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ON THE BARBAN-DAVENPORT HALBERSTAM THEOREM : XIX
C. Hooley
1. Introduction

We pursue one of the themes of the previous article !XVIII of this series, which as in
I11, IX, X, XIV (and also [2]) was concerned with strictly increasing sequences of positive
integers s that are postulated to adhere to the following

CRITERION V, For any positive constant A,

X
S(I,E;a,k)): Z 1:f(a,k)517+0<714>,
_ngdk log” x

where
f(0,1)=C > 0.

Referring the reader to the previous papers for a full description of what they covered in
order to avoid unnecessary repetition, we shall once again be concerned as in XVIII with the
dispersion
G,Q) =Y > A{S(iak)— f(a,k)z}?
k<Q 0<a<k

for large () and the associated asymptotic formula
G(x,Q) = {D+0(1)}Qz + O(zlog " z) (1)

that is analogous to the Barban-Montgomery theorem for prime numbers mentioned in other
papers of this series. As in XVIII and also IX,X and XIV, the sequences considered fall into
two classes as follows:

Class 1; D > 0, there being a genuine asymptotic formula,

Class 2; D = 0, there only being an upper bound presented in the first place in the

absence of further data.
Possibilities abound for G(x, Q) in the second case; on the one hand there are sequences
such as that of the square-free numbers for which G(x, Q) is asymptotic to a multiple of
Q'tx'~2 while on the other we found sequences in XIV for which G(z, Q) oscillated in size
between Q'*¢x'~¢ and Q?~z°. Therefore, having concluded in XVIII that the only credible

'We refer to each article by the Roman numeral indicating its position in the series.
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goal in the study of the size of G(z,Q) was the determination of a good universal lower
bound, we proved the inequality

G(r,Q) > 11—2{03 +0(1)}Q* 4+ O(z log™ " z),

where
o — 3C —3C?, if ¢ <4,
7T 50 -3C? -1, ifC> L
This was seen to be best possible for C' = % or 1 but it was suggested that it might be

susceptible to betterment for other values of C.

To make such an improvement is the purpose of the present paper, the result obtained
being stated in the theorem at the end.

2. Resumé of material from Paper XVIII

Assuming throughout that Criterion V is observed, we define w(a,[) by
1
f(a: k) = % Z w(a: l) (2)
Ik

and the M&bius inversion formula; this function is periodic, mod 1, because f(a, k) is periodic,
mod k. We then let

ma, :% Z w?(a, m) (3)

and form the series
o
E ma,y,,
m=1

which, being convergent, is assigned the value C;. Since in formula (1) D = C — (Y, the
sequence belongs to the first class when C} < C and G(z,Q)/Q? — oo when @ is large and
x/@Q — oo. Therefore, in determining lower bounds for G(z, Q) of the type sought, we may
restrict attention to sequences of the second class for which €7 = C. In this situation we

9]
E mQam;
m=1

if it be divergent, then G(z,Q)/Q* — oo but, if it be convergent, then

consider the series

G(z,Q) > 11—2 (Co+0(1)) Q%+ O (2 log™" z) | (4)
where .
Cy = Z m2a,.
m=1
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It is therefore only in the latter case that we need examine our problem, which is tantamount

to finding a good lower bound for Cy

We also note the identity

fla.d) =" fla,+d, k)

0<A<k/d

that will be needed for some small moduli &

3.Conjugate sequences and further properties of w(a, m) and a,,

To confine our discussion to the case where the density C' of the sequence s does not

exceed % we introduce when necessary the conjugate sequences of numbers s* that is the

complement of the sequence s within the set of natural numbers. To this there correspond

the counting functions

S*(z;a,k) = Z 1= Z 1—S(z;a,k)

s* <z n<z
s*=a, mod k n=a, mod k
= 24200) - af(a, k)+0< i )
k log” z

- new) o)

= zf*(a,k)+ O <LA> ,say,

log” x

so that it also satisfies Criterion V but with density C* = 1—C. Also, still attaching asterisk
superscripts to the notation of §2 when it is to appertain to the conjugate sequence, we find

from (2)
that
wi(0,1) = f(0,1)=C"=1-C

and

Z“( )df (a, d) Z“( )—de(a,d)

dlm d|m dlm
= —w(a,m)

for m > 1, whence

. {C’*Q, ifm=1,
ma’, =

My, ifm>1.

by (3). In particular therefore, if the sequence s belong to Class 2 so that

o0
= § M,
m=2
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then so does the sequence s* because C'(1 — C) = C*(1 — C*), while also the convergency of

o0
E m2 A,
m=2

the series

implies that of the equal series

o0
2 %
Emam.

m=2
Furthermore
Co—Cy=C?"-C*?=C*—(1-0)~ (6)
Consequently, save when formulating our final conclusion, it may be assumed that C' < %

Our method leans on some properties for smaller moduli [ of the function w(a, ) that we
now enumerate. First, since

0< fa,2) < Cand £(0,2) + f(1,2) = C,

we deduce from the special case

f(@,2) = ${C+u(e,2)} (7

of (2) that the values of w(0,2) and w(1,2) can be denoted by b and —b in some order where
0 < b < C, wherefore

Y0y < S(7 +17) = 1. (8)
Similarly, from
FON)+FL3)+f(23)=C

and the counterpart of (7) for modulus 3, we have the relations
w(a,3) > —C (9)

and
w(0,3) +w(1,3) +w(2,3) =0,

the latter of which implies that one of the w(a,3) is negative and another positive unless
all three of them be zero. Temporarily excluding the last possibility, let —d be the least
w(a, 3) occuring, d; the (positive) greatest, and +ds the intermediate one, where dy > 0 and
the positive sign is used when dy, = 0. If the negative sign be apposite, then dy < d and
di = d+ dy < 2d so that

1
3a3 = g(cl2 +d5+d3) < 2d%, (10)
whereas, if the positive sign be apposite, d = d; + d, and
1 1 2d?
3a3 = 5(d2 +dj +dj) < g{d2 + (dy + do)*} = =
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Thus, in all cases including the one that was put aside, the inequality (10) is valid with the
particular implication that
3az < 2C* (11)

since

d<C (12)
by (9).

As for the modulus 4, we see that (2) and the definition of b above supply the two
equations
Ct+b+w(a,4) =4f(a,4),Ctb+w(a+2,4) =4f(a+2,4)

with a constant interpretation of the sign attached to b for a given value of a, the combination
of which implies that

20+ 2b+w(a,4) +w(a+2,4) = 4{f(a,4)+ f(a+2,4)}
= 4f(a,2) =2C £ 2b
and hence that
w(a,4) = —w(a+ 2,4).
Also,
w(a,4),w(a+2,4) > —(C £b),

which inequalities imply that
lw(a,4)| < C+£b

because w(a,4) and w(a + 2,4) do not share the same sign. In all, therefore,

1
day < Z{2(0—1))2+2(C+b)2} =C”+b* < 2C*. (13)

Finally, moving on to the modulus 6, we deduce from (2) that
w(a,6) +w(a+3,6) =2C —2{f(a,2) + f(a+3,2)} —3{f(a,3) + f(a+3,3)}
+f(a,6) + f(a+3,6)
=2C —-2{f(a,2) + f(a+1,2)} = 6f(a,3) +6f(a,3)
=20-20=0 (14)
for each value of a. Also, in somewhat similar manner,
w(a,6) +w(a+2,6) +w(a+4,6)
=3C—-2{f(a,2)+ f(a+2,2) + f(a+4,2)} = 3{f(a,3) + f(a+2,3) + f(a+ [,3)}
+6{f(a,6) + f(a+2,6) + f(a+4,6)}
=3C—-6f(a,2) —3C +6f(a,2) =0. (15)

Some of these preparatory results lead easily to the first lower bound for C5, which we
derive in the next section before going on to the more difficult ones.
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4. First lower bound for C,

It being given that

C’:C’1:Zmam:C’2+2a2+3a3+4a4+Zmam (16)

m=1 m>4

by the remarks in §2, we have

and then
Z m2a,, > 5(C — C* — 2ay — 3ay — 4ay).
m>4

Hence

o
Cy = Z m2a,, > C? + 4as + 9as + 16ay

m=1
+5(C' — C? — 2ay — 3az — 4ay)
= 5C — 4C? — 6ay — 6as — day, (17)

from which through (8), (11), and (13) we derive the first bound
Cy > 5C — 10C?% — 3b* > 5C — 13C*. (18)
This is only better than the bound
Cy > 3(C - C?) (19)

of our previous paper XVIII for C < é but will be supplemented by a bound that is stronger
when C' is not too small.

5. The second lower bound for Cs

In deriving the second lower bound for C; we examine separately the two cases
a) d<C—b (20)
and
b) d>C —b.
In case a) the restatement of (16) as

C’:C’2—|—2a2—|—3a3—|—2mam

m>3
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implies that
Zmam:C—02—2a2—3a3
m>3
and hence that
Z m>ay, > 4(C — C? — 2ay — 3a3).
m>3

Therefore -
C, = Z m?a,, > C? + 4ay + 9as + 4(C — C? — 2a, — 3as)

m=1

=4C — 302 - 4@2 - 3(13
> 4C — 3C* — 2b* — 2(C — b)? (21)
by (8), (10), and (20). The maximum of b? + (C — b)? for 0 < b < C being 2C?, the bound
Cy > 4C — 5C? (22)

follows in case a).

In case b) let us consider the situation for values of b, d for which
d=a(C—-b)>0 (23)
when « is some number exceeding 1, where
b > (1 - l) C
o

by (12). For each v we derive two estimates, which will then be compared to elicit the more
favourable one.

To obtain the first estimate we merely vary the procedure of deriving (21). In the new
circumstances, by (8) and (23), we now have

Cy > 4C — 30? — 2b* — 20°(C — b)?
in place of (21). But, the minimum of b* + o?(C — b)? being at
a’C 1 1
-2 (1= 1— —
b 1+a? < 1+a2>0>< 2a>c

because 1+ a? — 2a = (1 — a)? > 0, the inequality

b +a*(C —b)* < {(1—&)21%}02

holds for b > (1 — é) C. We thus infer that

«

02240—{5+2(1—1>2}02:4C—(5+9u)02 (24)
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on setting ,
YR 5
The production of the second estimate takes slightly longer. Recalling the meaning
attached to d in §3, let us choose a; and ay so that w(ay,2) = —b and w(a,3) = —d. Then, if
a = ay;, mod 2, and a = as, mod 3,

it follows from (2) that
C—-b—d+w(a,6)==6f(a,6)>0

w(a,6) > (1 _ l) d

(67

with the implication that

by (23). Also, by both (14) and (15),
|lw(a+3,6)| = |w(a,6)],

1 1
w'(a+2,6) +w’(a+4,6) > S{w(a+2,6) +wla+4,6)}" = ;uw(a,6),

and
1 1
w?(a+5,6) +w(a+1,6) > Sw(a+3,6) = Sw(a,6).

Therefore,

1g 1 1 1)?
=_ 2 . 6) > —w? >—|1—-— 2 = Qud?
6ag GjEOw (a+7,6)> W (a,6) > 2( a) d ud

and thus, by (10)
6ag > u.3agz,

which inequality enables us to contrast the constituents 3az + 6ag and 9as + 36a¢ of the series
S ma,, and Y m?a,,. Indeed

9az + 36ag > v(3az + 6ag)
for some multiplier v exceeding 3, if
3a3(3 —v) +6as(6 —v) >0
and therefore certainly if (even when a3 = 0)
u(6—v)>v—3

and thus, in particular, if

U_3(1+2u)
14w

which lies between 3 and 18/5 by (25).
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Consequently
ZmQam > vaam =v(C - C? - b?)
m>2 m>2

and we obtain the estimate
Cy > C*+20* +v(C — C? = b*) = vC — (v —1)C?* — (v — 2)b?

> vC — (2v — 3)C?
_ 1%{(1 +2u)C = (1 + 3u)C?).

in parallel with (24).

The right-hand sides of (24) and (26) are, respectively, decreasing and increasing functions
of u, since
14 2u—(1+3u)C 1-2C
+2u — (1 + 3u) :2_30_!_
1+u 1+u
Therefore in case b) a bound is supplied by using the value of u that answers to the equality

of these expressions provided that it lie in the range (0, i, it then being clear that this lower

limit is universal because it is implied by (22) of case a); moreover the range of u can be
extended to include 0 because of case a). Accordingly, equating these expressions, we obtain
the condition that

3(142u) — 3(1+3u)C ={4— (5+8u)C}(1 + u)
that is tantamount to
B 1—2u
8w 4 4du+2’

the right-hand side of which is a decreasing function of u that runs from
1

(26)

to L as u runs

1
2 7

from 0 to ;. This process provides the second lower bound for Cy when % < C < % For

smaller values of C' it is clear we have Cy > 4C' — 7C? by letting u — § in (24); this bound,

however, will be eclipsed in the coming section.
6. The final bound

To confirm that our second bound for % <C< % is superior to the previous bound in
XVIIT it must be shewn that
4—(5+8u)C >3-3C

when u is determined by (27) or, in other words, that

(1+4u)(1—2u) —8u?+2u+1
A2 4+2u+1 du+2u+1"

1>2(14+4u)C =

which inequality is trivial for v > 0. Also, we have already seen in §4 that the first bound
(18) is better than the bound in XVIII for C < 1.
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In like manner we determine when the second bound is superseded by the first bound.

This happens at the point where
4—(5+8u)=5-13C,
that is where
1=8(1-u)C
and therefore, by (27), where
4(1 —u)(1 —2u) — 4u® — 2u — 1 = 4u* — 14u +3 = 0,

the lesser root of which, being equal to

1 1 1
1(7 —V37) < 1(7 —6) = 7
falls within the requisite range of u. The change-over for the bounds thus occurs when
1 1 1
C=——=—@B+V37) > —.
(3= 56 )>7

To summarize our findings let us define the function I'(C) as follows:

(i) for (3+/37)/56 < C' < 1,
[(C) =4C — (5 + 8u)C?,
where u is the least positive root of (27);

(ii) for C < (3 + V/37)/56,
[(C) =5C — 13C?,

(iii) for § <C <1,
rC)y=20-1+T(1-0).
Then I'(C') < C and we have the

THEOREM. Suppose that the sequence of numbers s satisfy Criterion V and let G(z, Q)

be the dispersion defined by (1). Then
1
G(2,Q) > H{T(C) +0(1)}Q" + Oz log™" z)

when x/Q — 00

The truth of the theorem is clear from (4) and the discussion in this section. But, for

C > 3, we consider the conjugate sequence s* of density C* = 1— C < 3, deducing from (6)

that
Co=C?"—(1-0) +C;=2C-1+T(C*)=2C -1+T(1-0),

as asserted.
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7. Final remarks

It is illuminating to consider what our theorem yields for particular values of C. For
1

example, if C' =

as in the example tested in XVIII, we find the value of u given by (27) is

1
Z(\/ﬁ—?’)

and then that ] 313
4 — —(2v13 -1 —
CQ/C > 4( 3 ) > 128,

a palpable improvement on the previous bound Cy/C > % being thus obtained

Our theorem does not represent the ultimate that can be obtained, especially as sharper
results can be easily obtained as C' becomes very small. As a step in this direction, we can
shew by the methods of §3 that 5a5 < 4C? and then utilize the analogue

Cy > C? + 4ay + 9az + 16a4 + 25a5 + 6(C — C* — 2ay — 3az — day — Has)
of (17) to provide the bound
Cy > 6C — 5C* — 8ay — 9az — 8ay — Sas > 6C — 23C">.

This is better than what is latent in our theorem when C < %.
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