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Abstract

This paper gives a complete four-parameter solution of the simul-
taneous diophantine equations x + y + z = u + v + w, x

3 + y

3 + z

3 =
u

3 + v

3 + w

3
, in terms of quadratic polynomials in which each para-

meter occurs only in the first degree. This solution is much simpler
than the complete solutions of these equations published earlier. This
simple solution is used to obtain solutions of several related diophan-
tine problems. For instance, the paper gives a parametric solution
of the arbitrarily long simultaneous diophantine chains of the type
x

k
1 + y

k
1 + z

k
1 = x

k
2 + y

k
2 + z

k
2 = . . . = x

k
n + y

k
n + z

k
n = . . . , k = 1, 3.

Further, the complete ideal symmetric solution of the Tarry-Escott
problem of degree 4 is obtained, and it is also shown that any arbitrar-
ily given integer can be expressed as the sum of four distinct nonzero
integers such that the sum of the cubes of these four integers is equal
to the cube of the given integer.

Keywords: equal sums of powers; equal sums of cubes;
Tarry-Escott problem; diophantine chains.

Mathematics Subject Classification: 11D25

Introduction

This paper is concerned with the simultaneous diophantine equations,

x + y + z = u + v + w, (1)
x

3 + y

3 + z

3 = u

3 + v

3 + w

3
, (2)

and various related diophantine problems. Gerardin gave partial solutions
of these simultaneous equations in 1915–16 (as quoted by Dickson [8, pp.
565, 713] and additional partial solutions were given by Bremner [1]. Subse-
quently, complete solutions (apart from a multiplicative factor) were given
in terms of cubic polynomials in four variables by Bremner and Brudno [2],
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as well as by Labarthe [9]. A complete solution in terms of eight variables
was given by Choudhry [4, p. 299-301].

We note that since each of the equations (1) and (2) is homogeneous, if
x, y, z, u, v, w, is a solution in rational numbers of these simultaneous equa-
tions, so is Ωx, Ωy, Ωz, Ωu, Ωv, Ωw, where Ω is any nonzero rational number,
and all such proportional solutions will be considered equivalent. It fol-
lows that any solution of the simultaneous equations (1) and (2) in rational
numbers, yields on appropriate scaling, a solution in integers.

In this paper we give, in Section 2, a new complete solution of the simul-
taneous diophantine equations (1) and (2) in terms of quadratic polynomials
in four parameters such that each parameter appears in the solution only in
the first degree. This solution is thus much simpler than all the complete
solutions published earlier and is of particular interest since it yields solu-
tions to various other related diophantine problems, and also because the
diophantine system given by (1) and (2) has applications in mathematical
physics [1, 2, 3, 9]. As an immediate consequence of this solution, we obtain
the complete solution of the diophantine system

x

k + y

k = u

k + v

k + w

k
, k = 1, 3, (3)

for which only a partial solution had been given earlier by Gerardin (as
quoted in [8, p. 708]).

The simple solution of Section 2 is used in Section 3 to obtain two para-
metric solutions of the equations (1) and (2) which are in turn used in Section
4 to obtain arbitrarily long simultaneous diophantine chains of the type

x

k
1 + y

k
1 + z

k
1 = x

k
2 + y

k
2 + z

k
2 = . . . = x

k
n + y

k
n + z

k
n = . . . , k = 1, 3. (4)

While a method of generating numerical chains of this type was earlier given
by Choudhry [5], in this paper a parametric solution of these chains is given.
We further show how to generate arbitrarily long simultaneous diophantine
chains of the type

x1 + y1 + z1 = x2 + y2 + z2 = . . . = xn + yn + zn = . . . ,

x

3
1 + y

3
1 + z

3
1 = x

3
2 + y

3
2 + z

3
2 = . . . = x

3
n + y

3
n + z

3
n = . . . ,

x1y1z1 = x2y2z2 = . . . = xnynzn = . . . .

(5)

In Section 5 we use the results of Section 2 to obtain the complete ideal
symmetric solution of the Tarry-Escott problem of degree 4. This solution
is much simpler than the complete solution of this problem given earlier in
[6]. We also show that any arbitrarily given integer can be expressed as the
sum of four distinct nonzero integers such that the sum of the cubes of these
four integers is equal to the cube of the given integer. Finally, we obtain a
parametric solution of the simultaneous diophantine equations

X + Y + Z = 3,

X

3 + Y

3 + Z

3 = 3.

(6)
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2 The complete solution of the simultaneous dio-

phantine equations (1) and (2)

It is easily seen that all trivial solutions of the equations (1) and (2) are
given by x, y, z being a permutation of u, v, w, or by x, y, z being taken
as {f, °f, h} in some order and u, v, w being taken as {g, °g, h} in some
order where f, g, h are arbitrary. We now prove a theorem that gives all
nontrivial solutions of these equations.
Theorem 1: All nontrivial solutions of the simultaneous diophantine equa-
tions (1) and (2), apart from a multiplicative factor, are given by

x = pq ° pr + qr + (°p + q + r)s,
y = °pq + pr + qr + (p° q + r)s,
z = pq + pr ° qr + (p + q ° r)s,
u = pq + pr ° qr + (p° q + r)s,
v = pq ° pr + qr + (p + q ° r)s,
w = °pq + pr + qr + (°p + q + r)s,

(7)

where p, q, r and s are arbitrary integer parameters.
Proof: To solve the above diophantine system, we make the invertible linear
transformation given by

x = °X + Y + Z, u = °U + V + W,

y = X ° Y + Z, v = U ° V + W,

z = X + Y ° Z, w = U + V °W,

(8)

and
X = (y + z)/2, U = (v + w)/2,

Y = (z + x)/2, V = (w + u)/2,

Z = (x + y)/2, W = (u + v)/2,

(9)

when equations (1) and (2) are transformed to the following two equations
respectively:

X + Y + Z = U + V + W, (10)
(X + Y + Z)3 ° 24XY Z = (U + V + W )3 ° 24UV W. (11)

In view of (10), equation (11) reduces to

XY Z = UV W. (12)

To solve the simultaneous equations (10) and (12), we write

X = pa, Y = qb, Z = rc,

U = qa, V = rb,W = pc,

(13)
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where p, q, r, a, b, c, are arbitrary parameters. With these values of X, Y, Z,

U, V, W, equation (12) is identically satisfied while equation (10) becomes,

(p° q)a + (q ° r)b + (r ° p)c = 0. (14)

It is readily seen that a solution of (14) may be written as

a = r + s, b = p + s, c = q + s, (15)

where s is an arbitrary parameter. Substituting these values of a, b, c in
(13), we obtain the values of X, Y, Z, U, V, W which, on being substituted
in (8) yield the solution (7) of the simultaneous equations (1) and (2).

It is clear that integer values of the parameters p, q, r and s generate
integer solutions of the diophantine system given by (1) and (2). We shall
now show that conversely, any nontrivial integer solution of these equations
is generated by suitably chosen integer values of the parameters p, q, r and
s.

Let (x, y, z, u, v, w) = (Æ, Ø, ∞, ª, ¥, ≥) be any given nontrivial integer
solution of the diophantine system given by the equations (1) and (2) so
that,

Æ + Ø + ∞ = ª + ¥ + ≥, (16)
Æ

3 + Ø

3 + ∞

3 = ª

3 + ¥

3 + ≥

3
. (17)

It follows that

(Æ + Ø + ∞)3 ° (Æ3 + Ø

3 + ∞

3) = (ª + ¥ + ≥)3 ° (ª3 + ¥

3 + ≥

3), (18)

which, on simplification, gives the relation,

(Æ + Ø)(Ø + ∞)(∞ + Æ) = (ª + ¥)(¥ + ≥)(≥ + ª). (19)

We will show that the parametric solution (7) generates the given solution
(Æ, Ø, ∞, ª, ¥, ≥) if we choose the following integer values of the parameters
p, q, r, s :

p = (Æ + ∞)(Ø + ∞)(Ø ° ª),
q = (Æ + ∞)(Ø ° ª)(¥ + ≥),
r = (Ø ° ª)(ª + ≥)(¥ + ≥),
s = (Æ° ¥)(Æ + ∞)(¥ + ≥).

(20)

With these values of the parameters, and with x, y, z, u, v, w defined by
(7), the following relations are readily verified:

(¥ + ≥)y + (¥ + ≥)z ° (Ø + ∞)v ° (Ø + ∞)w = 0, (21)
(ª + ≥)x + (ª + ≥)z ° (Æ + ∞)u° (Æ + ∞)w = 0, (22)
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Further, we find that

x + y

u + v

=
(ª + ≥)(¥ + ≥)
(Ø + ∞)(Æ + ∞)

,

=
Æ + Ø

ª + ¥

, in view of (19),
(23)

which gives the relation,

(ª + ¥)x + (ª + ¥)y + (°Æ° Ø)u + (°Æ° Ø)v. (24)

Similarly we find that

x + z

v + w

=
Æ + ∞

Æ + Ø + ∞ ° ª

=
Æ + ∞

¥ + ≥

, in view of (16), (25)

which gives the relation,

(¥ + ≥)x + (¥ + ≥)z + (°Æ° ∞)v + (°Æ° ∞)w. (26)

We also note that x, y, z, u, v, w defined by (7) identically satisfy the rela-
tion (1). Thus, with p, q, r, s defined by (20), the solution x, y, z, u, v, w

given by (7) satisfies the five linear equations (1), (21), (22), (24) and (26).
Applying Cramer’s rule to solve these five equations, and repeatedly using
the relation (16) for simplification, we get

x

kÆ

=
y

kØ

=
z

k∞

=
u

kª

=
v

k¥

=
w

k≥

, (27)

where
k = °2(Æ + ∞)(¥ + ≥)(∞ ° ≥). (28)

Since (Æ, Ø, ∞, ª, ¥, ≥) is a nontrivial solution of the equations (1) and
(2), we must have k 6= 0, and it now follows from (27) that

x : y : z : u : v : w = Æ : Ø : ∞ : ª : ¥ : ≥. (29)

This shows that when we choose p, q, r and s as given by (20), the solution
generated by (7) is equivalent to the given solution. Thus all nontrivial
solutions of the simultaneous equations (1) and (2) are generated by taking
suitable integer values of the parameters p, q, r, s in the solution (7). This
proves the theorem.

We note that (7) also generates some, but not all, trivial solutions of (1)
and (2). For instance, it follows from (20) and the above computations that
(7) generates the trivial solution

x = Æ, y = Ø, z = ∞, u = Æ, v = ∞, z = Ø, (30)
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where Æ, Ø, ∞ are arbitrary, if we choose the following values of the parame-
ters p, q, r and s:

p = (Æ° Ø)(Æ + ∞)(Ø + ∞),
q = (Æ° Ø)(Æ + ∞)(Ø + ∞),
r = (Æ° Ø)(Æ + Ø)(Ø + ∞),
s = °(Æ° ∞)(Æ + ∞)(Ø + ∞).

(31)

This is also readily verified by direct computation.
We also note that if p, q, r are chosen to satisfy the triangle inequality,

the coe±cients of s in the values of x, y, z, u, v, w given by (7) are all
positive, and hence we can readily choose values of s such that (7) gives
a solution of equations (1) and (2) in positive integers. As a numerical
example, when p = 2, q = 3, r = 4, s = 1, we get the following solution:

3k + 15k + 17k = 5k + 11k + 19k
, k = 1, 3.

Corollary 2: All nontrivial solutions of the simultaneous diophantine equa-
tions

x

k + y

k = u

k + v

k + w

k
, k = 1, 3, (32)

are given by
x = (p2 ° 2pr + qr)q,
y = °(pq ° 2qr + r

2)p,

u = (q ° r)(pq + pr ° qr),
v = (°p° q + r)(p° q)r,
w = (p° r)(pr ° q

2),

(33)

where p, q, r are arbitrary parameters.
Proof: Since the theorem gives all nontrivial solutions of the simultaneous
equations (1) and (2), and this solution is linear in each of the parameters,
it readily yields all nontrivial solutions of the equations (1) and (2) with
z = 0. By choosing the parameter s such that z = 0, we get all nontrivial
solutions of the diophantine system (32) stated above. We further note that
by imposing the condition obtained by equating any one of x, y, u, v, w

to zero, and choosing s accordingly, we obtain solutions of (32) that are
eÆectively the same as the solution (33). This completes the proof.

3 Two parametric solutions

We now use the complete solution given in Theorem 1 to derive two
parametric solutions of the simultaneous equations (1) and (2). These para-
metric solutions will be used in the subsequent sections to obtain several
new relations concerning equal sums of integers and their cubes.
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Theorem 2: Two parametric solutions of the simultaneous equations (1)
and (2) are given by

x = Æ, y = Ø, z = ∞, u = Æ1, v = Ø1, w = ∞1, (34)

where
Æ1 =

(Æ3 ° ÆØ

2 ° ÆØ∞ ° Æ∞

2 + Ø

3 + ∞

3)
(Æ° Ø)(Æ° ∞)

,

Ø1 =
(Æ3 ° Æ

2
∞ ° ÆØ∞ + Ø

3 ° Ø

2
∞ + ∞

3)
(Æ° ∞)(Ø ° ∞)

,

∞1 = °(Æ3 ° Æ

2
Ø ° ÆØ∞ + Ø

3 ° Ø∞

2 + ∞

3)
(Æ° Ø)(Ø ° ∞)

,

(35)

with Æ, Ø, ∞ being arbitrary parameters, and by

x = µ(8µ2 + 27µ + 27),
y = °(2µ + 3)(5µ

2 + 15µ + 18),
z = (µ + 3)(8µ2 + 21µ + 18),
u = µ{2µ

4 + (12µ4 + 108µ3 + 351µ2 + 486µ + 243)∫2

+(6µ

4 + 27µ3 + 27µ2)∫}{(2µ

2 + 9µ + 9)∫2 + µ

2
∫}°1

,

v = (µ + 3)(2µ + 3){3µ

4 + (8µ

4 + 72µ

3 + 234µ

2 + 324µ + 162)∫2

+(6µ

4 + 27µ3 + 27µ2)∫}{µ3 + (2µ

2 + 9µ + 9)µ∫}°1
,

w = °{2µ

4 + (8µ

4 + 72µ

3 + 234µ

2 + 324µ + 162)∫2

+(2µ

4 + 9µ

3 + 9µ

2)∫}(µ∫)°1
,

(36)

where µ and ∫ are arbitrary parameters.
Proof: We will now use the complete solution (7) of equations (1) and (2) to
derive another solution of these equations in which x, y, z are proportionate
to Æ, Ø, ∞, that is, the solution satisfies the simultaneous equations

Øx = Æy, (37)
∞x = Æz, (38)

where Æ, Ø, ∞ are arbitrary. Substituting the values of x, y, z given by (7)
in (37) and (38), we get

Ø{pq ° pr + qr + (°p + q + r)s} = Æ{°pq + pr + qr + (p° q + r)s}, (39)
∞{pq ° pr + qr + (°p + q + r)s} = Æ{pq + pr ° qr + (p + q ° r)s}. (40)

To solve these simultaneous equations, we first observe that the trivial so-
lution (30), which satisfies the equations (37) and (38), is generated by the
values of p, q, r, s given by (31). Therefore, these values of p, q, r, s satisfy
the simultaneous equations (39) and (40) and we will use this solution to
obtain another solution of these equations. To obtain a rational solution
of (39) and (40), we must choose p, q, r such that the following condition,
obtained by eliminating s from (39) and (40) is satisfied:

(Æ + Ø)p2
q ° 2(Æ + Ø + ∞)pqr + (Æ + ∞)pr

2 + (Ø + ∞)q2
r = 0. (41)
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Treating Æ, Ø, ∞ as arbitrary constants, equation (41) is a cubic equation in
p, q, r, which represents a curve of genus 1 in the projective plane. Using
the known rational point on this curve given by (31), we readily find another
rational point on the curve (41) which is as follows:

p = (Æ° ∞)2(Æ + ∞)(Ø ° ∞)(Ø + ∞),
q = (Æ + Ø)(Æ° Ø)2(°Æ + ∞)(Æ + ∞),
r = (Æ + Ø)(Æ° Ø)(Ø + ∞)(Ø ° ∞)2.

(42)

With these values of p, q, r, equation (41) is satisfied and both equations (39)
and (40) are satisfied by the same rational value of s. We have thus solved
the simultaneous equations (39) and (40) for p, q, r, s with Æ, Ø, ∞ being
arbitrary. Substituting these values of p, q, r, s in (7), we get a solution
which, on appropriate scaling, yields the solution given by (34) and (35) as
stated in the theorem.

While equation (41) represents a curve of genus 1 for arbitrary values
of Æ, Ø, ∞, it is possible to choose values of Æ, Ø, ∞, such that the curve
represented by (41) has a singularity and thus reduces to a curve of genus
0. This happens when we choose

Æ = (8µ

2 + 27µ + 27)µ,

Ø = °(2µ + 3)(5µ

2 + 15µ + 18),
∞ = (µ + 3)(8µ

2 + 21µ + 18),
(43)

where µ is arbitrary, and with these values, the cubic curve (41) has a
singularity given by

p = °µ

2(2µ + 3), q = (µ + 3)(2µ + 3)2, r = µ(µ + 3)2, (44)

and we readily find another point on the curve (41) which is given by

p = (2µ

2
∫ + µ

2 + 9µ∫ + 9∫)2∫,

q = (2µ

2
∫ + µ

2 + 9µ∫ + 9∫)µ2
,

r = °(µ + 3)3µ∫

2
,

(45)

where ∫ is an arbitrary parameter. Proceeding as before, we obtain the
parametric solution (36) stated in the theorem.

The significance of the first parametric solution given in the theorem is
that, in general, given any three arbitrary rational numbers Æ, Ø, ∞, we can
find another set of three rational numbers Æ1, Ø1, ∞1, with the same sum
and the same sum of cubes. A more complicated solution of this type is
given in [5]. We note that if we choose Æ, Ø, ∞ such that the sum of any two
of these numbers is 0, the formulae (35) yield a trivial solution. Similarly,
we note that when the initial three rational numbers Æ, Ø, ∞, are taken as

∏(µ3 ° µ

2 + 1), ∏(µ3 ° 3µ

2 + 2µ° 1), ∏(°µ

3 + µ

2 ° 2µ + 1), (46)
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in some order, ∏, µ being arbitrary parameters, then the formulae (35) yield
the same set of numbers Æ, Ø, ∞, instead of giving a nontrivial solution of
the problem.

The second solution given in the theorem is interesting because x, y, z

are given in terms of a single parameter while u, v, w are given in terms of
two parameters. We use this fact eÆectively in the next Section.

4 Diophantine chains

In this section we obtain arbitrarily long simultaneous diophantine chains
involving equal sums of integers and their cubes.
Theorem 3: A parametric solution in rational numbers of the arbitrarily
long simultaneous diophantine chains

x

k
1 + y

k
1 + z

k
1 = x

k
2 + y

k
2 + z

k
2 = . . . = x

k
n + y

k
n + z

k
n = . . . , k = 1, 3, (47)

is given by

xi = µ{2µ

4 + (12µ

4 + 108µ

3 + 351µ

2 + 486µ + 243)∫2
i

+(6µ

4 + 27µ

3 + 27µ

2)∫i}{(2µ

2 + 9µ + 9)∫2
i + µ

2
∫i}°1

,

yi = (µ + 3)(2µ + 3){3µ

4 + (8µ

4 + 72µ3 + 234µ

2 + 324µ + 162)∫2
i

+(6µ

4 + 27µ

3 + 27µ

2)∫i}{µ3 + (2µ

2 + 9µ + 9)µ∫i}°1
,

zi = °{2µ

4 + (8µ

4 + 72µ3 + 234µ2 + 324µ + 162)∫2
i

+(2µ

4 + 9µ

3 + 9µ

2)∫i}(µ∫i)°1
,

(48)

where u and vi, i = 1, 2, . . . , n, . . . , are arbitrary rational parameters.
Proof: The parametric solution (48) of the simultaneous diophantine chains
(47) follows immediately from the solution (36) given in Theorem 2.

As a numerical example, taking µ = °1, and giving to ∫i the values
1, ±2, ±3, we get, on appropriate scaling, the following simultaneous dio-
phantine chains:

(°840)k + (°840)k + 1050k = (°1190)k + (°700)k + 1260k

= (°1974)k + (°651)k + 1995k

= (°2380)k + (°644)k + 2394k

= (°2790)k + (°640)k + 2800k
, k = 1, 3.

We now give an alternative procedure of generating diophantine chains of
the type (47). We have already observed that, with certain exceptions, given
three arbitrary distinct rational numbers Æ, Ø, ∞, we can use the solution
(34) to obtain rational numbers Æ1, Ø1, ∞1, such that the relations

Æ

k + Ø

k + ∞

k = Æ

k
1 + Ø

k
1 + ∞

k
1 , k = 1, 3, (49)



Ajai Choudhry 68

are satisfied. We can then repeat this process taking Æ1, Ø1, ∞1, as the initial
numbers in (34) and thus obtain rational numbers Æ2, Ø2, ∞2, such that the
relations

Æ

k
1 + Ø

k
1 + ∞

k
1 = Æ

k
2 + Ø

k
2 + ∞

k
2 , k = 1, 3, (50)

are satisfied. We can continue this process indefinitely and thus obtain a
solution of the simultaneous diophantine chains (47). It can be proved,
following the lines of a similar proof given in [5, pp. 136-137], that by a
suitable choice of rational numbers Æ1, Ø1, ∞1, we can obtain an arbitrarily
long chain of the type (47).

We also note that in view of the identity,

Æ

3 + Ø

3 + ∞

3 ° 3ÆØ∞ = (Æ + Ø + ∞)(Æ2 + Ø

2 + ∞

2 ° ÆØ ° Ø∞ ° ∞Æ), (51)

if we choose the initial rational numbers Æ, Ø, ∞ such that Æ + Ø + ∞ = 0,

then the above process will give arbitrarily long simultaneous diophantine
chains of type (5).

As a numerical example, starting with the three rational numbers as
1, 2, °3, we get a chain which, on appropriate scaling, leads to the following
simultaneous diophantine chains in integers:

(°242606760)k + 80868920k + 161737840k

= (°517561088)k + 12130338k + 505430750k

= (°281011375)k + 48582831k + 232428544k
, k = 1, 3,

and
(°242606760)£ 80868920£ 161737840

= (°517561088)£ 12130338£ 505430750
= (°281011375)£ 48582831£ 232428544.

Such diophantine chains have, in eÆect, been given earlier in [7, pp. 141-143]
where the result is obtained and presented diÆerently.

5 Some additional results

In this section we derive some new results from the solutions obtained
in the previous sections.
5.1 Theorem 4: All nontrivial ideal symmetric solutions of the Tarry-
Escott problem of degree 4, that is, of the diophantine system

x

k
1 + x

k
2 + x

k
3 + x

k
4 + x

k
5 = y

k
1 + y

k
2 + y

k
3 + y

k
4 + y

k
5 , k = 1, 2, 3, 4, (52)

are given by
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x1 = (p2 ° 2pr + qr)q,
x2 = °(pq ° 2qr + r

2)p,

x3 = °(q ° r)(pq + pr ° qr),
x4 = (p + q ° r)(p° q)r,
x5 = °(p° r)(pr ° q

2),
yi = °xi, i = 1, 2, 3, 4, 5,

(53)

where p, q, r are arbitrary parameters.
Proof: All symmetric solutions of the diophantine system (52) are obtained
by writing yi = °xi, i = 1, 2, . . . , 5 when the problem reduces to solving
the simultaneous equations

x

k
1 + x

k
2 + x

k
3 + x

k
4 + x

k
5 = 0, k = 1, 3. (54)

We note that the simultaneous equations (32), on suitably transposing and
renaming the variables, become exactly identical to the equations (54), and
accordingly the solution (33) of (32) immediately yields all nontrivial solu-
tions of (54). We thus obtain all nontrivial ideal symmetric solutions of the
diophantine system (52) as stated in the theorem. This completes the proof.
5.2 Theorem 5: Any arbitrarily given integer can be expressed as the
sum of four distinct nonzero integers such that the sum of the cubes of these
four integers is equal to the cube of the given integer.
Proof: We substitute p = N ° 1, q = °N, r = N in the solution (33) to
get two identities which, on suitable transposition and renaming of variables,
may be written as follows:

N = N1 + N2 + N3 + N4,

N

3 = N

3
1 + N

3
2 + N

3
3 + N

3
4 ,

(55)

where

N1 = 2N

3
, N2 = (2N

2 ° 1)N,

N3 = °(2N + 1)(N ° 1)N, N4 = °(N + 1)(2N ° 1)N.

(56)

The above identities prove that all integers except N 6= 0, ±1, can be
expressed as stated in the theorem. Further, the identities,

0 = a

k + (°a)k + b

k + (°b)k
, k = 1, 3,

1 = 7 + 8 + (°5) + (°9),
13 = 73 + 83 + (°5)3 + (°9)3,

su±ce to prove the theorem when N = 0, ±1. This completes the proof.
5.3 Theorem 6: A parametric solution of the simultaneous diophantine
equations

X + Y + Z = 3,

X

3 + Y

3 + Z

3 = 3,

(57)
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is given by
X = u/{µ(µ + 3)(2µ + 3)},
Y = v/{µ(µ + 3)(2µ + 3)},
Z = w/{µ(µ + 3)(2µ + 3)},

(58)

where u, v, w, are defined by (36) and µ, ∫ are arbitrary parameters.
Proof: With u, v, w, defined by (36), it is readily verified that

u + v + w = 3µ(µ + 3)(2µ + 3), (59)
u

3 + v

3 + w

3 = 3µ

3(µ + 3)3(2µ + 3)3. (60)

It follows from these identities that when X, Y, Z, are defined by (58), then
the simultaneous equations (57) are satisfied. This proves the theorem.
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