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ON THE MELLIN TRANSFORMS OF
POWERS OF HARDY’S FUNCTION

Aleksandar Ivi

´

c

Abstract. Various properties of the Mellin transform function

Mk(s) :=

Z 1

1
Z

k(x)x°s dx

are investigated, where

Z(t) := ≥( 1
2 + it)

�
¬( 1

2 + it)
�°1/2

, ≥(s) = ¬(s)≥(1° s)

is Hardy’s function. Connections with power moments of |≥( 1
2 + it)| are established,

and natural boundaries of Mk(s) are discussed.

1. Introduction

Power moments of |≥( 1

2

+it)| are a central problem in the theory of the Riemann
zeta-function

≥(s) =
1
X

n=1

n°s (æ = <e s > 1),

which admits analytic continuation to C, having only a simple pole at s = 1. A
vast literature exists on this subject (see e.g., the monographs [10], [11], [26] and
[28]). One way to tackle them is to deal with the (modified) Mellin transform
function

(1.1) Zk(s) :=
Z 1

1

|≥( 1

2

+ ix)|2kx°s dx (k 2 N),
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where æ = <e s is so large that the integral in (1.1) converges absolutely. These
functions in the cases when k = 1 or k = 2 have been intensively investigated (e.g.,
see the works [14], [18], [23] and [24]). It is known that Z

1

(s) has meromorphic
continuation to C. It has a pole of order two at s = 1 and the principal part of
the Laurent expansion at s = 1 of Z

1

(s) is

1
(s° 1)2

+
2∞ ° log(2º)

s° 1
,

where ∞ = °°0(1) = 0.577215 . . . is Euler’s constant. It also has simple poles at
s = °1,°3, . . . , whose residues can be expressed explicitly in term of Bernoulli
numbers (see M. Lukkarinen [23]).

The analytic continuation of Z
2

(s) has also (see e.g., Y. Motohashi [24]) infin-
itely many poles. Namely in the half-plane <e s > 0 it has the following singular-
ities: the pole s = 1 of order five, simple poles at s = 1

2

± i∑j

≥

∑j =
q

∏j ° 1

4

¥

and poles at s = Ω/2. Here Ω denotes complex zeros of ≥(s), and {∏j = ∑2

j + 1

4

} [
{0} is the discrete spectrum of the non-Euclidean Laplacian acting on SL(2, Z)-
automorphic forms. This shows that Z

2

(s) has a diÆerent and more complicated
structure than Z

1

(s).

Instead of Zk(s) one can consider the more general Mellin transform function

(1.2) Mk(s) :=
Z 1

1

Zk(x)x°s dx (k 2 N),

where again æ = <e s is so large that the integral in (1.2) converges absolutely.
Here Z(x) is the classical Hardy function, defined as

(1.3) Z(t) := ≥(1

2

+ it)
°

¬( 1

2

+ it)
¢°1/2

, ≥(s) = ¬(s)≥(1° s),

with
¬(s) = 2sºs°1 sin( 1

2

ºs)°(1° s), ¬(s)¬(1° s) = 1.

It follows that ¬( 1

2

+ it) = ¬( 1

2

° it), so that Z(t) 2 R when t 2 R and |Z(t)| =
|≥( 1

2

+ it)|. Thus the zeros of ≥(s) on the “critical line” <e s = 1/2 correspond
to the real zeros of Z(t), which makes Z(t) an invaluable tool in the study of the
zeros of the zeta-function on the critical line. Note that when k = 2` is even, then

M
2`(s) =

Z 1

1

Z2`(x)x°s dx =
Z 1

1

|≥( 1

2

+ ix)|2`x°s dx = Z`(s)

in former notation. Hence Mk(s) is also closely connected to the moments of
≥( 1

2

+ ix). If we define, for fixed k 2 N, the k–th moment of Hardy’s function as

(1.4) Ik(x) :=
Z x

1

Zk(y) dy,



34 Aleksandar Ivić

then on integrating by parts we find that

(1.5) Mk(s) = s

Z 1

1

Ik(x)x°s°1 dx,

so that the properties of Ik(x) are reflected on Mk(s). Conversely, the Mellin
inversion formula gives

(1.6) Zk(x) =
1

2ºi

Z

(c)
Mk(s)xs°1 ds

for suitable c (> 0). From (1.6) we obtain by integration

Ik(x) =
1

2ºi

Z

(c)
Mk(s)

xs

s
ds + O(1).

The plan of the paper is as follows. In Section 2 we consider Mk(s) and obtain
some general results for this modified Mellin transform. Section 3 is devoted to
Mk(s) in the special cases when k = 1 and k = 3. The discussion related to the
analytic continuation of M

3

(s) is made by the use of the cubic moment of Z(x),
which is dealt with in Section 4. Finally the natural boundaries of Mk(s) and
related problems are treated in Section 5.

2. Properties of Mk(s)

First we recall that the Mellin transform of f(x) is commonly defined as

(2.1) M[f(x)] = F (s) :=
Z 1

0

f(x)xs°1 dx (s = æ + it).

Mellin and Laplace transforms play an important rôle in Analytic Number Theory.
They can be viewed, by a change of variable, as special cases of Fourier transforms,
and their properties can be deduced from the general theory of Fourier transforms
(see e.g., E.C. Titchmarsh [27]). For example, by the change of variable x =
et, z = s° 1, (1.2) becomes

Z 1

0

Zk(et)e°zt dt (<e z > 0),

which is the Laplace transform of Zk(et). The reason that we have defined in (1.1)
and (1.2) somewhat diÆerently the Mellin transforms Zk(s),Mk(s) is practical:
the lower limit of integration x = 1 dispenses with potential convergence problems
at x = 0, while the appearance of x°s instead of the familiar xs°1 stresses the
analogy with Dirichlet series where one has a sum of f(n)n°s and not f(n)ns°1.
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One of the basic properties of Mellin transforms is the inversion formula

(2.2) 1

2

{f(x + 0) + f(x° 0)} =
1

2ºi

Z

(æ)

F (s)x°s ds =
1

2ºi
lim

T!1

æ+iT
Z

æ°iT

F (s)x°s ds.

Formula (2.2) certainly holds if f(x)xæ°1 2 L(0,1), and f(x) is of bounded
variation on every finite x–interval. Therefore the inversion formula (1.6) follows
from (2.2) by a change of variable. Note that if G(s) denotes the Mellin transform
of g(x) then, assuming f(x) and g(x) to be real-valued, we formally have

(2.3)

1
2ºi

Z

(æ)

F (s)G(s) ds =
Z 1

0

g(x)

√

1
2ºi

Z

(æ)

F (s)xæ°it°1 ds

!

dx

=
Z 1

0

g(x)x2æ°1

√

1
2ºi

Z

(æ)

F (s)x°s ds

!

dx =
Z 1

0

f(x)g(x)x2æ°1 dx.

The relation (2.3) is a form of Parseval’s formula for Mellin transforms, and it
oÆers various possibilities for mean square bounds. A condition under which (2.3)
holds is that xæf(x) and xæg(x) belong to L2((0,1), dx/x). A variant of (2.3) is
(see [27, Theorem 73])

(2.4)
1

2ºi

Z

(c)
F (w)G(s° w) dw =

Z 1

0

f(x)g(x)xs°1 dx,

which holds if xcf(x) and xæ°cg(x) belong to L2((0,1), dx/x), where as usual

Lp(a, b) :=

(

f(x)

Ø

Ø

Ø

Ø

Ø

Z b

a
|f(x)|p dx <1

)

.

Our first result is
THEOREM 1. For c > ck > 0, k > 2 and æ = <e s > æ

1

(k) (> 1) we have

(2.5) Mk(s) =
1

2ºi

Z

(c)
Mk°r(w)Mr(1° w + s) dw (r = 1, . . . , k ° 1).

In particular, for æ > c > 1,

(2.6) M
3

(s) =
1

2ºi

Z

(c)
M

1

(w)M
2

(1° w + s) dw.

Proof. Consider

f(x) = Zk°r
≥ 1

x

¥ 1
x

, g(x) = Zr
≥ 1

x

¥ 1
x

(0 < x 6 1),
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and f(x) = g(x) = 0 if x > 1. With the change of variable y = 1/x we have

F (s) =
1
Z

0

f(x)xs°1 dx =
1

Z

0

Zk°r
≥ 1

x

¥

xs°2 dx =
1
Z

1

Zk°r(y)y°s dy = Mk°r(s),

and likewise G(s) = Mr(s). Hence (2.4) yields

1
2ºi

Z

(c)
Mk°r(w)Mr(s° w) dw =

Z

1

0

Zk°r
≥ 1

x

¥

Zr
≥ 1

x

¥

xs°3 dx = Mk(s° 1),

again with the change of variable y = 1/x. Finally changing s° 1 to s we obtain
(2.5).

To establish (2.6) let I denote the integral on the right-hand side. We shall use
the following elementary (see [12, Lemma 4])

LEMMA 1. Suppose that g(x) is a real-valued, integrable function on [a, b], a

subinterval of [1, 1), which is not necessarily finite. Then

(2.7)
T

Z

0

Ø

Ø

Ø

Ø

Ø

Ø

b
Z

a

g(x)x°s dx

Ø

Ø

Ø

Ø

Ø

Ø

2

dt 6 2º

b
Z

a

g2(x)x1°2æ dx (s = æ + it , T > 0, a < b).

Then by using the Cauchy-Schwarz inequality, the well-known bounds (see [10])

(2.8)
Z T

0

|≥( 1

2

+ it)|2k dt ø T (log T )k2
(k = 1, 2)

and (2.7) (considering t = =m s fixed and letting T !1) we obtain

I2 ∑
Z 1

°1
|M

1

(c + iv)|2 dv

Z 1

°1
|M

1

(1° c + æ + i(v + t))|2 dv

ø
Z 1

1

|≥( 1

2

+ ix)|2x1°2c dx

Z 1

1

|≥( 1

2

+ ix)|4x2c°2æ°1 dx

ø 1,

since 1 ° 2c < °1, 2c ° 2æ ° 1 < °1. Therefore I converges absolutely and (2.6)
holds, providing incidentally the analytic continuation of M

3

(s) to æ > 1 (this
also follows directly from the defining relation (1.2)).

THEOREM 2. If k = 1, 2, 3, 4 and c > 1 is fixed, then for U ¿ x and " > 0
su±ciently small we have

(2.9) Zk(x) =
1

2ºi

Z c+iU

c°iU
xs°1Mk(s) ds + O",k(xc°1U°"/2).
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Proof. In view of (2.8) Mk(s) (k 6 4) converges absolutely for æ > 1. Hence
the inversion formula (1.6) and the residue theorem yield

Zk(x) =
1
2º

Z

(c)
xs°1Mk(s) ds

=
1
2º

√

Z c+iU

c°iU
+

Z c°iU

c°i1
+

Z c+i1

c+iU

!

+ O",k(x")

=
1
2º

(I
1

+ I
2

+ I
3

) + O",k(x"),

say. Here and later " (> 0) denotes constants which may be arbitrarily small, but
are not necessarily the same ones at each occurrence. The O-term comes from
the residue at s = 1 (for k = 1 the function M

1

(s) is regular for s = 1, while for
k = 3 very likely M

3

(s) is also regular at s = 1, but this has not been proved yet).
Therefore to prove (2.9) it su±ces to show that

(2.10) I
3

ø",k xc°1U°"/2,

since the estimation of I
2

is analogous to the estimation of I
3

. For æ > 1, T
1

6
t 6 2T

1

(with the aim of taking later T
1

= U, T
1

= 2U etc.) we have

Mk(s) =
Z T 1°"

1

1

Zk(u)'(u)u°s du +
Z 1

1
2 T 1°"

1

Zk(u)(1° '(u))u°s du = I
4

+ I
5

,

say. Here '(u) (> 0) is a smooth function supported in [1, T 1°"
1

] such that '(u) = 1
for 1 6 u 6 1

2

T 1°"
1

and

(2.11) '(r)(u) ør T r(1°")
1

(r = 0, 1, 2, . . . ).

Repeated integration by parts shows that, for N > N
0

(", k),

(2.12)
I
4

=
c
1,k

s° 1
+

1
s° 1

Z T 1°"

1

1

u1°s
°

'(u)Zk(u)
¢

0

du = . . .

=
c
1,k

s° 1
+ . . . +

cN,k

(s° 1)N
+ ON,k(T°

1
2 "N

1

)

since, for `j ,mj > 0 and `
1

+ . . . + `N = k (for a formula for Z(m)(x) see [21, p.
87]; see also [18, p. 313]),

(2.13)
Z X

1

≥

Z`1(x)
¥

(m1)

. . .
≥

Z`
N (x)

¥

(m
N

)

dxø",k,N X1+".
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One obtains (2.13) similarly as (2.8), using Hölder’s inequality, the defining relation
(1.3) and the asymptotics of the ¬–function. The reason that we do not have (yet)
Theorem 2 for k > 4 is essentially the fact that we do not have yet the bound

Z T

0

|≥( 1

2

+ it)|m dt ø" T 1+"

for any fixed m > 4.
Hence by the first derivative test

Z c+i2T1

c+iT1

xs°1I
4

ds =
c
1,k

2ºi

Z c+i2T1

c+iT1

xs°1

s° 1
ds + O

µ

xc°1

T
1

∂

= O

µ

xc°1

T
1

∂

.

On the other hand

Z c+i2T1

c+iT1

xs°1I
5

ds = i

Z

2T1

T1

xc+it°1

√

Z 1

1
2 T 1°"

1

Zk(u)(1° '(u))u°c°it du

!

dt

= ixc°1

Z 1

1
2 T 1°"

Zk(u)(1° '(u))u°c

√

Z

2T1

T1

eit log(x/u) dt

!

du.

For T
1

¿ x it follows, by direct integration, that the last integral over t is bounded.
Thus the last expression, for some constant ck > 0, is

ø xc°1(log T
1

)c
kT (1°")(1°c)

1

.

Therefore we have

I
3

ø xc°1

U
+ xc°1(log U)c

kU (1°")(1°c) ø xc°1U°"/2

if " > 0 is su±ciently small, and (2.9) follows. Theorem 2 is proved.

Remark 1. We can get (at least in principle) the information about the sixth
moment of ≥( 1

2

+ it) from M
3

(s). Namely from from (2.9) with k = 3 or from the
method of proof of Lemma 4 of [10] we get that

(2.14)
Z

2T

T
|≥( 1

2

+it)|6 dtø" T 2æ°1

Z T 1+"

1

|M
3

(æ+it)|2 dt+T 1+" ( 1

2

< æ 6 1),

provided that M
3

(s) can be continued to <e s > æ (and that is the catch!).
Heuristically, we should be able to have æ = 3/4 + ", and then the integral on the
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right-hand side of (2.14) should be ø" T 1/2+", giving a weak form of the sixth
moment. Note that (see [12, eq. (4.7)]) for the eighth moment we have

(2.15)
Z

2T

T
|≥( 1

2

+ it)|8 dtø" T 2æ°1

Z T 1+"

1

|Z
2

(æ + it)|2 dt+T 1+" ( 1

2

< æ 6 1),

and an analogue of (2.14) and (2.15) holds also for the mean square and fourth
power of |≥( 1

2

+ it)|. In these cases, however, the results are not of particular inter-
est, since we have precise information which has been obtained by other methods.
The bounds for the sixth moment of |≥( 1

2

+ it)| are intricately connected with the
problem of the analytic continuation of M

3

(s) to the region æ 6 1. It should be
noted that the bounds

Z T

0

|≥( 1

2

+ it)|8 dt ø" T 1+"

and
Z

2T

T
|Z

2

(æ + it)|2 dt ø" T 4°4æ+" (1

2

< æ 6 1),
Z

2T

T
|Z

2

(æ + it)|2 dt ø" T 2°2æ+" + T°1 (æ > 1).

are equivalent (see [12, eqs. (4.3) and (4.8)]).

The next result is a generalization of Theorem 4 of [15]. This is

THEOREM 3. In the region of absolute convergence we have

(2.16) M2

k(s) = 2
Z 1

1

x°s

µ

Z x

p
x

Zk(u)Zk
≥x

u

¥ du

u

∂

dx.

Proof of Theorem 3. Set f(x) = Zk(x) and make the change of variables
xy = X, x/y = Y , so that the absolute value of the Jacobian of the transformation
is equal to 1/(2Y ). Therefore

M2

k(s) =
Z 1

1

Z 1

1

(xy)°sf(x)f(y) dx dy

=
1
2

Z 1

1

X°s

Z X

1/X

1
Y

f(
p

XY )f(
p

X/Y ) dY dX.

But as we have (y = 1/u)
Z x

1/x
f(
p

xy )f(
p

x/y )
dy

y
=

Z

1

1/x
+

Z x

1

= 2
Z x

1

f(
p

x/u)f(
p

xu )
du

u
,
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we obtain that, in the region of absolute convergence, the identity

M2

k(s) =
Z 1

1

x°s

µ

Z x

1

f(
p

xy )f(
p

x/y )
dy

y

∂

dx

is valid. The inner integral here becomes, after the change of variable pxy = u,

2
Z x

p
x

f(u)f
°x

u

¢ du

u
,

and (2.16) follows. The argument also shows that, for 0 < a < b and any integrable
function f on [a, b],

√

Z b

a
f(x)x°s dx

!

2

= 2
Z b2

a2
x°s

(

Z

min(x/a,b)

p
x

f(u)f
°x

u

¢ du

u

)

dx.

3. The cases of Mk(s) when k = 1, 3

The analytic continuation of Mk(s) when k 6 4 is interesting only when k =
1, 3, since M

2

(s) ¥ Z
1

(s), M
4

(s) ¥ Z
2

(s), and for Z
1

(s),Z
2

(s) there is plenty
of information (see Section 1). For k > 4 there is little information available on
Zk(s). We have the following

THEOREM 4. The function M
1

(s) has analytic continuation to the region

æ > 0, where it is regular. For fixed æ such that

1

4

< æ 6 5

4

it satisfies

(3.1) M
1

(æ + it) ø" t
3
4°æ+"(1 + t

3
4°æ) (t > t

0

> 0).

We also have, for fixed æ such that

1

2

< æ 6 1,

(3.2)
Z T

1

|M
1

(æ + it)|2 dt ø" T 2°2æ+",

(3.3)
Z T

1

|M
1

(æ + it)|2 dt ¿" T 2°2æ°".

THEOREM 5. We have

M
3

(s) =
Z 1

1

Z3(x)x°s dx = V
1

(s) + V
2

(s),
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say, where V
2

(s) is regular for æ > 3/4 and for æ > 1 the function

(3.4) V
2

(s) = (2º)1°s

r

2
3

1
X

n=1

d
3

(n)n°
1
6°

2s

3 cos
°

3ºn
2
3 + 1

8

º
¢

is regular, where d
3

(n) =
P

k`m=n 1.

Proof of Theorem 4. To prove the result on the analytic continuation of
M

1

(s) we use the author’s method of proof [14]. By the use of Laplace transform
of |≥( 1

2

+ it)|2 (see e.g. [28, Theorem 7.15(A)]) it was shown there that Z
1

(s) has
meromorphic continuation to C. Thus let

L̄(s) :=
Z 1

1

Z(y)e°ys dy, L(s) :=
Z 1

0

Z(y)e°ys dy (æ = <e s > 0).

Then we have, by absolute convergence, taking initially æ to be su±ciently large
and making the change of variable xy = t,

(3.5)

Z 1

0

L̄(x)xs°1 dx =
Z 1

0

µ

Z 1

1

Z(y)e°xy dy

∂

xs°1 dx

=
Z 1

1

Z(y)
µ

Z 1

0

xs°1e°xy dx

∂

dy

=
Z 1

1

Z(y)y°s dy

Z 1

0

e°tts°1 dt = M
1

(s)°(s).

Since °(s) has no zeros, it su±ces to prove the assertion for
Z 1

0

L̄(x)xs°1 dx =
Z

1

0

L̄(x)xs°1 dx +
Z 1

1

L̄(x)xs°1 dx

=
Z 1

1

L̄(1/x)x°1°s dx + A(s) (æ > 1),

say, where

A(s) :=
Z 1

1

L̄
1

(x)xs°1 dx

is an entire function. Since

L̄(1/x) = L(1/x)°
Z

1

0

Z(y)e°y/x dy (x > 1),

it remains to consider
1
Z

1

L̄(1/x)x°s°1 dx =
1
Z

1

L(1/x)x°s°1 dx°
1
Z

1

µ

Z

1

0

Z(y)e°y/x dy

∂

x°s°1 dx

= I
1

(s)° I
2

(s),
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say. Note that in I
2

(s) the integral over y is uniformly bounded, so that I
2

(s)
is regular for æ > 0. To deal with I

1

(s) we shall use M. Jutila’s result (see [19,
Lemma 2]) that

L̃(p)ø 1, p =
1
T

+ iu, T > T
0

, 0 6 u 6 (T 1/2 log T )°1,

where
L̃(p) :=

Z 1

0

Z(t)H( 1

2

+ it)e°pt dt (<e p > 0)

with a precisely defined function H which satisfies

H( 1

2

+ it) = 1 + O

µ

1
|t|+ 1

∂

, H 0( 1

2

+ it) = O

µ

1
(|t|+ 1)2

∂

.

If we set k(t) = 1°H( 1

2

+ it), then

I
1

(s) = I
3

(s) + B(s),

say, where B(s) is regular for æ > 0 and

I
3

(s) :=
Z 1

1

µ

Z 1

0

Z(t)k(t)e°t/x dt

∂

x°1°s dx

=
Z 1

1

Z(t)k(t)t°s

µ

Z 1

0

e°uus°1 du

∂

dt = °(s)
Z 1

1

Z(t)k(t)t°s dt.

Finally note that the author [13] proved that

(3.6) I
1

(T ) ¥ F (T ) =
Z T

1

Z(y) dy = O"(T 1/4+"),

which was improved to F (T ) = O(T 1/4) by M. Korolev [22], who also proved that
F (T ) = ≠±(T 1/4). M. Jutila [20] gave a diÆerent proof of the same results by
establishing precise formulas for F (T ). Integration by parts and (3.6) show that
the

R1
1

Z(t)k(t)t°s dt represents a regular function even for æ > °3/4, implying
that I

3

(s), and consequently M
1

(s), admits analytic continuation to the region
æ > 0, where it is regular.

To obtain the pointwise bound (3.1) we use

(3.7) M
1

(s) = O
≥1

t

¥

+
Z X

t1°"

Z(x)x°s dx +
Z 1

X
Z(x)x°s dx,
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which is valid initially for æ > 1 and where X(¿ t) is a parameter to be chosen
a little later. One obtains (3.7) by using the argument in (2.12). Integration by
parts and (3.6) show that

(3.8)
Z 1

X
Z(x)x°s dx ø" t1+"X1/4°æ (æ > 1/4, X ø tC).

The remaining integral in (3.7) is split into O(log t) integrals of the form

Y 0
Z

Y

Z(x)x°s dx

= 2
Y 0
Z

Y

X

n6
p

x

2º

n°1/2 cos
≥

x log
p

x/(2º)
n

° 1

2

x° º
8

¥

x°s dx + O
≥

Y 0
Z

Y

x°1/4°æ dx
¥

,

where Y < Y 0 6 2Y , and we used a version of the classical Riemann–Siegel formula
(see e.g., [10, eq. (4.5)]) for Z(t). Interchanging summation and integration it is
seen that the expression on the right-hand side above is

(3.9) 2
X

n6
q

Y

0
2º

n°1/2

Z Y 0

max(Y,2ºn2
)

x°æeiF±(x) dx + O(Y 3/4°æ),

with

F±(x) := x log
p

x/(2º)
n

° 1
2
x° º

8
± t log x,

F 0±(x) = log
p

x/(2º)
n

± t

x
, F 00±(x) =

1
2x
® t

x2

.

Consider the contribution of F
+

(x), when F 0
+

(x) > 0. If Y > 4t then 1/(2x) >
2t/(x2), hence by the second derivative test (Lemma 2.1 of [10]) the sum in (3.9)
is ø Y 3/4°æ. If Y < t/2 then t/(x2) > 1/x, hence again by the second derivative
test we obtain a contribution which is

ø Y t°1/2 · Y 1/4°æ ø Y 3/4°æ.

If t/2 6 Y 6 4t, then F 0
+

(x)¿ 1, hence by the first derivative test we obtain again
a contribution which is ø Y 3/4°æ. A similar analysis holds for the contribution
of F°(x), when F 00°(x)¿ 1/x. Therefore we have

(3.10)
Z Y 0

Y
Z(x)x°s dx ø" t(3/4°æ)(1°") + X3/4°æ.
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Choosing X = t2 and noting that t3/2°2æ ¿ t°1 for æ 6 5/4 we obtain (3.1) from
(3.8) and (3.10).

Remark 2. For æ > 1/2 note that the bound in (3.1) is better than the bound

Z
1

(æ + it) ø" t1°æ+" (0 6 æ 6 1, t > t
0

> 0),

proved in [18], and for æ > 2/3 the bound with the exponent 5/6 ° æ + " proved
by M. Jutila [19].

The mean square bound (3.2) for M
1

follows by the method of proof of (see
[18, eq. (3.7)])

(3.11)
Z T

1

|Z
1

(æ + it)|2 dt ø" T 2°2æ+" (1/2 6 æ 6 1),

where instead of Atkinson’s formula [1] for the error term in the mean square
formula for |≥( 1

2

+ it)| we use Theorem 1 of M. Jutila [20], which is the analogue
of Atkinson’s formula for Z(t), so that there is no need to repeat the details. In
this way it is seen that for the mean square we do not obtain a better estimate for
M

1

than the one derived for Z
1

. In fact it was proved (see [12] and [14]) that

(3.12)
Z T

1

|Zk(æ + it)|2 dt ¿" T 2°2æ°" (k = 1, 2; 1

2

< æ 6 1),

and the lower bound in (3.3) is the analogue of (3.12) for M
1

. The proof also
bears similarities to the proofs of (3.12), but we shall give here a sketch of the
proof. From Theorem 2 (with c = 5

4

, U = X,x ≥ X) we have

Z(x) =
1

2ºi

5
4+iX
Z

5
4°iX

xs°1M
1

(s) ds + O(X°1/4)

=
1

2ºi

c+iX
Z

c°iX

xs°1M
1

(s) ds + O

√

Z

5
4

c
xæ°1|M

1

(c + iX)|dæ

!

+ O(X°1/4).

Now we use the bound (3.1) to obtain that the error terms above are

ø" X
1
2°c+" + X"° 1

4 ø" X°" (c > 1

2

+ 2").

Therefore

Z

2X

X
Z2(x) dxø

Z

2X

X

Ø

Ø

Ø

Ø

Ø

Z c+iX

c°iX
xs°1M

1

(s) ds

Ø

Ø

Ø

Ø

Ø

2

dx + X1°2".
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Since Z2(x) = |≥( 1

2

+ ix)|2 and
R

2X
X |≥( 1

2

+ ix)|2 dx¿ X log X, it follows that

(3.13) X log X ø
Z

5X/2

X/2

'(x)

Ø

Ø

Ø

Ø

Ø

Z X

1

xc+it°1M
1

(c + it) dt

Ø

Ø

Ø

Ø

Ø

2

dx,

as
Z

1

0

xs°1M
1

(s) dsø 1 (x ≥ X, 1

2

< c 6 1).

Here '(x) (> 0) is a smooth function supported in [X/2, 5X/2] and equal to unity
in [X, 2X]. When we develop the square on right-hand side of (3.13) and integrate
su±ciently many times by parts we obtain that

X log X ø
Z

5X/2

X/2

x2c°2

Z X

1

Z X

1,|u°t|6X"

|M
1

(c + it)M
1

(c + iu)|du dt dx

ø X2c°1

Z X

1

Z X

1,|u°t|6X"

√

|M
1

(c + it)|2 + |M
1

(c + iu)|2
!

du dt

ø" X2c°1+"

Z X

1

|M
1

(c + it)|2 dt,

since the contribution of |u ° t| > X" will be negligibly small. This implies the
assertion (3.3) with æ = c > 1

2

+ 2".

Proof of Theorem 5. Note that from Theorem 5 of Section 4 (with k = 3)
we obtain (cf. (1.4))

(3.14) I
3

(x) = 2º

r

2
3

X

n6(

x

2º

)

3/2

d
3

(n)n°
1
6 cos

°

3ºn
2
3 + 1

8

º
¢

+ O"(x3/4+").

Inserting (3.14) in (1.5) we see that

Z
3

(s) = V
1

(s) + V
2

(s),

where V
2

(s) (coming from the error term) is obviously regular for æ > 3/4 and sat-
isfies V

2

(s) = O(|s|+ 1). Therefore the main problem is the analytic continuation
of

(3.15) V
1

(s) := 2º

r

2
3
s

Z 1

1

x°s°1

X

n6(

x

2º

)

3/2

d
3

(n)n°
1
6 cos

°

3ºn
2
3 + 1

8

º
¢

dx.
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If in (3.15) we invert the order of summation and integration we get

(3.16)

V
1

(s) = °2º

r

2
3

1
X

n=1

d
3

(n)n°
1
6 cos

°

3ºn
2
3 + 1

8

º
¢

Z 1

2ºn2/3
d(x°s)

= (2º)1°s

r

2
3

1
X

n=1

d
3

(n)n°
1
6°

2s

3 cos
°

3ºn
2
3 + 1

8

º
¢

.

The series in (3.16) converges absolutely for æ > 5/4. This is trivial, and we seek
a better result. By considering the portion of the series in (3.16) over [X, 2X] (for
large X and s = æ + it fixed) we want to show that it is ø" X°", which provides
then the desired analytic continuation to the right of the æ–line. By using the
Stieltjes integral representation and then integration by parts, we are led to two
integrals, of which the relevant one is

(3.17) J(s; X) :=
Z

2X

X
¢

3

(x)x°
1
2°

2s

3 cos
°

3ºx
2
3 + 1

8

º
¢

dx.

On applying the truncated Perron inversion formula (see e.g., [10, Appendix]) we
have

(3.18) ¢
3

(x) =
1

2ºi

Z

1
2+iX

1
2°iX

≥3(w)xw

w
dw + O"(X") (X 6 x 6 2X),

where as usual ¢
3

(x) is the error term in the asymptotic formula for the sum-
matory function of d

3

(n). The error term in (3.18) contributes to the integral in
(3.17) ø" X

1
2°

2æ

3 +" ø" X°" for æ > 3/4. The main term in (3.18) produces

1
2ºi

Z

1
2+iX

1
2°iX

≥3(w)
w

√

Z

2X

X
x°2æ/3 exp(iF±(x)) dx

!

dw,

where

w = 1

2

+ iv, s = æ + it, F±(x) :=
°

v ° (2t)/3
¢

log x± 3ºx2/3.

Note that the saddle point

x
0

=
µ

|v ° (2t)/3|
2º

∂

3/2

2 [X, 2X] (for v ≥ X2/3),

in which case |F±(x
0

)|°1/2 ≥ X2/3. Hence by the saddle-point method the total
contribution to (3.18) is ø" X(2/3)(1°æ)+", and this provides the desired analytic
continuation of Z

3

(s) only to æ > 1 as before. One can make the calculation of
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(3.17) simpler by making the change of variable x2/3 = y, after ¢
3

(x) is replaced
by (3.18). However at present I do not see any better way to tackle the problem
of the analytic continuation of Z

3

(s), although I feel that it can be done.

Remark 3. It is curious that obviously the shapes of Mk(s) for k = 1, 2, 3, 4
(the cases when we know something relevant) are totally diÆerent! The fact that
Z(x) is an oscillating function, while |≥( 1

2

+ix)| is non-negative is reflected in what
we expect: M

2`(s) = Z`(s) should have a pole of order `2 + 1 at s = 1, while
M

2`°1

(s) should be regular at s = 1, at least for 1 6 ` 6 4.

4. The cubic moment of Z(t)

Let, as usual, dk(n) denote the number of ways n can be written as a product
of k factors, so that dk(n) is the multiplicative function generated by ≥k(s). In
particular, d

1

(n) ¥ 1 and d
2

(n) ¥ d(n), the number of divisors of n. To prove the
second part of Theorem 4 we need the case k = 3 of

THEOREM 6. For fixed k = 1, 2, 3, 4 we have

(4.1)

2T
Z

T

Zk(t) dt = 2º

r

2
k

X

(

T

2º

)

k/26n6(

T

º

)

k/2

dk(n)n°
1
2+

1
k cos

°

kºn
2
k + 1

8

(k ° 2)º
¢

+ . . . + O"(T k/4+"),

where + . . . denotes terms similar to the one on the right-hand side of (4.1), with

the similar cosine term, but of a lower order of magnitude.

Proof of Theorem 6. For Zk(t) we shall use a finite, smoothed sum, which is
a form of the so-called approximate functional equation. One could also use a form
of the approximate functional equation which comes from the so-called “reflection
principle” (see e.g., Chapter 4 of [10]). However, to have a symmetric expression
we shall use essentially a variant of the approximate functional equation for ≥k(s)
which is to be found in Chapter 4 of [11]. To this end let Ω(x) be a non-negative,
smooth function supported in [0, 2] , such that Ω(x) = 1 for 0 6 x 6 1/b for a fixed
constant b > 1, and Ω(x) + Ω(1/x) = 1 for all x (an explicit construction of Ω(x)
was given in [11]). Let ø = ø(k, t) be defined as

(4.2) log ø = °k
¬0(1

2

+ it)
¬( 1

2

+ it)
.

We write

(4.3) ¬(s) = ºs°1/2

°( 1

2

° 1

2

s)
°( 1

2

s)
=

µ

2º

t

∂æ+it°1/2

ei(t+º/4)

µ

1 + O
≥1

t

¥

∂
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by using Stirling’s formula for the gamma-function. Here s = æ + it, 0 6 æ 6
1, t > t

0

> 0, and note that the O-term in (4.3) admits an asymptotic expansion
in terms of negative powers of t. Therefore

¬0( 1

2

+ it)
¬( 1

2

+ it)
= log

µ

2º

t

∂

+ O

µ

1
t2

∂

,

and we obtain

(4.4) ø =
µ

t

2º

∂k µ

1 + O

µ

1
t2

∂∂

,

and again the O-term in (4.4) admits an asymptotic expansion in terms of negative
powers of t. In the course of the proof of Theorem 5.2 of [11] it was shown that
(1ø x, y ø tk, xy = ø, s = æ + it, t > t

0

> 0, 0 6 æ 6 1)

(4.5) ≥k(s) =
1
X

n=1

dk(n)Ω
≥n

x

¥

n°s + ¬k(s)
1
X

n=1

dk(n)Ω
≥n

y

¥

ns°1 + Rk(t),

say, where for any fixed A > 0

(4.6) Rk(t) ø" t°A + t"°1

Z t"

°t"

|≥(æ + it° " + iv)|k dv.

Thus from (4.3)–(4.6) we obtain, with b = 2,æ = 1

2

, x = y =
p

ø , t > t
0

> 0 the
following

LEMMA 2. We have

(4.7)

Z

2T

T
Zk(t) dt = 2

Z

2T

T

X

n62

p
ø

Ω
≥ np

ø

¥

dk(n)n°1/2 cos Fk(t) dt + . . .

+ O

√

T "°1

Z

5T/2

T/2

|≥( 1

2

+ it)|k dt

!

,

where ø is given by (4.2) and (4.4), + . . . denotes terms similar to the one on the

right-hand side of (4.7), but of a lower order of magnitude, and where

(4.8) Fk(t) := t log

(

≥

t
2º

¢k/2

n

)

° kt

2
° kº

8
.
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To evaluate the left-hand side of (4.7) we write first

(4.9)

2
Z

2T

T

X

n62

p
ø

Ω
≥ np

ø

¥

dk(n)n°1/2 cos Fk(t) dt

= 2
X

n6T0

dk(n)n°1/2<e
n

Z

2T

T1

Ω
≥ np

ø

¥

eiF
k

(t) dt
o

.

Here

T
0

= 2
p

ø(k, 2T ) = 2
µ

T

º

∂k/2

µ

1 + O
≥ 1

T 2

¥

∂

, T
1

= max
≥

T, ø°1(k, (n/2)2
¥

,

where ø°1 is the inverse function of ø , so that

ø°1(k, (n/2)2) = 2º
≥n

2

¥

2/k
µ

1 + O
≥ 1

T 2

¥

∂

.

Now we split the range of summation over n on the right hand side of (4.9) as
follows. Let

(4.10)

I
1

:=

"

1,

µ

T

2º

∂k/2

° T k/2°1/2+"

!

,

I
2

:=

"

µ

T

2º

∂k/2

° T k/2°1/2+",

µ

T

2º

∂k/2

+ T k/2°1/2+"

!

,

I
3

:=

"

µ

T

2º

∂k/2

+ T k/2°1/2+",

µ

T

º

∂k/2

° T k/2°1/2+"

#

,

I
4

:=

√

µ

T

º

∂k/2

° T k/2°1/2+",

µ

T

º

∂k/2

+ T k/2°1/2+"

#

,

I
5

:=

√

µ

T

º

∂k/2

+ T k/2°1/2+", T
0

#

.

In the integrals over where n 2 I
1

and n 2 I
5

we integrate by parts, writing

(4.11)
Z

Ω
≥ np

ø

¥

eiF
k

(t) dt =
Z Ω

≥

np
ø

¥

i log
©

(t/2º)k/2/n
™ deiF

k

(t).
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Note that the derivatives of Ω
≥

n/
p

ø
¥

, considered as a function of t, decrease after
each integration by parts by a factor of t, while in

P

n2I1

R

we have

(4.12)

√

1
log

©

(t/2º)k/2/n
™

!

0

= ° 2
kt log2

©

(t/2º)k/2/n
™

ø"
1

T log2

n

CT k/2

T k/2
+O(T k/2°1/2+"

)

o ø" T°2".

Therefore if we integrate by parts su±ciently many times, the contribution will
be negligible. The sums over the integrated terms are essentially partial sums of
≥k( 1

2

+iu), u ≥ T , when we remove the monotonic coe±cients Ω from the sums over
n by partial summation. The resulting sums are bounded by Perron’s inversion
formula (see e.g., the Appendix of [10]). Since ≥( 1

2

+ it) ø tc for some c < 1/6
(ibid., Chapter 7), we see that

(4.13)
X

n2I1

+
X

n2I5

ø T k/6.

Note that (cf. (4.8))

(4.14) F 0k(t) = log
©

(t/2º)k/2/n
™

, F 00k (t) = k/(2t).

The integrals when n 2 I
2

[ I
4

are estimated as ø T 1/2 by the second derivative
test (see Chapter 2 of [10]), and then trivial estimation gives

(4.15)
X

n2I2

+
X

n2I4

ø" T 1/2T k/2°1/2+"T°k/4 = T k/4+".

Finally when, in (4.9), we have n 2 I
3

, then the saddle point (root of F 0k(t) = 0),
namely

(4.16) t
0

¥ cn := 2ºn2/k

lies in [T
1

, 2T ]. For
R

2T
T1

we could use a general result on exponential integrals,
such as the following [21, Lemma III.2], which says that

(4.17)

Z b

a
'(x) exp

≥

2ºif(x)
¥

dx =
'(c)

p

f 00(c)
e2ºif(c)+ºi/4 + O(HAU°1)

+ O
°

H min(|f 0(a)|°1,
p

A
¢

+ O
°

H min(|f 0(b)|°1,
p

A
¢



Mellin transforms of powers of Hardy’s function 51

if f 0(c) = 0, a 6 c 6 b, and the following conditions hold: f(x) 2 C4[a, b], '(x) 2
C2[a, b], f 00(x) > 0 in [a, b], f 00(x) ≥ A°1, f (3)(x)ø A°1U°1, f (4)(x)ø A°1U°2,
'(r)(x) ø HU°r (r = 0, 1, 2) in [a, b], 0 < H, A < U, 0 < b ° a 6 U . In our case
f(x) = 1

2º Fk(x), so that f 00(c) = k/(4ºc), and

(4.18)
'(cn)

p

f 00(cn)
e2ºif(c

n

)+ºi/4 = º

r

2
k

n
1
k exp

µ

°kºin
2
k +

(2° k)ºi

8

∂

n

1 + O
° 1
T 2

¢

o

.

But, as remarked in [13], in our case the last two error terms in (4.17) are large,
and thus it is more expedient to carry out the evaluation by the saddle point
technique directly, that is, by using a suitable contour in the complex plane.

To this end, if T
1

= T (the other case is similar) let L
1

be the segment T°iv (0 6
v 6 1p

2

T 1°"), L
2

is the segment x ° i 1p
2

T 1°" (0 6 x 6 cn ° 1p
2

T 1°"), L
3

is the
segment cn+ve 1

4 ºi, ° 1p
2

T 1°" 6 v 6 1p
2

T 1°", L
4

is the segment x+i 1p
2

T 1°" (cn+
1p
2

T 1°" 6 x 6 2T ), and finally L
4

is the segment joining the points 2T + i 1p
2

T 1°"

and 2T .
As a simplification we develop Ω(n/

p
ø) by Taylor’s formula at the point t

0

= cn

when t 2 [cn ° T 1°", cn + T 1°"], and at other appropriate points for other values
of t. An alternative approach is to use the Mellin inversion formula:

Ω(x) =
1
2º

Z d+i1

d°i1
R(s)x°s ds (d > 0), R(s) =

Z 1

0

Ω(x)xs°1 dx.

The function R(s) is odd, and of fast decay.
As already noted the derivatives of Ω(n/

p
ø), considered as a function of t,

decrease each time by a factor of t. Since the length of the interval is 2T 1°",
it is possible to take finitely many terms in Taylor’s formula so that the total
contribution of the error term is negligible, namely ø 1. The remaining integrals
will be all of the same type, with the same exponential factor, and the largest one
will be the first one, namely the one with (cn = 2ºn2/k)

Ω

√

n
p

ø(k, cn)

!

= Ω

µ

n

n(1 + O(T°2)

∂

= Ω(1) + O(T°2) =
1
2

+ O(T°2),

since Ω(x) + Ω(1/x) = 1. Here actually the O-term above has an asymptotic
expansion. After that we replace the subinterval integral over [T

1

, 2T ], by Cauchy’s
theorem, by [5

j=1

R

L
j

. Therefore

(4.19)

2
X

n2I3

dk(n)n°1/2<e
n

Z

2T

T1

Ω
≥ np

ø

¥

eiF
k

(t) dt
o

= 2
X

n2I3

dk(n)n°1/2<e
n

5

[

j=1

Z

L
j

eiF
k

(z) dz
o

+ . . . ,
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where + . . . has the same meaning as before. On L
3

we have (since F 0k(cn) = 0)

(4.20) iFk(z) = iFk(cn) + i
v2

2!
e

1
2 ºiF 00k (cn) + i

v3

3!
e

3
4 ºiF 000k (cn) + i

v4

4!
F (4)

k (cn) + · · · .

Note that, since v ø T 1°",

(4.21) vmF (m)

k (cn) øm," Tm(1°")T 1°m = T 1°m" (m > 1).

Hence if we choose M = M(k, ") su±ciently large, then (4.7) shows that the terms
of the series in (4.20) for m > M , on using exp z = 1 + O(|z|) for |z| 6 1, will
make a negligible contribution. We have

exp(iFk(z)) = exp(iFk(cn)) exp(° 1

2

v2F 00(cn)) exp

√

M
X

m=3

dmvmF (m)(cn)

!

with dm = exp((m+2)ºi
4

)/m!. The last exponential factor is expanded by Taylor’s
series, and again the terms of the series (with vm) for large m will make a negligible
contribution. In the remaining terms we restore integration over v to the whole
real line, making a very small error. Then we use the classical integral (see e.g.,
the Appendix of [10])

(4.22)
Z 1

°1
exp(Ax°Bx2) dx =

r

º

B
exp

µ

A2

4B

∂

(<e B > 0).

By diÆerentiating (4.22) as a function of A we may explicitly evaluate integrals of
the type

Z 1

°1
x2m exp(°Bx2) dx (<eB > 0, m = 0, 1, 2, . . . ).

It transpires that the largest contribution (=
p

º) will come from the integral with
m = 0, which will coincide with the contribution of the main term in (4.17).

It remains to deal with the remaining integrals over Lj . The integrals over L
1

and L
5

, and likewise the integrals over L
2

and L
4

are estimated analogously. On
L

4

we have

z = x + iH, cn +
Hp
2

6 x 6 2T , H = T 1°".

On using Taylor’s formula we obtain

exp(iFk(z)) = exp(iFk(x)° i
H2

2!
F 00k (x) + . . . ) exp(°HF 0k(x) +

H3

3!
F 000k (x)° . . . ).



Mellin transforms of powers of Hardy’s function 53

Similarly as in (4.21) it follows that we may truncate the series after a finite
number of terms with a negligible error. Observe that the real-valued term in the
exponential is negative, and that the derivative of the imaginary part is dominated
by

F 0k(x) = log
°

x
2º

¢k/2

n
> log

≥

n2/k + H/
p

2
¥k/2

n

= log
≥

1 +
Hp

8ºn2/k

¥k/2

> AkHT°1 = AkT°"

for some constant Ak > 0. Hence by the first derivative test the total contribution
of such terms is

(4.23) ø" T k/4+".

On L
5

we have z = 2T + iy, 0 6 y 6 H, H = T 1°". This gives

iFk(z) = iFk(2T )° yF 0k(2T )° i
y2

2!
F 00k (2T ) +

y3

3!
F 000k (T )° . . . ,

where, as before, we may truncate the series after a finite number of terms with a
negligible error. Therefore the integral over L

5

becomes

ieiF
k

(2T )

Z H

0

ef(y)eig(y) dy,

say, with real-valued

f(y) = °yF 0k(2T ) +
y3

3!
F 000k (T ) . . . , g(y) = °y2

2!
F 00k (2T ) +

y4

4!
F (4)

k (2T ) + . . . .

Then we have
Z H

0

=
Z

p
T

0

+
Z H

p
T

= J
1

+ J
2

,

say. We write J
1

as

J
1

= ° 1
F 0k(2T ) + y2

2!

F 000k (2T ) . . .

Z

p
T

0

eig(y) d
≥

ef(y)

¥

and integrate by parts. We obtain the same type of exponential integral, only
smaller by a factor of

ø y
F 00k (2T )
F 0k(2T )

ø T 1/2 · 1
T
· T 1/2°" = T°",
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since

F 0k(2T ) > log
(T/º)k/2

n
> log

(T/º)k/2

(T/º)k/2 ° T k/2°1/2+"
> T "°1/2.

This means that, after su±ciently many integrations by parts, the ensuing integral
will be negligible, while the integrated terms will be ø T k/4+" as in (4.9). Finally
in J

2

yF 0k(2T )° y3

3!
F 000k (T ) . . . > CT 1/2 · T "°1/2 = CT ",

so that ef(y) is negligibly small. The net result of our considerations is that in the
evaluation of the right-hand side of (3.1) the main terms, arising from the saddle
point terms, are given by (4.18), while all the error terms are ø" T k/4+".

Remark 4. With a more careful analysis one can get rid of the terms implied
by + . . . in (4.1). The same also follows if one uses an idea of Prof. Matti Jutila,
who kindly informed me that the above proof may be simplified as follows. The
method may be traced back to E.C. Titchmarsh [28, p. 261], and a sketch is as
follows. Note that

Z

2T

T
Zk(t) dt = °i

Z

1
2+2iT

1
2+iT

¬°k/2(s)≥k(s) ds

= °i

√

Z

1+"+2iT

1+"+iT
+

Z

1+"+iT

1
2+iT

°
Z

1+"+2iT

1
2+"+iT

!

¬°k/2(s)≥k(s) ds.

On æ = 1 + " we have ≥k(s) =
P1

n=1

dk(n)n°s, so that the above expression is
seen to be

1
X

n=1

dk(n)n°1°"

Z

2T

T

≥ t

2º

¥

k

4 +

k"

2
eiF

k

(t) dt + O",k(T k/4+")

for k 6 4. The exponential integral is evaluated by (4.17), and Theorem 6 will
follow. I am grateful to Prof. Jutila for pointing this out to me.

5. Natural boundaries

If a Dirichlet series F (s) has a (meromorphic) continuation to <e s > æ
0

, then
the line <e s = æ

0

is said to be the natural boundary of F (s) if the poles of F (s) are
dense on <e s = æ

0

, so that F (s) cannot be continued analytically to <e s 6 æ
0

.
The history of natural boundaries for Dirichlet series goes at least back to T.
Estermann [9]. For example, one has

1
X

n=1

d2

k(n)n°s = ≥k2
(s)

Y

p

Pk(p°s) (<e s > 1),

Pk(u) := (1° u)2k°1

k
X

n=0

µ

k ° 1
n

∂

2

uk,
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and Estermann showed that the above Euler product has meromorphic continua-
tion to <e s > 0, but has the line <e s = 0 as the natural boundary when k > 2.
In fact, his result holds for a class of Dirichlet series of which the above product
is a special case. Estermann’s results were generalized by G. Dahlquist [5], and
recent investigations include the works of G. Bhowmik and J.-C. Schlage–Puchta
[2], [3].

If A(s) =
P1

n=1

ann°s in its region of absolute convergence <e s > æa, then by
Perron’s inversion formula

(5.1)
X

n6x

an =
1

2ºi

Z c+i1

c°i1
A(s)

xs

s
ds (x 62 N, c > æa).

In practice one wants to shift the line of integration in (5.1) to the left, to reduce
the contribution of the term xs. This is possible only if A(s) is holomorphic on
the new path. If æ = æ

0

(< æa) is the natural boundary of F (s), then we cannot
have c 6 æ

0

, hence the usefulness of (5.1) is limited if æ
0

exists. This is one of the
reasons which makes the study of natural boundaries of Dirichlet series important.

The interest in natural boundaries for Zk(s) begins with the notes of A. Dia-
conu [7], followed by the author’s notes [16], and the papers of Diaconu, Garrett,
Goldfeld [8] and Y. Motohashi [25]. Note that Zk(s) does not have an Euler prod-
uct, which makes the problem more di±cult. It is conjectured in all these works
that the analytic continuation of Z

3

(s) (¥ M
6

(s)) has <e s = 1

2

as the natural
boundary, and that, more generally, Zk(s) for k > 3 has <e s = 1

2

as the natural
boundary. A full proof of this important claim concerning Zk(s) would be most
welcome. The basic idea that leads to it is simple, and is open to generalizations.
Namely on p. 2 of [6] (or p. 3 of [7]) it is said that the analytic continuation of
(s, w are complex variables)

(5.2)
Z 1

1

≥m

n

¥ix
L(s

1

+ ix)L(s
2

° ix)x°w dx

produces the analytic continuation of

(5.3)
Z 1

1

|F (æ + ix)L(æ + ix)|2 x°w dx, F (s) =
1
X

n=1

f(n)n°s

under some reasonable conditions, simply by squaring out |F |2 and summing over
the relevant m,n. In Proposition 2.6 on p. 3 this approach is discussed when L is
the zeta-function of a holomorphic cusp form of weight ∑ for SL(2, Z).

If in (5.3) we take F = ≥, L = ≥2,æ = 1

2

, then we have to observe that Z
2

(s) has

(see Section 1) infinitely many poles at s = 1

2

±i∑j

≥

∑j =
q

∏j ° 1

4

¥

. Heuristically,
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when we sum over various m, n in (5.2) to get the analytic continuation of Z
3

(w),
each of the poles 1

2

± i∑j will be somewhat perturbed. Their totality will be dense
on the 1

2

–line, and will produce the 1

2

–line as the natural boundary for Z
3

(w).
Inasmuch as this seems plausible, a rigorous proof is in order.

Suppose that one has found the analytic continuation of Z
3

(w) to the right
of the 1

2

–line. Then it is seems plausible that Z
3

(w) (being more complex that
Z

2

(w)) will have infinitely many poles as well. Where are these poles located?
One does not expect them be too near the 1

2

–line, so the 3

4

–line is a very good
candidate to contain infinitely many poles of Z

3

(w). But by the principle inherent
in (5.2)–(5.3), then the 3

4

–line would be a natural barrier for Z
4

(w), and so on –
each Zk(w) would, with increasing k, have poles nearing the 1–line.

The recent work of Y. Motohashi [25] on (5.3) (when L = ≥2) supports the
claim that Z

3

(s) has æ = 1/2 as the natural boundary. The author says: “Our
theorem suggests that the Mellin transform

R1
1

|≥(1

2

+ ix)|6x°s dx should have the
line <e s = 1/2 as a natural boundary... The same was also speculated also by a
few people other than us, but it appears that our theorem is so far the sole explicit
evidence supporting the observation.”

The natural boundary of Z
3

(s) on <e s = 1/2 indicates certainly a complicated
structure of the error term E

3

(T ) for the sixth moment of |≥( 1

2

+it)|, but in itself it
does not exclude the possibility of the bound E

3

(T )ø" T 1/2+". If E
3

(T )ø" T µ+"

with µ as small as possible, then Z
3

(s) would have singularities on <e s = µ, if
1/2 < µ < 1. Inasmuch as it seems plausible (to me) that µ = 3/4, this is a major
unsolved problem.

Remark 5. I believe that (P
9

(y) is an explicit polynomial of degree nine)
Z T

0

|≥( 1

2

+ it)|6 dt = TP
9

(log T ) + E
3

(T ),

E
3

(T ) = O"(T 3/4+"), E
3

(T ) = ≠(T 3/4)

holds, where the main term TP
9

(log T ) is the one predicted by Conrey et al. [4].
However in [4] the error term is indicated to be (in all cases) O"(T 1/2+"), which I
do not think can be true.

In what concerns the true order of higher moments of |≥( 1

2

+ it)|, the situation
is even more unclear. Already for the eighth moment it is hard to ascertain what
goes on, much less for the higher moments. The main term for the general 2k-th
moment should involve a main term of the type suggested by [2], but it could turn
out that the error term

Ek(T ) =
Z T

0

|≥( 1

2

+ it)|2k dt° TPk2(log T ) (k 2 N)

in the general case (when k > 4) contains expressions which make it larger than
the term TPk2(log T ). For this see the discussion in [12] (also [24, pp. 218-219]).
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Essentially the argument is as follows. In general, from the knowledge about the
order of Ek(T ) one can deduce a bound for ≥( 1

2

+ iT ) via the estimate

(5.5) ≥( 1

2

+ iT ) ø (log T )(k
2
+1)/(2k) +

≥

log T max
t2[T°1,T+1]

|Ek(t)|
¥

1/(2k)

,

which is Lemma 4.2 of [11]. The conjectured bounds

(5.6) Ek(T ) ø" T k/4+" (k 6 4)

all imply ≥( 1

2

+ it) ø" |t|1/8+", which is out of reach at present, but is still much
weaker than the Lindelöf hypothesis that ≥( 1

2

+ it) ø" |t|". On the other hand,
we know that the omega-result

(5.7) Ek(T ) = ≠(T k/4)

hold for k = 1, 2, and as already explained, there are reasons to believe that (5.7)
holds for k = 3. Perhaps it holds for k = 4 also, but the truth of (5.7) for any k > 4
would imply that the Lindelöf hypothesis is false, and ipse facto the falsity of the
Riemann hypothesis (that all complex zeros of ≥(s) satisfy <e s = 1/2). Namely
it is well-known (see e.g., [10] or [28]) that the Riemann hypothesis implies even
log |≥( 1

2

+ it)| ø log |t|/ log log |t|, which is stronger than the Lindelöf hypothesis
(, log |≥( 1

2

+ it)| ø" " log |t|). The reason why, in general, (5.7) makes sense is
that a bound Ek(T )ø T c

k for some fixed k (> 4) with ck < k/4 would imply (by
(5.5)) the bound ≥(1

2

+ it) ø" |t|ck

/(2k)+" with ck/(2k) < 1/8. But the most one
can get (by using (5.5)) from the error term in the mean square and the fourth
moment of |≥( 1

2

+ it)| is the bound

≥( 1

2

+ it) ø" |t|1/8+".

It does not appear likely to me that, say from the twelfth moment (k = 6), one
will get a better pointwise estimate for ≥( 1

2

+ it) than what one can get from the
mean square formula (k = 1). Nothing, of course, precludes yet that this does not
happen, just that it appears to me not to be likely. As in all such dilemmas, only
rigorous proofs will reveal in due time the real truth.
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[5] G. Dahlquist, On the analytic continuation of Eulerian products, Ark Mat. 1(1952), 533-554.
[6] A. Diaconu, The function Z3(w) has natural boundary, Notes of October 24, 2006.
[7] A. Diaconu, P. Garrett and D. Goldfeld, Natural boundaries and a correct notion of integral

moments of L-functions, preprint, 2009.
[8] A. Diaconu, D. Goldfeld and J. HoÆstein, Multiple Dirichlet series and moments of zeta and

L-functions Compos. Math. 139(2003), 297-360.
[9] T. Estermann, On certain functions represented by Dirichlet series, Proc. London Math. Soc.

27(1926), 435-448.
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