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Abstract

In this paper we are concerned with the equivalence of the finite ex-
pression for the derivative of the R-function at rational arguments and the
Kronecker limit formula in the spirit of our former study on the Gauss for-
mula for the digamma function and the Dirichlet class number formula. In
the present case, the Gauss formula and the Dirichlet class number formula
are to be replaced by its analogue for the R-function and by the Kronecker
limit formula or rather a closed form for the derivative of the Dirichlet L-
function, respectively. To make a systematic study on the Rj-functions, we
appeal to our recent method of using the Lipschitz-Lerch transcendent in
which there is the vector space structure built-in of those special functions
that we need. By way of the generalized Euler constants, we deduce the
closed formula given in Theorem 1.

2000 Mathematics Subject Classification: 11F66, 11M26, 11M41.

1 Introduction and statement of results

The closed formula for the first derivative of the Dirichlet L-function at
s = 1 is essential in expressing the Kronecker limit formula in another form
to arrive at the Lerch-Selberg-Chowla formula [Ler2], [CSel], [SelC] (for its
intereting history, cf. [Kur] and [Kum]). In the case of imaginary quadratic
fields, the formula has been known from the time of Dirichlet, while in the
case of real quadratic fields, the key function R(x) came to be known only by
the work of Gut [Gu], which was subsequently improved in a systematic way
by Deninger [Den]. Among other things, in analogy to the Gauss formula,
for (logT')" (cf. e. g. [Vista, (2.58), p. 47]), Deninger proved [Den] (2.2),

which is most relevant to us.
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Our objective of this paper is two-fold. In §1, we shall obtain closed
form for the derivatives of the Dirichlet L-function at s = 1 (Theorem 1),
while in §2, we shall give an equivalent formulation of the derivative of the
R-function in terms of the closed form for the derivative of the Dirichlet
L-function, in the spirit of [HKT] (cf. also [Vista, Chapter 8]). The method
in §1 hinges on the comparison of the Taylor expansion at s = 0 and the
Laurent expansion at s = 1 of (1.6), which in turn is an elaboration of our
recent method [LCK], which we shall now explain.

Let
|
(11) C(S,a):;m, oc=Res>1

denote the Hurwitz zeta-function, which is continued to a meromorphic func-
tion over the whole plane with a unique simple pole at s = 1. The special
case a =1 of {(s,a) is the well-known Riemann zeta-function

((s) =C(s,1)

whose treatment will be included in that of the Hurwitz zeta-function, and
we will freely use the results on the Riemann zeta-function. The Taylor
expansion of the Hurwitz zeta-function in the second variable was obtained
as early as 1922/23 by Wilton [Will, (1), p. 90]

(12 > Wt sna)en = sa=2. <l

n!

n=0

valid for all s # 1.
More generally, let L(z,s,a) denote the Lipschitz-Lerch transcendent
(often called the Hurwitz- Lerch zeta-function) defined by

00 .
e2mn:v

(1.3) L(z,s,a) = T

oc=Res>1,
n=0

which was first studied by Lipschitz [Lip] and Lerch [Lerl] independently.
Here the paprameters are to the effect that = expresses the signature and
a the perturbation. We refer to [LG] for a systematic treatment of the
Lipschitz-Lerch transcendent, where it is referred to as the Lerch zeta-
function. For general references on special functions, we refer to [Erd], [SC]
and [Vista).
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Klusch [Klu] obtained the Taylor expansion of L(z,s,a + z) at z =0

(1.4) Z(—l)" (i)!nL(x, s+mn,a)2" = Lz, s,a+2), |z]<]lal
n=0

The proof of (1.4) depends on the differential-difference equation
0
(1.5) a—L(m, s,a) = —sL(z,s+1,a).
a

We also refer the reader to Srivastava-Choi [SC, p. 125] for (1.4) and
(1.5).

However, if z ¢ 7Z, then L(z,s,a) is continued to an integral function
and we do not have the Laurent expansion to be compared with (1.5), while
if z € Z, then L(z,s,a) reduces to the Hurwitz zeta-function. Hence we
may start from the Hurwitz zeta-function. We shall appeal to the following
functional equation of it with the perturbation parameter being rational.

Proposition 1. ([Ap, Theorem 128, p. 261], [SC, (8), p. 90]). For all
s # 0,1, we have

w0 (e D) =G mee (T 5)

a=1

One can also derive Proposition 1 from the following lemma (cf. [LCK]).
Lemma 1. For 1 < g€ Z and g > p € N, we have the identity

() (4(0))

a=1

SRR t) ()

where, for s = 0 or s = 1, the identity is to mean the limit as s — 0 or
s — 1.

It is easily seen that Lemma 1 is a special case of

Proposition 2. For 1 < ¢ € Z and 0 < z < 1,Rea > 0, we have the
identity

Jj=0
Fl— —s8)m1 —s)mi

=1 ( 1_8) {e(1 : (—a,1 s,ﬂv)—(f(1 2 L(—a,l—s,l—x)}
(2m) ~°

40



except at the singularities of L, in which case, the identity is to mean the
limat.

It has been shown in [LCK], that (1.6) and its counterpart for the poly-
logarithm function entail not only all the previous results but also new non-
trivial corollaries.

Let us recall [Vista, p. 54] that the Laurent expansion of {(s,z) at s = 1
is given by (cf. [Vista, Corollary 3.3])

C(s,2) = . i 1 + Z (—1):'%1(35) (s—1" s—1,
n=0

where yg(z) = —1(x) is the Euler digamma function to be introduced in
(1.20), or

1 = (-1)"
(1.7) ((s+1,x):—+zws”, s =0,

s = n!

where i (a) denotes the k-th Laurent coefficient and expression for this can
be found in [Vista, Chapter 3, Page 60-61].

Now we denote the Taylor coefficients (up to a constant multiple) of
C(s,z) at s =0 by

n—1 a"

(L8) Ro(w) = (1)1 =

(57$)|s:07

(1.9) C(s,z) = —273".

Differentiating (1.9) with respect to =, we obtain

(1.10) 9 (s,z) = —Z ws”.

|
X .
0 n=0

Substituting (1.7) and (1.10) in the special case of (1.5)

(L11) 2 ((r.5) = —s((z5+ 1),

and comparing the coefficients, we deduce the following important relation.
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Lemma 2.

/

R (@) = =11 (o).

To state the main result, we need to introduce some notations.

p,q € N with p < ¢ and (p,q) = 1. Let

v (5 () () G (3)

m=0
where
I (R i
and
l l
(114) 0 = mZZO(—l)m (m) T (1) (log 2mq)' ™.

We now state and prove the main result of this section.

Theorem 1.

(1.15) R, (g) = 2(—1)" lno <7Z) Sn_i qulKl <§,7’) .

Proof. In view of (1.7) and Lemma 2, the right-hand side of (1.6) is

1 11
(1.16) <<1 —s,’i> =—---Y =R, <E> s".
q s 5=l q

To find the expansion of the right-hand side, we note that

s 27rrp_0017rm ™0\ m
(1.17) cos<2 ; >_mzom!(2) Tm<q)s ,

where

1 . .
Tm(ilj) — ,LmE (67271'11 + (_1)me27r1m)

is as given by (1.13). Also it is immediate to see from (1.14) that

(1.18) 20(s) _ % i (_1)l5151.

Let



Multiplying (1.17) and (1.18), we see that the coefficient of s™ is —1
times the right-hand side of (1.15). Comparing it with (1.16) completes the
proof.

]
Corollary 1. Formula (1.15) in the case n = 1 amounts to the Gauss
formula
m S 2k k
(1.19) ) <2> = —y —logq— = cot Ew+Zcos Lwlongin -,
q 2 9 = q q
where
F/
!
(1.20) ¥(z) = (logI')'(2) = = (2)
is the Euler digamma function (c¢f. e. g. [Vista, Chapter 5]) and v =
—T'(1) = —4(1) is the Euler constant, and in the case n = 2 it amounts to

the Deninger formula

(L21) R <§) = —71 — 2(y + log 2mq) <7 +1 <£>)

q

q—1 q—1
2 2
+ 22 <cos map 1) R <ﬁ) — QWZIOgF <ﬁ) sin 7rap’
a=1 q q a=1 q

q

where v1 = v1(1) is the first generalized Euler constant.

Proof. We prove (1.21) which simultaneously will prove (1.19) too.
One has

(1.22) do =1, & =log2mqg+ .
Now noting that
6y = (log 27q)? + 2y(log 27q) + T (1),

and that I''(1) = %2 — 72, we obtain

2
(1.23) 0y = (log 27q)? + 2y(log 27q) + % — 2

We also have

q P 1
1.24 Kol =, =——,
(1.24) > Ko (q ) .
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on using

27rp
Zcos =-1
r=1 q
Next,
1< . 27y us us
ZKl <— r) zigcos <logs1n—)—zcot—p—§logw,

(1.25) zq:Kl (’i,r) - % <1/) <§) +7) + %log%rq.

Also we have,

q q—1
2w 2
E Ky (B,r> = E R <f> cos—p—i-R -7 E logI’( )sin manr%.
q q q

r=1 r=1 q
Now using
1 2

(1.26) R(1) = R(2) = —¢"(0) = 5 <10g227r + 5 S fyl)
we get

! T 27r ! r 27r
(1.27) ZK2< )zZR(—)cos p—leogF(—)sin L

= \q q — q q

1 2
(log 2 — 2 —')q)-l-ﬁ

Finally substituting formulas (1.23)-(1.27) in

q q q
R/ <B>:2 5QZKU <B,7‘)+2(512K1 <E,T>+(502K2 <E,r> s
q r=1 q r=1 q r=1 q
we conclude (2.2) below, which amounts to (1.21) in view of the distribution

property (2.3)(cf. §2 below). This completes the proof. O

Remark 1. The special case p = g of (1.21) is meaningful and amounts to
R'(1) = —v1, which was derived by Deninger [Den, p. 175, 2.3.4]). However,
(1.19) for p = ¢ is meaningful only in the sense of the limit

1
lim £ <1/) <B+’y>) =—— —logg.
p=ap q 2

44



2 Statement of the equivalence theorem

Let R(z) = Ra(z) denote the Deninger function (cf. Lemma 2 above and
[Vista, (5.36), p. 92]) defined for z > 0 by

82
(21) R(a) = ~¢"(0,2) = = 5=((s. ) .

We rewrite (1.21), for p,q € N with p < ¢, (p,¢q) = 1, in the following form

(2.2)

)

q—1 q—1
2 2
+2 g R <2) cos TP op g logT <2) sin P _ log q(log q + 2 log 27).
a=1 4 4 a=1 4 4

We note that relations (1.21) and (2.2) are equivalent under the modified
Kubert relation

= v 1. 5

(2.3) Vz::l R <q) 5 log” g + (log 27)(log q)

for ¢ € N. This is because the Hurwitz zeta-function satisfies the Kubert
relation (distribution property, cf. e.g. [Vista, (3.69), p. 76]), and so the
R-function and its derivative inherit the same property with minor modifi-
cation. In fact the derivative satisfies

q—1
(2.4) ZR' <g> = (¢—1)R'(1) + qlog?q + 2yqlogq.
v=1
We shall use the following well-known arithmetical functions repeatedly.

As always p(n) denotes the Mdbius function and we shall use its character-
istic property

(25) Sua={ 5 "2
d|n ’ ’

which is the source of the Mébius inversion formula. We will use (2.5) with

n = (a,q) to replace the relatively prime condition (a,q) =1by > u(d).
d|(a,q)
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Let ¢(q) denote the Euler function and we have the expression
q
(2.6) w(q) =) ~uld).
dlq
Let ¢4(v) denote the Ramanujan sum defined by

q—1

(2.7) cqlv) =) remiarle,

a=1

where * on the summation sign means that the sum is over a with (a,q) = 1.
It is well known that

(2.8) )= du (%) .
dl(av)

For a Dirichlet character modulo ¢, let G(u,x) denote the generalized
Gauss sum defined by

(2.9) Gl x) = Y x(@)e™™ s,

Then we have
(2.10) G (v, x0) = ¢cq(v),

where x( indicates the principal character.
For a Dirichlet character x mod g, let

— x(n)
ns ’

L(s,x) = c=Res>1

n=1
be the Dirichlet L-function. This can be analytically continued to an entire
function in the case of xy # x¢ and to a mermorphic function in the case

X = X0, and we may speak of the following value in the former case
2. x(n)logn
L'(l,x) = — =
(1, x) 7?1 —

which is the fundamental ingredient in the Kronecker limit formula. As in
the case of the Dirichlet class number formula, a finite expression for L'(1, x)
was sought for and the following is of fundamental relevance.

142
(2.11) L'(1,x) = —=L(1,x) logq + ZZX(M)R' <§>
pn=1
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As an analogy to [HKT, Theorem] ([Vista, Chapter 8]), we shall prove
the following result.

Theorem 2. The finite expression

(2.12)
1 ! v
5 R <5) G(Va X)’ X even,
L'(1,x) = (y +log2m)L(1,x) + ¢ T,
7T—ZZlogI’ <Z> G(v, x), x odd
¥ — q

is equivalent to (2.2).

3 Proof

To prove Theorem 2, we use many results which are obtained in [HKT]
([Vista, Chapter 8]), which we state as a lemma.

Lemma 3.
q—1 a
([Vista, (3.28)) > xlays (%) = -z,
q—1
. 2rap\ 1+ x(=1)
([Vista, (8.39-1)]) 2 x(a) cos< p ) =—3 G(p, x),
and
q—1 o
([Vista, (8.39-2)]) S x(a)sin (wr%) - %G(M, ).
a=1

We also recall the orthogonality relation among the characters.

Lemma 4. Let x denote a Dirichlet character mod q, g > 3. Then
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and

0 if n#£+1 (mod q),
S =4 A i n=1 (mod o)
x odd _plg)

5 if n=-1 (mod q),

where the sum s extended over all even and odd characters, respectively.

Proof of Theorem 2
It could be immediately seen that (2.2) implies (2.12). Indeed, substi-

tuting (2.2) in Za 1 x(a)R' (%) in (2.11) and using Lemma 4, we find that

(3.1)
D/(1x) = ~L(1, ) og g = ¢ +log 20 gxm)w (E)
+$:ZjR< )Zx cos 2 ——Zlogf‘< )QZIX ) sin 2

Now substituting from Lemma 3 and classifying the parity of x, we
conclude (2.12).
To prove the converse, we consider for (p,q) =1

(3.2) S(p) = > x(p HL'(L,x).

XEX0

Now substituting (2.11), we obtain

q—1
S(p) =—(logq) Y x(p ")L(1,x) +%ZR’ <9> > x(p Hx(a).
a=1

XZX0 g XZX0

We rewrite the inner sum of the second term on the right as

ZX — Xo(a)

and using Lemma 4, we deduce that

33) 80) = ~(og)) ¥ x 10+ 528 () -5 3w (%),

2
XEX0 q
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where * on the summation sign means that the sum is over integers 1 < a <
q — 1 relatively prime to gq.
Further from (3.3) we obtain

) G0R (2) = st + Goga) 3 xr-)200 + 5 X7 (%),

2
g 9 XZX0 4

To transform each term on the right of (3.4), we show

Lemma 5. We have the following.

(35 Y R <5) =-nel@) +q) # log® = +274 ) | % log -,
dlq dlq

(3.6)

S(p) ( > x(pl)L'(l,x))

X7X0

q—1
= (y + log 2m) Z x(p™HL(, x) + () ZR <K> cos 2mvp

X7X0 q q

p(d) (1 plg) &= v\ . 2mvp
— Z 5 <§log2 d + (log 27)(log d)) — WT ZlogI’ <E) sin .

dlq v=1

and

([Vista, (8.46))) ]
> x(p I, x) = #l9) <—z/) (B) - - logQ) + #logd-

XEX0

Proof. By (2.5), we find that

Sw(})- g () -Feo R (5)

dlq dlq a=1

Now substituting (2.4), we conclude (3.5). Here we have used the fact that
used R/'(1) = —1.
To prove (3.6), we substitute (2.12) and obtain

(3.7)  Sm)=(v+log2m) 3 x O x) + gsem(p) " §S°dd<p),
XF#X0
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where

q—1
(3.8) SUmMp) =Y x(p )Y R (g) G(v,x)
YT vt
and

qg—1
s°44p) = 3 o mi S toe (£) G0
v=1 q

x odd
Now by Lemma 3 we have

(3.9) godd Zlogf‘( ) in 272P.

q
We write
qg—1 q—1
even _ z -1 v . K v
(310) 8 (p)_;R<q>x§nX(p G, ) ;R(q)a(,m

= S1(p) — Sa(p),

(say). Then using Lemma 3 one has

il 2my
(3.11) @) :R< )cos P
q
1

V=
On the other hand, using (2.8) and (2.10), we deduce that

q—1

0-Ea() £ 00T En(;)

Substituting (2.3), we deduce that
q 1
(3.12) Sa(p) = Z E,u(d) (E log? d + (log 2) (log d)) .
dlq

Further substituting (3.11) and (3.12) in (3.10), we conclude that
(3.13)

se”e"@):so(q)j:R@) cos 57 e (g og? d-+ (g 2m) g )

dlq

Finally substituting (3.9) and (3.13) into (3.7), we conclude (3.6). This
completes the proof of Lemma 5. O
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We are now in a position to complete the proof of Theorem 2. Substi-
tuting (3.5) and (3.6) in (3.4),

(3 14)
( )1171 v 2mv
< ) (v +log2mq) » x(p‘l)L(l,x)JrﬂZR(—) cos T 0
q = q q
XFX0 v=1
-1
d (@) < <V) . 2mup
10g27r —T—= logI' [ — | sin

- %3)71 + ; 2 @ (log® g — 2(log q) (log d)) +7 ) @(logq —log d)
dla dlq

(d)

since the terms ) dlg #T log? d cancel.
Finally, substituting the last formula in Lemma 5 and noting that all the
terms ) dlg @ log d cancel, we are left with

(3.15)
! v 21y

R <B> :2<—z/) <£) —fy—logq) (’y+log27rq)+2ZR<—> cos 1P

q q —~"\q q

q—1 2

v\ . 2mvp log” ¢ x—~ qu(d) L Ylogg qu(d

—27 logI‘(—) sin —— — 7y +

VZI q q ¢(q) dzq d ¢(q %

which is (2.2) in view of (2.6). This complete the proof of Theorem 2.
O
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