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Arithmetical investigations of particular Wynn power series

Peter Bundschuh

1. Introduction and results

The power series we study here are of the following type

(1)

∞∑
n=1

zn∏`−1
λ=0Ra(n+λ)+b

,

where Rm is given by

(2) Rm := gum + hvm.

Here, and in the whole paper, u, v, g, h are non-zero complex numbers with |u| > |v| and
such that Rm 6= 0 holds for any m ∈ N := {1, 2, ...}; moreover, we always assume a, ` ∈ N
and b ∈ N0 := N ∪ {0}. Slightly more general power series than those of type (1) were first
considered by Wynn [19] from the analytical point of view. He obtained, essentially, the
explicit formula for the associated Padé approximants, and later others, e.g., Driver and
Lubinsky [7], continued these analytical studies.

It is very natural that, for arithmetical investigations of series (1), we have to make
suitable arithmetical assumptions on the parameters u, v, g, h appearing in (2), and also on
the point z. Taking, for example, u = 1

2(1 +
√

5), v = 1
2(1 −

√
5), g = −h = 1√

5
, according

to Binet’s formula, Rm becomes the mth Fibonacci number Fm determined recursively by
F0 := 0, F1 := 1 and Fm := Fm−1 + Fm−2 for m = 2, 3, .... Indeed, it was the series∑∞

n=1 z
n/Fn (in fact, a slightly more general one) which was first investigated with regard to

irrationality at the only non-zero integer points z = ±1 within its disk of convergence |z| < u
by André-Jeannin [1]. He used a method reminiscent of the one of Apéry for his proof of the
irrationality of ζ(3). A few years later, K. Väänänen and the present author [5] obtained,
inter alia, a quantitative version of André-Jeannin’s irrationality result on

∑∞
n=1 z

n/Fn, z ∈
{1,−1}, using a quantitative generalization of Nesterenko’s method for linear independence.
Next, Prévost [15] extended these qualitative and quantitative irrationality results to any
non-zero rational point z in the domain of meromorphy of the function originally defined by
the power series only in its disk of convergence. In fact, his approach to analyze the Padé
approximants to the series

∑∞
n=1 z

n/Rn, where the sequence (Rn)n∈N satisfies a second order
recurrence relation, led to similar results in the case, where the rational field is replaced
by any imaginary quadratic number field. More recently, Matala-aho and Prévost [12],[13]

14



extended these quantitative investigations using Padé approximations for particular Heine
q-series as constructed in closed form by Matala-aho [11].

The main aim of the present paper is to prove a rather general result (Theorem 1) on
arithmetic properties of certain series, where the entering parameters are algebraic over Q
but not necessarily of degree at most two. From this result we deduce an arithmetic conse-
quence (Theorem 2) on power series of type (1) in the case ` = 1, and on their meromorphic
continuation to the whole complex plane, where the sequence (Rm) need not consist of po-
sitive rational integers nor do we use explicitly the fact that it satisfies a second order linear
recurrence. Thus, we extend results of Tachiya [18] using again Borwein’s simple analytic
method from [3]. This method is effective in the sense that it could lead to quantitative
results (compare, e.g., [4]). Nevertheless, for the sake of technical simplicity of the presen-
tation, we restrict ourselves in the whole paper to qualitative statements only.

Theorem 1. Let q ∈ Q be an integer whose conjugates satisfy |q{σ}| < 1 for any σ ∈
Aut(Q|Q)\{id}, and put K := Q(q). Suppose, that, for α ∈ K× \{q−1, q−2, ...}, there exists

t ∈ N0 with (den(αqt))2deg(q) < |q|. Let β ∈ K be a unit satisfying |β| ≤ 1 and |β{σ}| ≥ 1
for any σ ∈ Aut(Q|Q) \ {id}. Then

(3)
∞∑
k=1

βk

1− αqk
/∈ K.

Remark. Notice that the above condition on the denominator of αqt implies already |q| > 1.
Note also deg(q) := [K : Q].

From Theorem 1 we can obtain the following result, which is most appropriate for our
applications.

Theorem 2. Let K be an algebraic number field and OK its ring of integers. Assume that
u, v ∈ K× have the following properties: u

v is a unit in OK , for any m ∈ N the inclusion K ⊂
Q((uv )m) holds, the inequalities |uv | > 1 and |(uv ){σ}| < 1 hold for any σ ∈ Aut(Q|Q) \ {id}.
Finally, suppose g, h ∈ K× such that g

h is a unit in OK , and (a, b) ∈ N× N0. Then, for the
function R(z; a, b) defined in |z| < |u|a by the power series

(4)
∞∑
n=1

zn

Ran+b
,

the following holds

(5) R(γ, a, b) /∈ K

if γ ∈ K× \ ua
(
u
v

)aN0 satisfies the condition den
(
γ−1va

(
u
v

)at)2[K:Q]
<
∣∣u
v

∣∣a for some t ∈ N0.

Remark. Of course, the condition K ⊂ Q((uv )m) means nothing but K = Q((uv )m) for any
m ∈ N.
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Next, we present a slight generalization of Theorem 2.

Theorem 3. Assume all hypotheses of Theorem 2 on K;u, v, g, h; a, b and suppose, mo-
reover, ` ∈ N. Then, for the meromorphic function R`(z; a, b) defined in |z| < |u|a` by the
power series (1), the following alternative holds.

(i) If γ ∈ K× \ ua`
(
u
v

)aN0 , γ /∈ {ua(`−λ)vaλ|λ = 1, ..., `− 1} and if

den
(ua(`−1)va

γ

(u
v

)at)2[K:Q]
<
∣∣∣u
v

∣∣∣a
for suitable t ∈ N0, then R`(γ; a, b) /∈ K.
(ii) If γ ∈ {ua(`−λ)vaλ|λ = 1, ..., ` − 1}, then R`(γ; a, b) is an element of K, which can be
explicitly determined.

Remark. For ` = 1, Theorem 3 reduces exactly to Theorem 2 (R1 being, of course, our
earlier R) since then the case (ii) cannot occur and, moreover, in the case (i) the condition
γ /∈ {...} is void.

Our first application of Theorem 3 is the following.

Corollary 1. Let u be an algebraic integer, whose minimal polynomial (over Z) has value ±1
at the origin, and which satisfies the condition |u| > 1 > |u{σ}| for any σ ∈ Aut(Q|Q)\{id}.
Suppose g, h ∈ K := Q(u), gh 6= 0 such that g

h is a unit in OK . Then, for the meromorphic
function R`(z; a, b) defined in |z| < |u|a` by the power series (1) with Rm = gum + h (i.e.,
v = 1 in (2)) the following alternative holds.

(i) If γ ∈ K× \ uaN and if den(γ−1uat))2deg(u) < |u|a for suitable t ∈ N0 with t ≥ ` − 1,
then R`(γ; a, b) /∈ K.
(ii) If γ ∈ {uaλ|λ = 1, ..., `− 1}, then R`(γ; a, b) is an element of K, which may be entirely
specified.

Examples of algebraic integers u as appearing in Corollary 1 can be found, e.g., among
the so-called Pisot numbers or Pisot-Vijayaraghavan numbers1 (PV-numbers). By definition,
these are real algebraic integers u > 1, whose conjugates u{σ}(σ 6= id if deg(u) > 1) have
all absolute values less than 1. Hence the PV-numbers of degree 1 are exactly the rational
integers 2,3,4,... . Notice that every monic non-constant polynomial

(6) g(X) = Xd +

d−1∑
δ=0

aδX
δ ∈ Z[X] with 1 +

d−1∑
δ=0

aδ < 0 and2 1 +

d−2∑
δ=0

|aδ| < |ad−1|

has a PV-number u among its zeros, by Rouché’s theorem. If ϕu ∈ Z[X] is the minimal
polynomial of this u, then g(x) = ϕu(X)f(X) holds, where f ∈ Z[X] has a representation
f(X) =

∏
j(X − uj) with certain algebraic integers uj from the open unit disk. Note that

f(X) = 1 happens if and only if the product here is empty. Thus,
∏
j(−uj) = f(0) is a

rational integer with absolute value less than 1 if the product is not empty, whence f(0) = 0,
hence a0 = 0 in (6). From this consideration we conclude the following. If we choose, for

1Excellent references to this topic are the monographs [2] and [17].
2As usual, empty sums or products have to be interpreted as 0 or 1, respectively.
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arbitrarily given d ∈ N \ {1}, a monic polynomial g ∈ Z[X] satisfying not only the two
conditions in (6) on its coefficients but also g(0) = a0 ∈ {1,−1}, then, for each degree
≥ 2, we can find a lot of algebraic integers u of this degree, which satisfy all conditions of
Corollary 1 on u.

To mention explicitly a few PV-numbers of degree 2,3,4, having all properties required in
Corollary 1 for u, we make the following brief side-remark. As a matter of fact, the set S of all
PV-numbers is closed on the real line. Hence it has a least element, and this is the real root
ϑ0 = 1.324717... of the polynomial X3−X−1, an isolated point of S. The set S \{ϑ0} again
has a least element, namely the positive real root ϑ1 = 1.380277... of X4 −X3 − 1. In fact,
all (infinitely many) points of S less than the ‘golden number’ 1

2(1 +
√

5) = 1.618034... ∈ S,
sometimes denoted by ϑ∞, are isolated, and this ϑ∞ is the smallest limit point of S.

Expressions Rm of type (2) arise, in particular, when dealing with certain binary linear
recurrences, which we now discuss briefly. Let R0, R1, A,B ∈ Z, AB 6= 0 and

(7) Rm = ARm−1 +BRm−2 (m = 2, 3, ...).

Then all Rm ∈ Z and we suppose furthermore Rm 6= 0 for any m ∈ N. Assume the compan-
ion polynomial X2−AX −B of (7) to be irreducible in Q[X]. Its roots u, v are 1

2(A+
√

∆)

and 1
2(A−

√
∆) with ∆ := A2 + 4B not a square. In addition, we assume ∆ > 0. Thus, and

by A 6= 0, we obtain |u| 6= |v| and, w.l.o.g., we may suppose |u| > |v| as we did from the
beginning. With g := (R1 − R0v)/(u − v), h := (R0u − R1)/(u − v), each Rm (m ≥ 0) has
the shape (2).

Corollary 2. Suppose that (Rm) ∈ ZN0 is a binary linear recurrence satisfying (7) and all
subsequent assumptions. Suppose further that u

v and g
h are units in OK , where K := Q(

√
∆).

Then, for the meromorphic function R`(z; a, b), defined in |z| < |u|a` by the power series
(1), the following alternative holds.
(i) If γ ∈ K× \ {ua`(uv )aλ|λ ∈ Z, λ > −`} and den(γ−1ua`(uv )at) < |uv |

a/4 for suitable
t ∈ Z, t ≥ −1, then R`(γ; a, b) /∈ K.
(ii) If γ ∈ {ua(`−λ)vaλ|λ = 1, ..., `−1}, then R`(γ; a, b) is in K and can be explicitly specified.

Remark. Note that the quotient u
v is a unit in OK if B ∈ {1,−1} holds in (7). Note also

that the particular cases ` = 1 and ` = 2 of our last corollary imply Corollary 2 and 3,
respectively, of Tachiya [18].

Probably the most ‘prominent’ binary linear recurrences are the Fibonacci and Lucas
sequences, which both satisfy (7) with A = B = 1, where one has to take (0, 1) and (2, 1),
respectively, as initial pair (R0, R1). Denoting these, as usual, by (Fm) and (Lm), respec-
tively, the particular case ` = 1 of Corollary 2 has the following application.

Corollary 3. For the meromorphic functions F(z; a, b) and L(z; a, b) defined in3 |z| < ϑa∞
by the power series

∞∑
n=1

zn

Fan+b
and

∞∑
n=1

zn

Lan+b
,

3Remember the above convention ϑ∞ := 1
2
(1 +

√
5).
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respectively, one has

(8) F(γ; a, b),L(γ; a, b) /∈ Q(
√

5)

if γ ∈ Q(
√

5)× is different from the poles (−1)aλϑ
a(2λ+1)
∞ , λ ∈ N0, of both functions and if

den(γ−1ϑ
a(2t−1)
∞ ) < ϑ

a/2
∞ for suitable t ∈ N0. In particular, (8) holds for all γ = ϑc∞ with

c ∈ Z \ {a, 3a, 5a, ...} if a is even, and with c ∈ Z \ {a, 5a, 9a, ...} if a is odd; (8) holds for all
γ = −ϑc∞ with c ∈ Z if a is even, and with c ∈ Z \ {3a, 7a, 11a, ...} if a is odd.

Remark. Note that the two cases γ = ±1 include the main result from [1] in the Fibonacci
and Lucas case.

Finally, our last result is basically an application of Corollary 2 even if we will need some
additional considerations for its full proof.

Corollary 4. The series

(9)
∞∑
n=1

1

Fn · ... · Fn+`−1

is not contained in the field Q(
√

5) if 4 6 | `, but for 4 | ` it belongs to Q(
√

5) \Q. The series

(10)
∞∑
n=1

(−1)n

Fn · ... · Fn+`−1

is not contained in Q(
√

5) if 2 6 | ` or 4 | `, but belongs to Q(
√

5) \ Q if 2 | `, 4 6 | `. Exactly
the same alternatives hold for the Lucas instead of the Fibonacci numbers. In particular, all
series mentioned here are irrational.

Remark 1. Note that, as a consequence of our method of proof, the values of the series can
be explicitly determined, at least in principle, in all cases, where they belong to Q(

√
5) \Q.

Remark 2. Carlitz [6] produced reduction formulas for Fibonacci sums of type

C` :=
∞∑
n=1

(−1)n[`/2]

Fn · ... · Fn+`−1
(` ∈ N)

but gave no arithmetical applications. Since, modifying our earlier notation, we have C` =
F`((−1)[`/2]; 1, 0) for any ` ∈ N, our Corollary 4 implies C` /∈ Q(

√
5) if ` is odd, and

C` ∈ Q(
√

5) \Q if ` is even.

We conclude this introduction by a few questions on transcendence and algebraic inde-
pendence. For example, one could adopt the principle that every series in Corollary 4, whose
value is not in Q(

√
5), should be transcendental. Another good open problem, proposed by

Ribenboim [16, p.60], is the algebraic independence of the three series (9) for ` = 1, 2, 3.
Having in mind that Duverney, the Nishiokas and Shiokawa [8] proved the transcendence of
series like

∞∑
n=1

F−`n ,
∞∑
n=1

(−1)nF−`n ,
∞∑
n=1

L−`n ,
∞∑
n=1

(−1)nL−`n
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for any even ` ∈ N, and Elsner, Shimomura and Shiokawa [9] very recently the algebraic
independence of the three numbers

∞∑
n=1

F−2
n ,

∞∑
n=1

F−4
n ,

∞∑
n=1

F−6
n

(and the same if replacing the F ’s by the L’s, or considering the alternating cases), questions
as above are probably not entirely hopeless.

2. Proof of Theorem 1

Denoting the sum in (3) by ω, we obtain with αt := αqt

(11) β−t
(
ω −

t∑
k=1

βk

1− αqk
)

=
∞∑
k=1

βk

1− αtqk
=: ωt

for every t ∈ N0. For the statement (3) it is enough to prove ωt /∈ K, where, by a suitable

choice of t, we may suppose (den(αt))
2 deg(q) < |q| as well as |αt| > 1 and |α{σ}t | ≤ 1 for any

σ ∈ Aut(Q|Q) \ {id}.
We now introduce the transcendental meromorphic function

W (z) :=
∞∑
k=1

βk

z − αtqk

with all poles in |z| > 1. The two main properties of this function we will need are

(12)
W (q−n)

qn
= β−n

(
ωt −

n∑
k=1

βk

1− αtqk
)

(n ∈ N0)

and

(13)
W (µ)(0)

µ!
=

β

αµ+1
t (β − qµ+1)

(µ ∈ N0).

With a parameter N ∈ N to be fixed later large enough, we now consider the following
integral

(14) J := J(N) :=
1

2πi

∮
|z|=1

∏N
`=1(z − αtq`)

zN
∏N
n=1(1− qnz)

W (z)dz,

where the integration path is in the positive sense. Evidently, the poles of the integrand
in |z| < 1 are exactly at 0 and at q−n (n = 1, ..., N); the poles in |z| ≥ 1 lie exactly at
αtq

k (k = N + 1, N + 2, ...).
These latter poles outside the unit disk lead to a series representation and to an asym-

ptotic evaluation of the integral (14). Namely, we have from (14) and the above definition
of W

(15) J = −
∑
k>N

βk
∏N
`=1(qk − q`)

qNk
∏N
n=1(1− αtqn+k)

.

19



Notice that, by our hypothesis α /∈ q−N, all denominators in (15) are non-zero. Denoting
the typical summand in (15) by Sk, we see for any k > N

Sk+1

Sk
=

β(qk − 1)(1− αtqk+1)

qN (qk−N − 1)(1− αtqk+N+1)
,

hence |Sk+1/Sk| ≤ δ1|q|−N , where δ1 > 0 (and all δi later in this section) is independent of
N and k. This, (15) and

|SN+1| =
∣∣∣ β
αt

∣∣∣N |q|− 3
2
N(N+1)δ2(1 + O(|q|−N ))

with O-constant (here and later in this section) independent of N gives us, for N large
enough,

(16)
1

2
δ2

∣∣∣ β
αt

∣∣∣N |q|− 3
2
N(N+1) ≤ |J | ≤ 2δ2

∣∣∣ β
αt

∣∣∣N |q|− 3
2
N(N+1).

Notice that, for our purely qualitative considerations, we will not use the full left-hand side
inequality but only J = J(N) 6= 0 for any large N .

On the other hand, using the poles inside the unit disk, we obtain from (14)

(17) J =
N∑
n=1

(−1)N−n+1

βn
·
q

1
2
n(n−1)∏N

`=1(1− αtq`+n)∏n−1
ν=1(qν − 1)

∏N−n
ν=1 (qν − 1)

(
ωt −

n∑
k=1

βk

1− αtqk
)

+
∑

κ+λ+µ=N−1

1

κ!

( d
dz

)κ N∏
`=1

(z − q`)
∣∣∣
z=0
· 1

λ!

( d
dz

)λ N∏
n=1

(1− qnz)−1
∣∣∣
z=0
· αλt

1− β−1qµ+1
.

Here we applied also (12) and (13). Notice that, in the last triple sum, the summation is
over all (κ, λ, µ) ∈ N3

0 with κ+ λ+ µ = N − 1. We will soon need some informations on the
two derivatives at the origin occurring here in the triple sum, which we state next.

Lemma 1. All numbers

cκ :=
1

κ!

( d
dz

)κ N∏
`=1

(z − q`)
∣∣∣
z=0

and dλ :=
1

λ!

( d
dz

)λ N∏
n=1

(1− qnz)−1
∣∣∣
z=0

arising in (17) are in Z[q], and the absolute values of their σth conjugate, σ ∈ Aut(Q|Q) \
{id}, are bounded above by a positive constant depending only on |q{σ}|.

Proof of Lemma 1. We exemplify it only for dλ since, for cκ, it is rather similar. In some
neighborhood of the origin we have

N∏
n=1

(1− qnz)−1 =

∞∑
λ=0

dλz
λ with dλ =

∑
λ1+...+λN=λ

q1·λ1+...+N ·λN ,

whence, using |q{σ}| < 1,

|d{σ}λ | ≤
∞∑
λ=0

|d{σ}λ | ≤
∞∑
λ=0

∑
λ1+...+λN=λ

|q{σ}|1·λ1+...+N ·λN =

N∏
n=1

(1− |q{σ}|n)−1.
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Here the last product is bounded above by
∏∞
n=1(1− |q{σ}|n)−1. �

Returning to the proof of Theorem 1, we obtain from (17)

(18) J = ωtΣ1 + Σ2 + Σ3,

where we put

Σ1 :=
N∑
n=1

Tn with Tn :=
N∑
n=1

(−1)N−n+1

βn
·
q

1
2
n(n−1)∏N

`=1(1− αtq`+n)∏n−1
ν=1(qν − 1)

∏N−n
ν=1 (qν − 1)

for n = 1, ..., N , and furthermore

Σ2 := −
N∑
n=1

Tn

n∑
k=1

βk

1− αtqk
, Σ3 :=

∑
κ+λ+µ=N−1

cκα
λ
t dλ

1− β−1qµ+1
.

Next, we are looking for a denominator for Σ1,Σ2,Σ3. To that purpose, we introduce the
number

(19) D := D(N) :=

N−1∏
ν=1

(qν − 1) ·
N∏
k=1

(1− αtqk) ·
N∏
µ=1

(1− β−1qµ),

which is in Z[q, αt, β] since β is a unit. The asymptotic evaluation of D gives

(20) |D| =
∣∣∣αt
β

∣∣∣N |q| 32N2+ 1
2
N · δ3 · (1 + O(|q|−N )),

and combining this with (16) we obtain (much more than)

(21) 0 < |D · J | < 3δ2δ3|q|−N

if N is large enough. According to (18) and (19) we find

D · J = ωt(D · Σ1) +D · (Σ2 + Σ3)

with all D · Σj ∈ Z[q, αt, β], where the degrees in αt are bounded above by 2N .
Assuming now ωt ∈ K we get D · J ∈ K× and, moreover,

(22) Ψ := den(ωt) · (den(αt))
2N · (D · J) ∈ OK \ {0}

from which we see, by (21),

(23) |Ψ| ≤ δ4(den(αt))
2N |q|−N .

We finally have to bound the absolute values of the conjugates of Ψ, hence, by (22) and

(18), those of D,Σ1,Σ2,Σ3. In virtue of |β{σ}| ≥ 1 ≥ |α{σ}t | and |q{σ}| < 1 for any σ 6= id,

we easily obtain |D{σ}|, |Σ{σ}1 |, |Σ
{σ}
2 | ≤ δ5 from (19) and the definition of Σ1,Σ2 after (18),

respectively. Since Σ3 has O(N2) summands, which are uniformly bounded above by some
constant of type δ, we find

|Ψ{σ}| ≤ δ6N
2(den(αt))

2N
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for any σ 6= id. Thus, by (22) and (23),

1 ≤ |NormK|Q(Ψ)| ≤ δ7N
2(deg(q)−1)(den(αt))

2N deg(q)|q|−N ,

and, since |q| > (den(αt))
2 deg(q), this is a contradiction for every large N , and Theorem 1 is

proved.

Remark. Since |J | = |q|−3N2/2+O(N) and |D| = |q|3N2/2+O(N) according to (16) and (20),
respectively, the final contradiction can be reached only by a sharp evaluation of these two
O-constants. More precisely, the proof goes only through since 0 6= |D · J | = O(|q|−δN ) can
be saved with some δ > 0 (in fact, with δ = 1, compare (21)) leading to the denominator
condition in Theorem 1. This is noteworthy since, in most other arithmetical proofs in the
q-‘business’, the contradictions are obtained by comparing the constant factors of N2 in the
exponents of |q| (see, e.g., [3],[4],[5],[12][13],[15]).

3. Some analytic facts on the functions R`(z; a, b)

To get explicitly the meromorphic continuation of the function R(z; a, b) originally defined
in |z| < |u|a by the power series (4), we provide the following lemma.

Lemma 2. If q ∈ C× is fixed, then for any z, w ∈ C with |z| < |q| and |wq| > 1 the following
identity holds

(24)

∞∑
n=1

zn

1− wqn
= z

∞∑
n=1

w−n

z − qn
.

Remark. If 0 < |z|, 1
|w| < |q| this identity can be written symmetrically as

∞∑
n=1

zn

1− wqn
=
∞∑
n=1

( 1
w )n

1− (1
z )qn

,

where one side results from the other by replacing (z, w) by ( 1
w ,

1
z ).

Proof. Since |wq| > 1 the left-hand side of (24) equals

−
∞∑
n=1

zn

wqn(1− 1
wqn )

= −
∞∑
n=1

zn
∞∑
j=1

(wqn)−j = −
∞∑
j=1

w−j
∞∑
n=1

(zq−j)n.

Closed summation of the last inner sum leads to the right-hand side of (24). �

Lemma 3. The function R(z; a, b) occurring in Theorem 2 and defined in |z| < |u|a by
the power series (4) can be continued meromorphically over C. The continuation has poles
exactly at the points ua(uv )am, m ∈ N0, and these are all simple.

Proof. For N ∈ N0 we have

(25) R(z; a, b)−
N∑
n=1

zn

Ran+b
=

zN

hvaN+b

∞∑
k=1

(v−az)k

1− (− g
h(uv )aN+b)(uv )ak
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in |z| < |u|a. To the series on the right-hand side over k we apply the identity (24) after
replacing q → (uv )a, z → z

va , w → −
g
h(uv )aN+b. To satisfy the condition |wq| > 1 in Lemma

2, we choose N ∈ N0 according to

(26)
∣∣∣g
h

(u
v

)aN+b∣∣∣ ≥ 1,

which is possible by |u| > |v| and a > 0. Then Lemma 2 and (25) together yield

(27) R(z; a, b) =
N∑
n=1

zn

Ran+b
+

zN+1

hvaN+b

∞∑
k=1

(−h
g ( vu)aN+b)k

z − va(uv )ak
,

whence our lemma. �

Next, we consider the generalizations (1) of (4) defining in |z| < |u|a` the function
R`(z; a, b). Plainly, R1(z; a, b) is our earlier R(z; a, b). We now proceed to clarify the connec-
tion between R`+1 and R`. To this purpose we multiply the obvious identity

Ra(n+`)+b − va`Ran+b = guan+b(ua` − va`)

by zn/(Ran+b · ... ·Ra(n+`)+b) and then sum over all n ∈ N. As result we obtain

∞∑
n=1

zn∏n+`−1
ν=n Raν+b

− va`

z

∞∑
n=1

zn+1∏n+`
ν=n+1Raν+b

= gub(ua` − va`)
∞∑
n=1

(uaz)n∏n+`
ν=nRaν+b

,

which can be written as

R`(z; a, b)−
va`

z

(
R`(z; a, b)−

z∏`
ν=1Raν+b

)
= gub(ua` − va`)R`+1(uaz; a, b)

or equivalently as

(28)
(

1− va`

z

)
R`(z; a, b) +

va`∏`
ν=1Raν+b

= gub(ua` − va`)R`+1(uaz; a, b).

From this identity and Lemma 3 it is inductively clear that every power series (1) can
be continued meromorphically from |z| < |u|a` to the whole complex plane. The poles of the
resulting function R`(z; a, b) are exactly at the points ua`(uv )am, m ∈ N0, and they are all
simple. For ` = 1, this follows from Lemma 3. As soon as this is true for `, then R`(z; a, b)
certainly has no pole at z = va`, and we learn from (28): p ∈ C× is a pole of R`+1(z; a, b)
if and only if pu−a is a pole of R`(z; a, b), hence exactly if pu−a = ua`(uv )am with suitable

m ∈ N0. Thus we find p ∈ ua(`+1)(uv )aN0 and also the simplicity of all these poles.

Next, we want to express R`(z; a, b), for every ` ∈ N, by the function R(z; a, b).

Lemma 4. Defining

(29) Aλ :=
vaλ

gub(ua` − va`)
∏λ
ν=1Raν+b

and Bλ(z) :=
z − vaλ

zgub(uaλ − vaλ)
,
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the following identity holds for any ` ∈ N

(30) R`(z; a, b) = R
( z

ua(`−1)
; a, b

) `−1∏
λ=1

Bλ

( z

ua(`−λ)

)
+

`−1∑
λ=1

Aλ

`−1∏
κ=λ+1

Bκ

( z

ua(`−κ)

)
.

Proof. (30) being trivial for ` = 1, assume now that it is valid for some ` ∈ N. By (29),
formula (28) is equivalent to

R`+1(z; a, b) = B`

( z
ua

)
R`
( z
ua

; a, b
)

+A`.

Substituting here on the right-hand side for R`(z/ua; a, b) the suitably modified right-hand
side of (30), we obtain (30) with `+ 1 instead of `. �

Although our next lemma is purely arithmetical, we shall need it to prove Lemma 6 on
the functions F`(z; 1, 0) and L`(z; 1, 0), the two meromorphic functions generated by the
power series (1) in the particular cases Rm = Fm and Rm = Lm, respectively.

Lemma 5. For all k, n ∈ N0 the following identities hold

Fn+2kFn+2k+1 + FnFn+1 − L2kFnFn+2k+1 = (−1)nF2kF2k+1,(31)

Ln+2kLn+2k+1 + LnLn+1 − L2kLnLn+2k+1 = −5(−1)nF2kF2k+1.(32)

Proof. To begin with, we quote the following formulas, which are valid for all m, j ∈ N0

and can be easily verified by induction using the recurrence relation of the F ’s and L’s,
respectively.

F 2
m+1 − FmFm+1 − F 2

m = (−1)m, L2
m+1 − LmLm+1 − L2

m = −5(−1)m,(33)

Fm+j = Fj−1Fm + FjFm+1, Lm+j = Fj−1Lm + FjLm+1(34)

with the convention F−1 := 1. Denoting now the left-hand side of (31) by ∆n,k, the first
formula in (34) leads to

∆n,k = ((F2k−1 − L2k)Fn + F2kFn+1)(F2kFn + F2k+1Fn+1) + FnFn+1

= F2kF2k+1(F 2
n+1 − F 2

n) + (F 2
2k − F 2

2k+1 + 1)FnFn+1 = F2kF2k+1(F 2
n+1 − FnFn+1 − F 2

n),

where we used Fm−1 + Fm+1 = Lm (m ≥ 0) and the first equation in (33) with m = 2k.
Again by the first equation (33), the expression in the last brackets equals (−1)m, whence
identity (31).

The proof of (32) is similar. Of course, instead of the first formula in (34) we have to
use the second one, and later one needs both equations (33), each once. �

The analytic conterpart of Lemma 5 reads as follows.

Lemma 6. For each k ∈ N, the functions F2k and L2k satisfy the following recursion
formulas:

(35) F2kF2k+1z
2F2k+2(−z; 1, 0) = (z2 + 1− L2kz)F2k(z; 1, 0) +

z(F4k+1z − F2k+1)

F1 · ... · F2k+1
,
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(36) −5F2kF2k+1z
2L2k+2(−z; 1, 0) = (z2 + 1− L2kz)L2k(z; 1, 0) +

z(L4k+1z − L2k+1)

L1 · ... · L2k+1
.

Proof. After multiplication of equation (31) by zn/(Fn · ... · Fn+2k+1), we sum over all
n ∈ N to get (35). To obtain the term F4k+1 on the right-hand side we used LmFm+1 =
F2m+1 + (−1)m (m ∈ N0) for m = 2k. Plainly, to demonstrate (36) we multiply (32) by
zn/(Ln · ... ·Ln+2k+1), proceed then as before but use LmLm+1 = L2m+1 + (−1)m (m ∈ N0)
for m = 2k to get the term L4k+1 in (36). �

Remark. Note that the two cases z = ±1 of (35) imply formulas of type T` = ρ1 + ρ2S`+2

and S` = ρ3 + ρ4T`+2 with explicit ρ1, ρ2, ρ3, ρ4 ∈ Q, depending on `, and ρ2ρ4 6= 0, hence
the full result of Melham [14]. Here S` and T` denote the sums in (9) and (10), respectively.

4. Proof of Theorems 2, 3 and the corollaries

Proof of Theorem 2.
Under the hypotheses of this theorem, the assertion (5) is equivalent, by (27), to

(37)

∞∑
k=1

(−h
g ( vu)aN+b)k

1− va

γ (uv )ak
/∈ K,

where N ∈ N0 has been chosen according to (26). Hence we may apply Theorem 1 to the
sum (37) putting

q :=
(u
v

)a
, α :=

va

γ
, β := −h

g

(v
u

)aN+b
.

Of course, some enlargement of N compared with (26) could be necessary to ensure also
the hypothesis |β{σ}| ≥ 1 for any σ ∈ Aut(Q|Q) \ {id} in Theorem 1. The assumption
|(uv ){σ}| < 1 for all these σ in Theorem 2 allows such a choice. �

Proof of Theorem 3.
(i): If γ satisfies all conditions of this case, then, by (30), the assertion R`(γ; a, b) /∈ K is
equivalent to

R
( γ

ua(`−1)
; a, b

)
/∈ K.

This latter assertion holds, by (5) in Theorem 2, since

γ

ua(`−1)
/∈ ua

(u
v

)aN0

⇔ γ /∈ ua`
(u
v

)aN0

(the latter being satisfied by one of our hypotheses on γ in case (i)) and the denominator
condition in (i) is just the corresponding denominator condition at the end of Theorem 2
on γ/ua(`−1) instead of γ.
(ii): If γ = ua(`−λ0)vaλ0 for some λ0 ∈ {1, ..., ` − 1}, then we have for this λ0, by (29),
Bλ0(γ/ua(`−λ0)) = 0 and hence

R`(γ; a, b) =

`−1∑
λ=λ0

Aλ

`−1∏
κ=λ+1

Bκ(ua(κ−λ0)vaλ0) ∈ K,
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by formula (30). �

Proof of Corollary 1.
Denoting by ϕu ∈ Z[X] the monic minimal polynomial of u, our condition ϕu(0) ∈ {1,−1}
implies that u is a unit in OK , and we apply Theorem 3 with v = 1. Therefore, we have only
to verify the inclusion K ⊂ Q(um) for every m ∈ N. Clearly, ũ := um is algebraic over Q of
a degree dividing deg(u) = [K : Q]. It is well-known (and can be found in [10, p.69]) that
the distinct conjugates of ũ are the distinct numbers among the (u{σ})m, σ ∈ Aut(Q|Q),
and that here each conjugate of ũ appears equally often. But this can occur only once since
exactly one |u{σ}| is greater than 1. Hence we have deg(um) = [K : Q] for every m ∈ N. �

Proof of Corollary 2.

Since u
v is either A+

√
∆

A−
√

∆
or its reciprocal we find (uv )m ∈ Q(

√
∆) \ Q for any m ∈ N, and

hence all hypotheses of Theorem 3 are verified. �

Proof of Corollary 3.
In the Fibonacci and Lucas cases, we have u = 1

2(1+
√

5) (= ϑ∞) and v = 1
2(1−

√
5), whereas

(g, h) from (2) is ( 1√
5
,− 1√

5
) and (1, 1), respectively. Half of this we mentioned already at

the beginning of section 1. We add here only that the denominator of γ−1ϑ
a(2t−1)
∞ is 1 for

any γ = ±ϑc∞. �

Proof of Corollary 4.
In the notation introduced before Lemma 6, the series (9) and (10) are F`(1; 1, 0) and
F`(−1; 1, 0), respectively, whereas their Lucas analogues are L`(±1; 1, 0). Because

(38) u`−λvλ = (−1)λu`−2λ

6= ±1 for any λ, if ` is odd, the case (ii) of Corollary 2 can never occur; since ±us has
denominator 1 for any s ∈ Z, (i) of Corollary 2 gives the full information.

Hence, from now on, we may suppose ` even. Since (38) equals 1 exactly if λ = `
2 is even,

respectively −1 exactly if λ = `
2 is odd, case (i) of Corollary 2 provides us the complete

assertion if 4 6 | ` or 4 | `, respectively. On the other hand, we know from case (ii) that

(39) F`(1; 1, 0) ∈ Q(
√

5) if 4 | `, and F`(−1; 1, 0) ∈ Q(
√

5) if 2 | ` but 4 6 | `,

and the same for L` instead of F`. In all situations, where case (ii) applies, we should be
able to specify F`(±1; 1, 0),L`(±1; 1, 0) entirely, and hence to see also that all F`-values in
(39) are irrational (and their Lucas analogues as well). An appropriate tool for this, at least
at first look, seems to be Lemma 4. But the necessary evaluation of the rational functions
Bλ from (29) becomes rather unpleasant, hence we take a different way, also interesting by
itself.

First, we compute F2(−1; 1, 0) via Lemma 4. Since B1(− 1
u) = B1(v) = 0, by (29),

formula (30) leads to F2(−1; 1, 0) = A1 = v = 1
2(1−

√
5) ∈ Q(

√
5) \Q. Applying now (35)

from Lemma 6 with k = 1, z = −1, we obtain

F2F3F4(1; 1, 0) = (2 + L2)F2(−1; 1, 0) +
F5 + F3

F1F2F3
,
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whence F4(1; 1, 0) ∈ Q(
√

5) \Q. Next, we apply (35) with k = 2, z = 1 to get

F4F5F6(−1; 1, 0) = (2− L4)F4(1; 1, 0) +
F9 − F5

F1 · ... · F5
,

and the inductive procedure is clear.
In the Lucas case, we have the same u, v as in the Fibonacci case but g = 1 (instead of

g = 1√
5
), hence again B1(− 1

u) = 0 but L2(−1; 1, 0) = A1 = v
(u−v)L1

= 1−
√

5
2
√

5
. From here on,

we conclude as above using (36) instead of (35). �
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Sci. Paris, Sér. I 308, 539-541 (1989).

[2] M. J. Bertin, A. Descomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse and J. P. Schreiber,
Pisot and Salem numbers, Basel et al.: Birkhäuser, 1992.
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