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convergent Fourier series for Bo(t) rather than the boundedly convergent Fourier
series for B;(t). Meanwhile the book of Laurinc¢ikas and Garunkstis [30] has
appeared which has rich contents about rather wide spectrum of the theory of
the Lerch zeta-function ¢(&, a,s) = > ", %, and we can do no better than
referring to it regarding various proofs of the functional equation for ¢. We shall
therefore restrict mostly to those papers which were not quoted in [30].

As mentioned in Remark 3.2, Mikolas [38] made use of the Fourier series to
deduce the functional equation for {(s,a) and in the subsequent paper [39], he
applied the same method to prove the functional equation for ¢(¢, a, s).

Berndt [5] used the boundedly convergent Fourier series to deduce (3.13),
which he further applied to ¢(,a, s) to deduce the functional equation in [6],
where he gave another proof for it, which was reproduced by [30].

Fine [12] applied Riemann’s second method, i.e. the theta-transformation
formula (for #3), or what amounts to the same thing, the Poisson summation
formula, to prove (3.13), while Apostol [1] deduced (3.13) from the functional
equation and the distribution property for ¢(¢, a, s).

Apostol’s paper [2] (cf. also [3]) contains the seemingly most natural proof
of the functional equation for ¢(¢, a, s) based on the transformation formula and
the difference equational structure of ¢.

As has been developed rather fully in [21], the theta-transformation formula
or the modular relation a 14 Bochner and the functional equation are equiv-
alent. In this respect, Fine and Apostol would lead to Bochner and may be
considered as the prototype of manifestation of the zeta-function associated to
prehomogeneous vector spaces.

We remark, however, that although in the above mentioned papers, Lipschitz
[34], Lerch [32], Hurwitz [14] are referred to, but are neither Malmstén [35] nor
Schlomilch [44], who gave the functional equation for some L-functions (the L-
function modulo 4, to be precise), nor the paper of Euler. In this regard we must
take into account Weil’s paper [46], which gives a translation and comments
on Eisenstein’s copy of Gauss’ Disquisitiones, especially the last page (dated
1849) inserted by the binder. On that page, Eisenstein made an “unmotivated”
application of the Poisson summation formula to prove the functional equation
for ¢(&, a, s) from which he deduces that for L-function mod 4. His argument
precedes Oberhettinger [40] by 107 years in that he uses the Fourier transform

S .
/ eszzqufl dilf,
0

while Oberhettinger produces the proof by using the Laplace transform. The
Fourier transform also the basis of Mikolds’ proof [38]. Here we may enjoy a
happy encounter of some of the greatest unsimultaneous mathematicians of all
time, Gauss, Eisenstein and Weil. We are also fascinated by Weil’s imagination
on the source of Riemann’s paper.

We are indebted to Sato’s paper [43] for this paper of Weil; without Sato’s, we
may have missed it, and indeed, in no other places, this discovery of Eisenstein
has been presented. E.g.in Grosswald, the Lipschitz transformation formula (i.e.
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the functional equation) is proved by the Poisson summation formula, which is
in principle the same as Eisenstein’s proof.

Sato’s paper (cf. [21] as well) contains a very nice list of functional equations
that follow from the theta-transformation formula and some other deep insight.

In §5 of [17] we posed a problem of proving the functional equation (3.13) by
completing the integral [ By(t)(t + a)*~' dt and using some transformation
formula for confluent hypergeometric functions. We have not found such a
hypergeometric functional proof, but we can present a more high-brow proof
using the Fourier series for the Dirac delta function §(s) by completing the
incomplete gamma functions (in a sense completing the above integral, thus our
guess half hit the points).

Our starting point is thus the combination of (41) and (43) of [17] (where
we write s for —u)

1 o e—2m’na )
(4.1) {(s,a) = nz::l ((—2m’na)1sr(1 — 8, —2mina)
627rina
+Wf(l - S, 27r'ma)>
1 1 1

+2a3 as~ls—1

We use the incomplete gamma function 7(s, a) of the first kind

a 1
v(s,a) = / e 'u ! du = a® / e~y du
0 0

and complete I'(1 — s,a) to write I'(1 — s,a) =T'(1 — s) — v(1 — s,a). Thus

C( ) F(l ) i 6727rina N e?ﬂ'ina 1 N 1 1
s,a) = — S i [
’ =\ (=2min)t=s  (2min)!—* 205  a*ls—1

1 & ) 1 )
_ § 6727rzna e2ﬂ'znauufs du
as—1 o
n=1

1
+e2ﬂ'zna/ 6727rznauufs du) .
0

We invert the order of summation and integration in the last term and consider
. o : . .

the series ', — e~ 2mna(u=1) 45 the Fourier series for §(a(u — 1)) — 1. Then

we are left with the integration (o < 0)

— [ §(a(u—-1)u*d Sy e —
/0 (a(u—1))u u+/0 u *du P
Hence the last term is —5 — = —L+, which cancels the second term and we

finally arrive at

2s“i€1_s(a)) s

(s0) = i) (o2

G (T -0 e
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which is equivalent to (3.13).
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