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Abstract

This paper is concerned with the system of simultaneous diophan-
tine equations Z?:1 AF = Z?:1 BE for k = 2,4,6,8,10. Till now only
two numerical solutions of the system were known. This paper pro-
vides an infinite family of solutions. It is well-known that solutions
of the above system lead to ideal solutions of the Tarry-Escott Prob-
lem of degree 11, that is, of the system of simultaneous equations,
Zzlil af = Zzlil b for k = 1,2,3,...,11. We use one of the ideal
solutions to prove new results on sums of 13'" powers. In particular,

we prove that every integer can be expressed as a sum or difference of

at most 27 thirteenth powers of positive integers.
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1 Introduction

The first solution to the multigrade equation

6 6
> AP => "B} for k=2,4,6,8,10 (1)
=1

i=1
was found in 1999 when Kuosa used a computer program written by Meyrignac

to discover the equality

1515 +140% +127F +-86F +61F +22F = 1485 +146% +121%F +-94F 4478 +-35% (2)
for £ = 10 and four days later Shuwen noticed that (2) holds for
k =2,4,6,8 as well (see [4]). This was the only known solution until 2007

when Broadhurst [1] (see also [2]) discovered

2058% + 1896% + 1618% + 1109* + 891% + 257k -
3
= 2037% 4 1947F + 1514% + 1294% 4 639%F + 472% k =2, 4, 6, 8, 10.

In this paper we prove that the system (1) has infinitely many solutions
and give a method to produce new numerical solutions.
This leads to infinitely many new ideal solutions of the Tarry-Escott Prob-

lem of degree 11, that is, of the system of simultaneous equations,
12 12
dab=>"bF for k=1,2,3, ... 11 (4)
i=1 i=1

We use one of the solutions of (4) to obtain new results on sums of 13t
powers. In particular, we prove that every integer can be expressed as a sum

or difference of at most 27 thirteenth powers of positive integers.

2 A family of solutions

In this Section we present a method of generating solutions to the dio-

phantine system (1).



We make the following substitutions

and denote

A =2zxy+z2+2yz—T72°
Ay=2zy—22—-2yz— 72>
As=2xy—2x2+yz+72°
Ay=2zxy+2x2—Yyz+72°
As= 3xz+dyz

Ag= Srz—3yz

B =2zxy+2x2+yz—T72°
By=2xy—2x2z—yz—"T72°
Bs=2zxy—x2z+2yz+ 72
By=2xy+z2z—-2yz+72°
B;= dSrz+3yz

Bg = 3xz—>5yz
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It can be easily verified using Mathematica that

Sy =S, =0,
Se =4320xy (v —y) (z+y) 2" f(z, y, 2),
Sy =5376xy (v —y) (v +y) 2* f(z, y, 2)
X (8x2y? + 37x%2% + 37y?2% + 982%), (7)
S10=10080zy (v —y) (z +y) 2* f(z, y, 2)
x (322" + 248219222 + 665212 + 24822yt 2% + 2384222
+30382225 + 665y*2* + 30381225 + 480228).

where
f(xa Y, Z):8$2?Jz—17$22’2—17y222—|—9824. (8)

Hence any solution in integers of the equation
82y — 172222 —179%22+982" =0 (9)

leads by substitutions (5) to a solution in integers of the system (1).

3 Solving f(z,y,2) =0

In this Section we prove that equation (9) has infinitely many essentially
distinct integer solutions and these solutions of (9) lead to infinitely many
distinct and nontrivial solutions of (1).

On substituting
r=Uz y=Vz/(8U?—-17), (10)
equation (9) reduces to

V% =136U* — 1073U? + 1666, (11)



which is a quartic model of an elliptic curve. Four rational points on the curve
(11) are easily seen to be (U, V) = (£1, £27). On making the birational

transformation defined by the relations

U= (251X + 3Y — 206690)/(89.X + 3Y — 36410),

v

(243X3 — 766260X? + 312978600X — 9256500 + 59116365000) (12)

% (89X + 3Y — 36410)2,

and
X = (—86U* — 1430U + 54V + 2974) /(U — 1),
Y = (1468803 — 57942U2 — 1602UV — 57942U + 4518V + 179928) (13)
x(U—1)7%,

equation (11) reduces to the Weierstrass minimal form of the elliptic curve

that is given by
Y= X%+ X? —1290080X + 556370100. (14)

The rational point (U, V') = (1, —27) on the curve (11) corresponds to a
rational point P on the elliptic curve (14) which is given by

(X, Y) = (9460/9, 514250,/27). (15)

Since this rational point P does not have integer co-ordinates, it follows
from the Nagell-Lutz theorem on elliptic curves [6, p. 56| that this is not
a point of finite order. Thus there exist infinitely many rational points on
the elliptic curve (14), and these can be obtained by applying the group
law. These infinitely many rational points on the curve (14) yield infinitely
many rational solutions of equation (11). Finally using the relations (10),
and assigning appropriate values to z in each case, we get infinitely many
integer solutions of equation (9). These integer solutions of equation (9) lead
to infinitely many solutions of the diophantine system (1).

The point P on the curve (14) leads to the solution (z, y, z) = (1, 3, 1) of

equation (9) which leads to a trivial solution of (1). To get nontrivial solutions
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of (1), we have to compute other points on the curve (14). For instance, the
point 2P given by (X, Y) = (163579/225, —6090292/3375) on the curve (14)
corresponds to the point (U, V) = (—457/353, —1968867/124609) on the
curve (11) which leads to the solution (z, y, 2z) = (—101911, 346293, 78719)
of (9) and finally to the following nontrivial solution of (1):

1019171% 4+ 774217% + 712866" + 447858% + 428496* + 102257* 16)
16

= 1018599* + 795069* + 652598 + 570049* + 264662F + 224448,

k=2 4,6, 8, 10.

We shall now show that the above method actually generates infinitely
many distinct and nontrivial solutions of (1). We observe that for any
solution of (1) generated by a rational solution (U, V') of equation (11),
the ratio A;/As is determined only by U. For any given value of p, the
condition A;/A; = p may be considered as a polynomial equation in the
single variable U (after eliminating V'), and this equation has only a fi-
nite number of rational roots. Similar remarks apply to all other ratios
A;/A;, Ai/Bj, Bi/B;, 1 <1i <6, 1< j < 6. Any numerical solution of
(1) fixes the ratios A;/A;, A;/B;, B;/Bj, and hence can be generated only
by a finite number of values of U. By the same logic, a finite set of distinct
solutions of (1), together with the scalar multiples of these solutions, can be
generated only by a finite number of rational values of U. Similarly the trivial
solutions of (1), for which six of the ratios A;/B; are £1, can be generated
only by a finite number of rational values of U. As there are infinitely many
rational solutions of equation (11), we are assured of generating infinitely
many nontrivial and distinct solutions of (1) by the above method.

While the above method generates infinitely many solutions of (1), nu-
merically small solutions can be found by searching for small solutions of (9)

as is shown in the following Section.



4 Numerical solutions

To obtain small solutions of the system (1) we search for small solutions
of the equation (9). One way of setting up a relatively efficient search is to
solve the equation (9) as a quadratic equation in y and then search for z, z
yielding the discriminant being a square of an integer.

However, all the solutions we were able to find that way, can also be
obtained by applying the group law to rational points on the elliptic curve
(14), corresponding to two trivial solutions of (1).

Broadhurst’s solution (3) can be obtained from
x =259,y =5607, z =178 or x =37,y =801, z = 333.

The smallest new solution we were able to find using the method presented

in this paper is

1511% + 1138% + 1075% 4 700% + 622F + 107k
=1510% + 1180* + 953%F + 886% + 413 + 293k

and it can be produced from x = 145, y = 517, z = 110.

0% includ-

We were thus able to find 113 solutions with terms under 1
ing 8 solutions with terms under 10 (5 solutions not mentioned so far are

presented in Table I).



Table I: Solutions of the Multigrade Equation (1)
Ay 14770 | 23742 | 11603875 | 22263723 | 107581333
A 12638 | 18687 8959475 | 19802832 80295173
As 11632 | 18372 7853834 | 17523186 77895430
Ay 7115 | 12734 5070974 | 11318686 52219540
As 7043 9611 4404977 | 10177351 43290994
Ag 929 349 1984396 2111827 4600567
By 14693 | 23708 | 11601341 | 22095904 | 107505355
By 13165 | 19653 9033773 | 20464122 84106267
B3 10112 | 16426 7641076 | 15829981 66766060
By 9718 | 14714 0725910 | 14318021 65824631
Bs 4054 7713 3305329 6084678 30945298
Bg 3455 3309 2713630 5604633 18205658

5 On Sums of thirteenth powers

We can use solutions of (1) to prove certain results about sums of thirteenth
powers. We will use the solution (2) of (1) as this is the smallest known
numerical solution.

We use v = (k) to denote the least value of n such that the equation
T}y e an = YRy ety (17)

has infinitely many nontrivial primitive solutions in positive integers with

m < n, that is, solutions such that z; # y;, 1 <i¢<m, 1 <j <mn, and

ged(xq, xg, .. o Yn)=1.

-y Tmy Y1, Y2, -



We use v(k) to denote the least value of s such that every integer n can

be expressed in the form

k

— k k
N =¢&X] + &%y + ... +E,T,

where ¢; = +1 and x; is a positive integer or zero for all values of 7.
Similarly, we use g¢;(k) to denote the least value of s such that every

rational number 7 can be expressed in the form

k

= sla:’f + 52x'§ + ... +egxy,

where ¢; = £1 and all of the values of z; are rational.

We will now prove the following theorems about 13" powers:

Theorem 1: v(13) < 13.

Theorem 2: v(13) < 27.

Theorem 3: ¢,(13) < 24.

All these theorems are new. It had been earlier proved that v(13) < 39
[3, p. 209] and this was subsequently improved to v(13) < 31 [5, p. 11].
Analogues of Theorems 1 and 3 have not been published earlier.

We first prove the following identity:

(z+ 1518 + (2 — 151)13 + (2 + 140)'3 + (z — 140)"® + (z + 127)"3

+(z —127)8 + (2 +86)"% + (2 — 86)"® + (z + 61)"% + (z — 61)3

(x4 22)8 + (2 — 22)"3 — (z + 148)13 — (z — 148)"3 — (z + 146)13  (18)
—(z —146)"3 — (x + 121) — (2 — 121)13 — (x + 94)"3 — (z — 94)"®
—(z+47)8 — (x —47)B — (x + 35)1® — (v — 35)13 = Cz,

where
Cp = 2".319.5%.72.112.13%.17.19.23.29.31. (19)

It is easily seen that in the expansion of the left-hand side of (18), the coef-
ficients of '3 and even powers of z are all 0, and in view of the relations (2)

where k = 2, 4, 6, 8, 10, the coefficients of z'!, 2°, ..., 2® also vanish. Thus



the only nonzero term in the expansion is a term Ciz, and a little compu-
tation gives the coefficient of = as stated in (19). This proves the identity
(18).

In the identity (18) we substitute x = Cyt'® where

Cy = 21233 510 711 1111 1310 1712 1912 2312 2912 37112

when we get the following identity,

(Cot™® +151)13 4+ (Cot™® — 151)"3 + (Cot™ + 140)"% + (Cot"® — 140)'?
+(Cot® + 127)13 + (Cat'® — 127)1 + (Cot!? + 86)13 + (Cqt!? — 86)1?
+(Cot® 4+ 61)'3 + (Cot'? — 61)13 + (Cot™® 4 22)13 + (Cot'? — 22)13

= (Cat"® + 148)"13 + (Cat'® — 148)"3 + (Cot'3 + 146)"3 + (Cyt'® — 146)'3
(Cot!® + 121)13 + (Cot™® — 121)13 + (Cot'® + 94)13 + (Cat'3 — 94)13

+(Cat'3 +47)13 + (Cot'® — 4T)13 + (Cat'? + 35)13 + (Ot — 35)13 + (Cst)'3,

where
C3; = 22.3.5.7.11.13.17.19.23.29.31.

It is readily seen that when ¢ is any positive integer, the above identity

provides a solution in positive integers of the diophantine equation

12 13
13 _ 13
E Ty = E Yi -

This proves Theorem 1.
Let A(k, m) be the smallest value of s such that for every integer value

of n the congruence

z’f+z§+...+xf—xf+1—...—xfEn (mod m), (20)

is solvable for some value of r = r(n). Further, let A(k) = max,,,A(k, m).
Fuchs and Wright [3] have shown how the values of A(k, m) and A(k) may
be calculated and, in fact, they have shown that A(13) = 6.
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Since there are 24 13" powers on the left-hand side of (18), it follows
from this identity that

v(13) < 24+ A(k, C)). (21)

Following the method described in [3], the value of A(k, C}) can be calculated,
and in fact, we get
A(k,Cy) = 3. (22)

As the method given in [3] is based on a series of lemmas and theorems, we
give below a direct computer assisted proof of (22) based on only the first
lemma proved by Fuchs and Wright [3, Lemma 1, p. 192] which is as follows:
Lemma 1: If ged(mq, my) = 1, and if, for given n, s, r, there is a solution
of (20) when m = m; and a solution when m = may, then there is a solution
when m = myms.

We will use this lemma with »r = s = 3 and m = . We first show that
the congruence

17 423 + 23 =n (mod m), (23)

is solvable for all possible values of n and for all the coprime factors of (Y,
namely
oM 310 53 72117 133, 17, 19, 23, 29, 31. (24)

It is easily seen that if ¢(m) is coprime to 13, then every integer coprime
to m is a 13" power residue mod m. If moreover m is a prime power, then
every integer n can be written as a sum of two 13" power residues mod m,
namely n = n+ 0 or n = (n — 1) + 1, depending on whether n or n—1 is
coprime to m. This argument does not apply when m is a power of 13.

To show that (23) is solvable when m = 13 it suffices to take 0 < z; <
168, + =1, 2, 3 and write a computer program to work out all the residues
of z1® + x3? + x1* modulo 133. Tt is then easily seen that there is a solution
of (23) for all possible values of n when m = 13.

The congruence (23) is thus solvable for all values of n when m is any of
the coprime factors listed in (24). It now follows from Lemma 1 that (23) is
solvable for all values of n when m = C}, and hence A(k,C}) < 3. Further,

it is readily verified by a computer program that the congruence

7P+ =5 (mod 13%), (25)

11



has no solution, thus A(k, C;) > 2. This proves the relation (22).
It follows from the relations (21) and (22) that v(13) < 27. This proves
Theorem 2.

Theorem 3 is an immediate consequence of the identity (18).

6 Final remarks and acknowledgements

Finding the set of substitutions (5) was possible by analysis of the numerical
solution (3). We are grateful to David Broadhurst for making this paper
possible by discovering this solution.

However the first known solution (2) cannot be obtained by substitutions
(5) and we were unable to produce a set of similar substitutions leading to
it.
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