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ON RAMACHANDRA’S CONTRIBUTIONS TO

TRANSCENDENTAL NUMBER THEORY

Michel WALDSCHMIDT

Dedicated to Professor K. Ramachandra on his 70th birthday

The title of this lecture refers to Ramachandra’s paper in Acta Arithmetica [36],

which will be our central subject: In section 1 we state his Main Theorem, in section

2 we apply it to algebraically additive functions. Next we give new consequences

of Ramachandra’s results to density problems; for instance we discuss the following

question: let E be an elliptic curve which is defined over the field of algebraic numbers,

and let Γ be a finitely generated subgroup of algebraic points on E; is Γ dense in E(C)

for the complex topology? The other contributions of Ramachandra to transcendental

number theory are dealt with more concisely in section 4. Finally we propose a few

open problems.

The author wishes to convey his best thanks to the organizer of the Madras Con-

ference of July 1993 in honor of Professor Ramachandra’s 60th birthday, R. Balasub-

ramanian, for his invitation to participate, which provided him the opportunity to

write this paper. Next he is grateful to the organizer of the Bangalore Conference

of December 2003 in honor of Professor Ramachandra’s 70th birthday, K. Srinivas,

for his invitation to participate, which provided him the opportunity to publish this

paper. He is also glad to express his deep gratitude to Professor K. Ramachandra

for the inspiring role of his work and for his invitation to the Tata Institute as early

as 1976.

1. Ramachandra’s Main Theorem

Hilbert’s seventh problem on the transcendence of αβ (for algebraic α and β)

was solved in 1934 by Gel’fond and Schneider, using two different approaches:

while Gel’fond’s solution [14] involved the differential equation (d/dz)ez = ez of

the exponential function, Schneider’s proof [45] rested on the addition formula

ez1+z2 = ez1ez2 . Later, both methods were developed and applied to other functions,

notably the elliptic functions. In particular Schneider in [46] proved an elliptic analog

of the theorem on the transcendence of αβ, using the differential equation which

is satisfied by a Weierstrass elliptic function: ℘′2 = 4℘3 − g2℘ − g3. Sometimes,

one refers to Schneider’s method when no derivative is needed, and to Gel’fond’s
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method when differential equations are there; but, as pointed out by A. Baker, this

terminology is somewhat deficient, since for instance Schneider’s early results on

elliptic functions [46] involve derivatives, and furthermore the first result on functions

of several variables (which yields the transcendence of the values of the Beta function

at rational points) has been proved by Schneider in [47] using a variant of Gel’fond’s

method!

The first general criterion dealing with analytic or meromorphic functions of one

variable and containing the solution to Hilbert’s seventh problem appears in [48]; in

fact one can deduce the transcendence of αβ from this criterion by both methods,

either by using the two functions z and αz (Schneider’s method), or else ez and

eβz (Gel’fond’s method). This criterion is somewhat complicated, and Schneider

made successful attempts to simplify it [49]; however these last results deal only with

Gel’fond’s method, i.e. derivatives are needed. A further simplification for functions

satisfying differential equations was provided by Lang later ([21] and [22]); the so-

called Schneider-Lang criterion was used by Bertrand and Masser to derive Baker’s

Theorem on linear independence of logarithms, as well as its elliptic analog [5]; also

it was extended to functions of several variables by Bombieri, solving a Conjecture

of Nagata [6].

Thus the situation for functions satisfying differential equations (Gel’fond’s

method) is rather satisfactory; but it is not the same for Schneider’s method. The

difficulty of providing simple criteria without assuming differential equations is illus-

trated by examples due to Weierstrass, Stäckel and others (see [29]). The work of

Ramachandra which we consider here deals with this question. Simple criteria are

known, the first one being Pólya’s Theorem: there is no entire function which is not

a polynomial, which maps the natural integers into Z, and which has a growth order

less than 2z (see [15] Chap. III, §2, for related results, [60] and [63] for surveys, and

[59] for a proof which is inspired by Ramachandra’s work).

The first part of [36] contains an introduction, the statement of some results and

of the Main Theorem, and the proof of it. The second part is devoted to corollaries

of the Main Theorem. We reproduce here the Main Theorem.

We denote by Q̄ the field of complex algebraic numbers (algebraic closure of Q
in C). The size of an algebraic number α is defined by sizeα = denα + α , where

denα is the denominator of α (the least natural integer d such that dα is an algebraic

integer) and α is the house of α (maximum of the absolute values of the complex

conjugates of α). We also need the following definition: an entire function f in C is
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of order ≤ % if there exists C > 0 such that for R ≥ 1

log sup
|z|=R

|f(z)| ≤ CR%.

(1) Let d ≥ 2 be a natural number and % a positive real number; for 1 ≤ i ≤ d, let gi
and hi be two entire functions without common zeros, of order ≤ %, and let M (i)(R)

denote the quantity

M (i)(R) =

(
1 + max

|z|=R
|hi(z)

)(
1 + max

|z|=R
|gi(z)

)
.

Assume further that the d meromorphic functions fi = hi/gi, (1 ≤ i ≤ d) are

algebraically independent over C.

(2) Let (ζµ)µ≥1 be an infinite sequence of distinct complex numbers, and (nµ)µ≥1 be a

non-decreasing sequence of natural numbers with limµ→∞ nµ =∞. For Q ≥ 1, define

N(Q) = Card{µ; µ ≥ 1, nµ ≤ Q} and D(Q) = max
nµ≤Q

|ζµ|,

and assume

lim inf
Q→∞

logN(Q)

logD(Q)
> %.

(3) Let (µr)r≥1 be a sequence of integers such that the number

N1(Q) = Card{µr; r ≥ 1, nµr ≤ Q}

tends to infinity as Q tends to infinity. Suppose that whenever a polynomial in

f1, . . . , fd vanishes at all points ζµr with nµr ≤ Q, then it vanishes also at all points

ζµ with nµ ≤ Q.

(4) Suppose that the numbers fi(ζµ) (for 1 ≤ i ≤ d and µ ≥ 1) are all algebraic

numbers; denote by ∂(Q) the degree of the field obtained by adjoining the algebraic

numbers

fi(ζµ), (1 ≤ i ≤ d, 1 ≤ µ ≤ Q)

to the field of rational numbers, and set

M
(i)
1 (Q) = 1 + max

nµ≤Q

{
size
(
fi(ζµ)

)}
, (1 ≤ i ≤ d).

(5) Finally set

M
(i)
2 (Q) = 1 + max

nµ≤Q

1

|gi(ζµ)|
, (1 ≤ i ≤ d).
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Main Theorem of [Ramachandra 1968]. Let q be a sufficiently large natural

number, and L1, . . . , Ld natural numbers related to q asymptotically by

L1 · · ·Ld ∼ ∂(q)
(
∂(q) + 1

)
N1(q).

Suppose that the hypotheses (1) — (4) above are satisfied. Then there exists a

natural number Q, greater than q, such that for every positive quantity R, there

holds

1 ≤
(

8D(Q)

R

)N(Q−1) s∏
i=1

((
M

(i)
1 (Q)

)8∂(Q)
M

(i)
2 (Q)M (i)(R)

)Li
.

Remark: It would be interesting to write down a proof of this result by means of

Laurent’s interpolation determinants (see [24], [25], [26], [27] and [64]): instead of

using Dirichlet’s box principle (lemma of Thue-Siegel) for constructing an auxiliary

function, one considers the matrix of the related system of equations, and one

estimates (from below using Liouville’s inequality, from above thanks to Schwarz’s

lemma) a non-vanishing determinant. It is to be expected that such an argument will

produce a slightly different explicit inequality, but it is unlikely that these differences

will have any effect on the corollaries.

Further works in this direction have been developed; see in particular [57], [30],

[59], [16], [17], [34].

The paper [7] can be considered as the first extension of Ramachandra’s Theorem

to higher dimension; more recent results connected with functions of several variables

are given in [62].

2. Pseudo-algebraic points of algebraically additive functions

a) Statement of Ramachandra’s upper bound

When f is a meromorphic function in the complex plane and y is a complex number,

we shall say that y is a pseudo-algebraic point of f if either y is a pole of f or else

f(y) is an algebraic number (this is the definition in [36] p. 84).

Let f1, . . . , fd be meromorphic functions; we define δ(f1, . . . , fd) (which is either

a non-negative integer or else ∞) as the dimension of the space of pseudo-algebraic

point of fi.

This notation is convenient to state a few classical transcendence results: the

Theorem of Hermite-Lindemann is δ(z, ez) = 0, the Theorem of Gel’fond-Schneider

can be stated either as

– (Gel’fond’s method): for any irrational algebraic number β, δ(ez, eβz) = 0;
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– (Schneider’s method): for any non-zero complex number t, δ(z, etz) ≤ 1.

Schneider’s results on elliptic functions (see for instance [49] Chapitre 2 §3 Théorèmes

15, 16 et 18) can also be stated as follows:

if ℘ and ℘∗ are Weierstrass elliptic functions with algebraic invariants g2, g3, g
∗
2, g
∗
3, if

β and γ are non-zero algebraic numbers such that the two functions ℘(z) and ℘∗(γz)

are algebraically independent, if ζ is the Weierstrass zeta function associated to ℘,

and if a, b are algebraic numbers with (a, b) 6= (0, 0), then

δ
(
eβz, ℘(z)

)
= 0, δ

(
℘(z), az + bζ(z)

)
= 0

and

δ
(
℘(z), ℘∗(γz)

)
= 0. (1)

These results of Schneider on elliptic functions depend heavily on the fact that these

functions satisfy differential equations with algebraic coefficients. The main point in

Ramachandra’s work is that similar results are achieved for functions which do not

satisfy differential equations with algebraic coefficients. In place of derivatives, the

addition theorem which is satisfied by these functions plays a crucial role. According

to [36] p. 85, a meromorphic function f is said to possess an algebraic addition theorem

if there exists a non-zero polynomial P ∈ C[T1, T2, T3] such that the meromorphic

function of three variables P
(
f(z1 + z2), f(z1), f(z2)

)
is the zero function. Further,

if there is such a polynomial P with algebraic coefficients, then f will be called

algebraically additive.

If f1, . . . , fd are algebraically additive functions, then the set of common pseudo-

algebraic points of f1, . . . , fd can be shown to be a Q-vector space, and δ(f1, . . . , fd)

is nothing else than the dimension of this vector space. The fundamental result in

part II of [36] (Theorem 1 p. 74) is the following upper bound for this dimension:

Ramachandra’s δ–Theorem. – Let f1, . . . , fd, with d ≥ 2, be algebraically

independent meromorphic functions; assume that for 1 ≤ i ≤ d, the function fi
is algebraically additive and is of order ≤ %i. Define

κ =

{
1 if f1, . . . , fd have a common non-zero period,

0 otherwise.

Then

δ(f1, . . . , fd) ≤
%1 + · · ·+ %d − κ

d− 1
.
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Lang’s criterion for Schneider’s method in [22] (Chapter 2, Theorem 2) is the

following special case:

For d = 2 the inequality δ(f1, f2) ≤ 2%∗ holds with %∗ = max{%1, %2}. (2)

We quote from [36] p. 87: “It may be possible to improve the bound for the

dimension given by Theorem 2 probably to 1 in all cases; but even a slight improvement

such as ≤ %∗+ (%∗−κ)/d appears to be very difficult”. (We have substituted κ and d

to θ and s respectively to cope with our own notations). The number %∗ stands for

max{%1, . . . , %d}, while %∗ stands for min{%1, . . . , %d}.
It is quite remarkable that no substantial improvement of Ramachandra’s δ–

Theorem has been obtained after more than a quarter of a century!

We now describe one situation where the assumption of Ramachandra’s δ–Theorem

are satisfied, and nevertheless the estimate δ(f1, . . . , fd) ≤ 1 does not hold. Take a

Weierstrass elliptic function ℘ with algebraic invariants g2 and g3; let t be a non-zero

complex number; consider the two functions f1(z) = z and f2(z) = ℘(tz). From

Ramachandra’s δ–theorem follows δ
(
z, ℘(tz)

)
≤ 2. To start with, assume equality

holds: let α and β be two Q-linearly independent common pseudo-algebraic points

of f1 and f2; then u = tα and v = tβ are Q-linearly independent common pseudo-

algebraic points of ℘, and the quotient γ = u/v = α/β is algebraic irrational; hence

δ
(
℘(z), ℘(γz)

)
≥ 1; from Schneider’s above mentioned theorem (1) with ℘∗ = ℘, we

deduce that the two functions ℘(z) and ℘(γz) are algebraically dependent; now γ is

irrational, hence we are in the so-called “CM case”: when (ω1, ω2) is a fundamental

pair of periods, τ = ω2/ω1 is an imaginary quadratic number and the associated

elliptic curve has a non trivial ring of endomorphisms.

Conversely, if ℘ has complex multiplications, for any t ∈ C× the set of common

pseudo-algebraic points of the two functions z and ℘(tz) is a Q(τ)-vector space,

and therefore δ
(
z, ℘(tz)

)
is even; one example where this vector space has positive

dimension is when t is a rational multiple of a period of ℘; for instance

δ
(
z, ℘(ω1z)

)
= 2.

We repair Ramachandra’s Conjecture as follows:

Ramachandra’s δ–Conjecture. – For any non-zero complex number t and any

Weierstrass elliptic function ℘ (resp. ℘∗) with algebraic invariants g2, g3 (resp. g∗2, g
∗
3),

assuming the two functions ℘(tz) and ℘∗(z) are algebraically independent,

δ
(
ez, etz

)
≤ 1, δ

(
ez, ℘(tz)

)
≤ 1, δ

(
℘(tz), ℘∗(z)

)
≤ 1.
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The first inequality is equivalent to the so-called four exponentials Conjecture,

which was apparently known to Siegel (see [1]), which was also considered by A.

Selberg in the early 40’s (personal communication, Hong-Kong, July 1993) and later

was proposed by Lang in [22]; an equivalent question is the first of Schneider’s eight

problems in [49]:

Four exponentials Conjecture. – Let x1, x2 be two Q-linearly independent

complex numbers, and y1, y2 be also two Q-linearly independent complex numbers;

then one at least of the four numbers

ex1y1 , ex1y2 , ex2y1 , ex2y2

is transcendental.

A partial result can be proved (which is called the five exponentials Theorem in [62];

the fifth number is ex1/x2). A result which is stronger than both the six and the five

exponentials Theorems, but which does not include the four exponentials Conjecture,

is due to D. Roy [43]). Denote by L̃ the set of linear combinations of logarithms of

algebraic numbers, which is the Q̄-vector space spanned by {1} ∪ {` ∈ C; e` ∈ Q̄×}.

Theorem (D. Roy). – If x1, x2, x3 are Q̄-linearly independent complex numbers

and y1, y2 are Q̄-linearly independent complex numbers, then one at least of the six

numbers xiyj is not in L̃.

b) Sketch of proof of Ramachandra’s δ–Theorem as a consequence of Ramachandra’s

Main Theorem

The deduction of the δ–Theorem from the Main Theorem is by no means trivial;

Ramachandra had to use Weyl’s criterion of equidistribution in order to check the

hypotheses concerning the poles of the elliptic functions. Another approach is due to

Serre (see lemma 3.4 p. 46 of Waldschmidt, 1973]). Here, in this sketch of proof, we

hardly quote problems arising from the poles.

Inside the group of common pseudo-algebraic points of f1, . . . , fd, select a finitely

generated subgroup Y = Zy1 + · · · + Zy` of rank `. In case κ = 1, choose

for y1 a common period to f1, . . . , fd. Let h1, h2, . . . be a numbering of Z`, with

hµ = (h1µ, . . . , h`µ), (µ ≥ 1), such that the sequence

nµ = max
{
|h1µ|, . . . , |h`µ|

}
, (µ ≥ 1)

is non-decreasing, and define the sequence ζ1, ζ2, . . . by

ζµ = h1µy1 + · · ·+ h`µζ`, (µ ≥ 1),
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so that{
ζµ, µ ≥ 1

}
=
{
h1y1 + · · ·+ h`ζ`, h = (h1, . . . , h`) ∈ Z`

}
= Zy1 + · · ·+ Zy`.

In fact the poles of any fi should be removed from this sequence; even more, any point

which is too close to a pole should also be omitted, in order to estimate M
(i)
2 (Q);

but, as mentioned above, we give here only a sketch of the proof. Suitable positive

constants c0, c1, . . . are then selected, which do not depend on the large integer q, so

that the Main Theorem can be used with the following inequalities:

∂(q) ≤ c0, M (i)(R) ≤ exp(c1R
%i), (1 ≤ i ≤ d),

c2Q
` ≤ N(Q) ≤ c3Q

`, D(Q) ≤ c4Q,

max{M (i)
1 (Q),M

(i)
2 (Q)} ≤ exp(c5Q

%i), (1 ≤ i ≤ d).

In the case where κ = 1, we define {µ1, µ2, . . .} as the sequence of integers µ such

that h1µ = 0, and we use the bound

N1(Q) ≤ c6Q
`−κ;

in the case κ = 0, we define µr = r, (r ≥ 1), and again we have the same upper

bound for N1(Q). Now choose

Li =
[
c7q

λ−%i
]
, (1 ≤ i ≤ d), with λ = (`− κ+ %1 + · · ·+ %d)/d,

and choose also R = c10Q, where c10 is sufficiently large, so that the desired conclusion

follows from the Main Theorem.

Remark: We need to take for Li natural integers; we have introduced an integral

part, but we need to check that Li does not vanish; hence the sketch of proof is valid

only when

λ > %∗, where %∗ = max{%1, . . . , %d}.

This condition can be written

%∗ ≤ %1 + . . .+ %d + `− κ
d

;

since the goal is to prove the upper bound ` ≤ (%1 + · · · + %d − κ)/(d − 1), we may

consider that this condition on %∗ is satisfied as soon as

%∗ ≤ %1 + . . .+ %d − κ
d− 1

;

this assumption occurs explicitly in Theorem 1 p. 74 of [36]; however it is possible

to remove it, by means of an induction argument on d; see p. 78 of [57] and p. 52 of

[58].
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The statement of Theorem 1 in [36] also involves a notion of weighted sequences

which has been used in [57].

c) Corollaries

We first provide a collection of upper bounds for δ(f1, . . . , fd), where fi are

either linear, or exponential, or elliptic functions; all these estimates follow from

Ramachandra’s δ–Theorem.

We start with Gel’fond-Schneider’s Theorem (already quoted above): for any non-

zero complex number t, δ(z, etz) ≤ 1.

Another example which do not involve elliptic functions is the six exponentials

Theorem (see below): if x1, . . . , xd are Q-linearly independent complex numbers with

d ≥ 2, then δ
(
ex1z, . . . , exdz

)
≤ d/(d − 1). As a matter of fact it suffices to select

either d = 2 or else d = 3 to cover all cases (see below).

The next examples all involve elliptic functions. Notations are as follows:

℘, ℘∗, ℘1, . . . are Weierstrass elliptic functions, all of whose invariants g2, g3,g
∗
2, g
∗
3,. . .

are algebraic. The numbers t, t∗, t1, . . . are non-zero complex numbers, while

ω, ω∗, ω1 . . . are respectively non-zero periods of ℘, ℘∗, ℘1, . . . Then

δ
(
z, ℘(z)

)
≤ 2,

δ
(
ez, ℘(tz)

)
≤ 3, δ

(
e2πiz, ℘(ωz)

)
≤ 2,

δ
(
℘(tz), ℘∗(z)

)
≤ 4, δ

(
℘(ωz), ℘∗(ω∗z)

)
≤ 3,

δ
(
ez, ℘(tz), ℘∗(t∗z)

)
≤ 2,

δ
(
℘1(t1z), ℘2(t2z), ℘3(z)

)
≤ 3, δ

(
℘1(ω1z), ℘2(ω2z), ℘3(ω3z)

)
≤ 2,

δ
(
℘1(t1z), ℘2(t2z), ℘3(t3z), ℘4(z)

)
≤ 2.

We tacitly assumed that the functions we consider are algebraically independent; by

the way, it was a non-trivial problem to provide explicit conditions which guarantee

the algebraic independence of the functions; an important contribution to this

question is Lemma 7 in [36] p. 83; this problem has been solved later in [8].

We now consider more closely a few of these results.

Example 1. δ
(
z, etz

)
. – Hilbert’s seventh problem by Schneider’s method

Corollary 1. – Let α be a non-zero complex algebraic number, and β an irrational

algebraic number; choose any determination logα of the logarithm of α with logα 6= 0

in case α = 1. Then αβ = exp(β logα) is a transcendental number.

Proof: This statement (Theorem of Gel’fond-Schneider) follows from Ramachandra

δ–Theorem by taking

d = 2, f1(z) = z, f2(z) = αz = exp(z logα), %1 = 0, %2 = 1, κ = 0;
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since y1 = 1 is a common pseudo-algebraic point of f1 and f2, we deduce δ(f1, f2) = 1,

and hence β is not a pseudo-algebraic point of f2, which means that αβ is a

transcendental number.

Notice that Lang’s above mentioned criterion (2) for Schneider’s method in [22]

does not cover the transcendence of αβ: the point is that the orders of the two

functions are 0 and 1 respectively, and it is not sufficient to consider the maximum

of both numbers.

Example 2. δ
(
ez, etz

)
. – The six exponentials Theorem

The story starts with Ramanujan’s study of highly composite numbers; see [1],

[20], [21], [22], [36], [37]; see also [2], [58] and [64] for further references.

Corollary 2. – Let x1, . . . , xd be Q-linearly independent complex numbers, and

y1, . . . , y` be also Q-linearly independent complex numbers; assume that the d`

numbers

exiyj , (1 ≤ i ≤ d, 1 ≤ j ≤ `)

are all algebraic; then d` ≤ d+ `.

Proof. Take

fi(z) = exiz and %i = 1 for 1 ≤ i ≤ d.

Example 3: δ
(
ez, ℘(tz)

)
Corollary 3. – Let λ1, . . . , λ` be complex numbers which are linearly independent

over Q such that the ` numbers eλj ,(j = 1, . . . , `) are algebraic. Let ℘ be a Weierstrass

elliptic function with algebraic invariants g2, g3, and let v1, . . . , v` be pseudo-algebraic

point of ℘, not all of which are zero.

a) If ` ≥ 4, then the matrix with 2 rows and ` columns(
λ1 . . . λ`
u1 . . . u`

)
has rank 2.

b) Assume λ1 is a rational multiple of 2πi, and u1 is a period of ℘; then the same

conclusion holds for ` = 3.

c) If Ramachandra’s δ–Conjecture δ
(
ez, ℘(tz)

)
≤ 1 holds, the same conclusion is valid

already for ` ≥ 2.

A nice consequence of part b) of this statement is Corollary p. 87 of [36] which we

reproduce here:
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If a and b are real positive algebraic numbers different from 1 for which log a/ log b

is irrational and a < b < a−1, then one at least of the two numbers

x =

(
1

240
+
∞∑
n=1

n3an

1− an

)
∞∏
n=1

(1− an)−8,

y =

{
6

(b1/2 − b−1/2)4
− 1

(b1/2 − b−1/2)2
−
∞∑
n=1

n3an(bn + b−n)

1− an

}
∞∏
n=1

(1− an)−8,

is transcendental.

Ramachandra deduces from his results some new transcendental complex numbers,

by means of the clean trick (p. 68): if x and y are real numbers, then the complex

number x+ iy is transcendental if and only if one at least of the two numbers x, y is

transcendental. Further consequences of this idea have been worked out by G. Diaz

in [11] and [12]. See also [68].

Example 4: δ
(
℘(tz), ℘∗(z)

)
We consider now two elliptic functions (compare with [36] p. 68).

Corollary 4. – Let ℘ and ℘∗ be two Weierstrass elliptic functions with algebraic

invariants g2, g3 and g∗2, g
∗
3 respectively; let u1, . . . , u` be Q-linearly independent

complex numbers, each of which is a pseudo-algebraic point of ℘; similarly, let

u∗1, . . . , u
∗
` be pseudo-algebraic points of ℘∗ which are linearly independent over Q.

Assume that the two functions ℘(u1z) and ℘∗(u∗1z) are algebraically independent.

a) Assume ` ≥ 5. Then the matrix(
u1 . . . u`
u∗1 . . . u∗`

)
has rank 2.

b) Assume u1 is a period of ℘ and u∗1 is a period of ℘∗; then the rank of the matrix

is 2 also when ` = 4.

c) If Ramachandra’s δ–Conjecture δ
(
℘(tz), ℘∗(z)

)
≤ 1 holds, the same conclusion is

true if only ` ≥ 2.

An impressive collection of further consequences to Ramachandra’s Main Theorem

is displayed in [8] section III C. Several of the previous corollaries deal with elliptic

integrals of the first of second kind; further consequences concern elliptic integrals of

the third kind as well. More generally, a natural situation where all hypotheses are

satisfied is connected with analytic subgroups of commutative algebraic groups (see

for instance [57] §3 section 5:“Application du théorème de Ramachandra à l’étude de
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sous-groupes à un paramètre de certaines variétés de groupes”; see also [7] and [62]);

however it seems to the author that this is not exactly the right place to develop this

aspect of the theory.

3. Application to density statements

Ramachandra’s results on algebraic values of algebraically additive functions can be

used to prove some density results. We give here a sample of results dealing with

(R×)2, C×, R× × E(R), E(R) × E∗(R) and E(C). Further topological groups are

considered in [65].

a1)Consequences of the six exponentials Theorem: real case

Let γ1, . . . , γ` be multiplicatively independent elements in (R×+)2; write

γj = (αj, βj), (j = 1, . . . , `).

By means of a well-known result due to Kronecker1, one can show that the subgroup

Γ which is generated by γ1, . . . , γ` is dense in (R×+)2 if and only if for each s ∈ Z` \{0},
the matrix with three rows and ` columns

det

 logα1 · · · logα`
log β1 · · · log β`
s1 · · · s`


has rank 3. An obvious necessary condition is that for all (a, b) ∈ Z2 \ {0}, at least

two of the ` numbers

a logα1 + b log β1, . . . , a logα` + b log β`

are Q-linearly independent. We assume now that this condition is satisfied, and also

that the 2` numbers αj and βj are algebraic.

a) According to the six exponentials Theorem, if ` ≥ 4, then Γ is dense in (R×+)2.

For instance if ` = 4 and if the eight numbers αj, βj are multiplicatively

independent, the group Γ whose rank is 4 is dense in (R×+)2.

b) If we take for granted the four exponentials Conjecture (see section 2 a), Γ is dense

in (R×+)2 as soon as ` ≥ 3.

1 According to his own taste, the reader will find a reference either in

N. Bourbaki, Eléments de Mathématique, Topologie Générale, Herman 1974, Chap. VII, § 1, N◦1,

Prop. 2;

or else in

G.H. Hardy and A.M. Wright, An Introduction to the Theory of Numbers, Oxford Sci. Publ., 1938, Chap.

XXIII.
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For instance when ` = 3 and when the six numbers αj, βj are multiplicatively

independent, then we expect Γ to be dense in (R×+)2.

Example: the field Q(
√

2).

From the six exponentials Theorem follows that the subgroup of (R×)2, of rank 4,

which is generated by the images of

2
√

2− 1, −3
√

2− 1, 4
√

2− 1, 6
√

2− 1,

under the canonical embedding of the real quadratic field Q(
√

2), is dense in (R×)2.

If we knew the four exponentials Conjecture we could omit 6
√

2− 1 and get a dense

subgroup of rank 3.

a2) Consequences of the six exponentials Theorem: complex case

Consider ` multiplicatively independent complex numbers γ1, . . . , γ`. The subgroup

Γ of C× generated by γ1, . . . , γ` is dense if and only if for all s ∈ Z`+1 \{0}, the matrix

with three rows and `+ 1 columns 0 log |γ1| · · · log |γ`|
2πi log(γ1/γ1) · · · log(γ`/γ`)

s0 s1 · · · s`


has rank 3 (this condition clearly does not depend on the choice of the loga-

rithms log(γj/γj)). A first necessary condition is that at least two of the numbers

|γ1|, . . . , |γ`| are multiplicatively independent; a second necessary condition is that

the numbers γ1/|γ1|, . . . , γ`/|γ`| are not all roots of unity. These two conditions mean

that the projection of Γ on each of the two factors R×+ and R/Z which arises from

z 7→ (|z|, z/|z|), has a dense image. We assume that these conditions are satisfied,

and furthermore that the ` complex numbers γj are algebraic. According to the four

exponentials Conjecture, Γ should be dense in C× without any further assumption.

On the other hand, if we use the six exponentials Theorem, assuming that three at

least of the numbers |γ1|, . . . , |γ`| are multiplicatively independent, we deduce that Γ

is dense in C×.

Example: the field Q(i).

The subgroup of rank 3 in C× which is generated by

2 + i, 2 + 3i, 4 + i,

is dense C×. If the four exponential Conjecture holds, then for instance the subgroup

of rank 2 {
(2 + i)s2t; (s, t) ∈ Z2

}
,
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generated by 2 and 2 + i is dense in C×; a proof of this result would follow from a

special case of the four exponentials Conjecture: it would suffice to show that the

three numbers

log 2, log 5,
log 2

2πi
· log

(
3 + 4i

5

)
are Q-linearly independent, which means that for each (λ, µ) ∈ Q2, the determinant

det

 log 5 log 2

log

(
3 + 4i

5

)
+ 2λπi 2µπi


does not vanish. This is not yet known.

b) Product of the multiplicative group with an elliptic curve

Let ℘ be a Weierstrass elliptic function with real algebraic invariants g2, g3:

℘′
2

= 4℘3 − g2℘− g3;

the set of real points on the corresponding elliptic curve E, namely

E(R) =
{

(x : y : t) ∈ P2(R); y2t = 4x3 − g2xt2 − g3t3
}
,

has one or two connected components, according as the polynomial 4X3 − g2X − g3
has one or three real roots; we denote by E(R)0 the connected component of E(R)

which contains the origin (0 : 1 : 0); hence E(R)0 is a subgroup of E(R) of index

1 or 2. For simplicity of notation, when ω is a pole of ℘, then
(
℘(ω) : ℘′(ω) : 1

)
means (0 : 1 : 0). With this convention the map expE : u 7→

(
℘(u) : ℘′(u) : 1

)
is a

surjective homomorphism from R onto E(R)0 whose kernel is of the form Zω, where ω

is a fundamental real period of ℘. A point γ = expE(u) =
(
℘(u) : ℘′(u) : 1

)
∈ E(R)0

is a torsion point if and only if the two number u and ω are linearly dependent over

Q. More generally, when u1, . . . , u` are real numbers, the rank over Z of the subgroup

Γ generated by the ` points γj =
(
℘(uj) : ℘′(uj) : 1

)
, (1 ≤ j ≤ `) in E(R)0 is related

to the rank of the subgroup Y of R generated by the `+ 1 real numbers u1, . . . , u`, ω

by rankZ Γ = rankZ Y − 1.

Recall (Kronecker’s Theorem again) that a subgroup of rank ≥ 1 in R/Z is dense.

We deduce:

Let E be an elliptic curve which is defined over R and let γ be a point of infinite

order on E(R)0; then the subgroup Zγ is dense for the real topology in E(R)0.

The next density result deals with the product of the multiplicative group of non-zero

real numbers with E(R); it will be proved as a consequence of Corollary 2.5.
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Corollary 5. – Let α1, . . . , α` be multiplicatively independent positive real algebraic

numbers; let γ1, . . . , γ` be points on E(Q̄) ∩ E(R)0, which are not all torsion points.

Denote by Γ the subgroup of R×+ × E(R)0 which is spanned by the ` points (αj, γj),

(1 ≤ j ≤ `).

a) Assume that ` ≥ 4. Then Γ is dense in R×+ × E(R)0.

b) According to Ramachandra’s δ–Conjecture δ
(
ez, ℘(tz)

)
≤ 1, the same conclusion

should hold as soon as ` ≥ 2.

Proof. The exponential map

R2 −→ R×+ × E(R)0

(x1, x2) 7−→
(
ex1 ;

(
℘(x2) : ℘′(x2) : 1

))
is a topological surjective homomorphism with kernel Z(0, ω) for some ω ∈ R×;

define y0 = (0, ω) and yj = (logαj, uj), (1 ≤ j ≤ `), where uj ∈ R is such

that γj =
(
℘(uj) : ℘′(uj) : 1

)
. Now the goal is to prove that the subgroup

Y = Zy0+Zy1+· · ·+Zy` is dense in R2. Let ϕ : R2 → R be a linear form which satisfies

ϕ(Y ) ⊂ Z. According to Kronecker’s above mentioned Theorem (see footnote (1)),

we only need to prove ϕ = 0. Write ϕ(yj) = sj with sj ∈ Z, (0 ≤ j ≤ `); then the

matrix  0 logα1 · · · logα`
ω u1 · · · u`
s0 s1 · · · s`


has rank < 3; it follows that the rank of the matrix(

s0 logα1 · · · s0 logα`
s0u1 − s1ω · · · s0u` − s`ω

)
is < 2. Since u1, . . . , u` are not all torsion points and logα1, . . . , logα` are linearly

independent over Q, it follows from Corollary 2.5 that s0 = 0; using once more the

linear independence of the logα’s, we deduce s1 = · · · = s` = 0, and ϕ = 0.

Remark: Ramachandra’s δ–Conjecture δ
(
ez, ℘(tz)

)
≤ 1 implies the following:

Let logα1 and logα2 be two Q-linearly independent logarithms of algebraic numbers.

Let E be an elliptic curve which is defined over the field Q̄ of algebraic numbers, ω

be a non-zero period of expE and u ∈ C be an elliptic logarithm of a point of infinite

order in E(Q̄). Then the three numbers

logα1

logα2

,
u

ω
, 1
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are linearly independent over Q.

Indeed, this means, for each (λ, µ) ∈ Q2,

det

(
logα1 logα2

u+ λω µω

)
6= 0.

c) Product of two elliptic curves

As a consequence of Corollary 2.6 we have a density result for the product of two

elliptic curves over the real number field.

Corollary 6. – Let E and E∗ be two Weierstrass elliptic curves with real algebraic

invariants g2, g3 and g∗2, g
∗
3 respectively; assume for simplicity that there is no isogeny

between them, which means that for t ∈ C×, the two functions ℘(tz) and ℘∗(z) are

algebraically independent. Denote by ω (resp. ω∗) a non-zero real period of ℘ (resp.

of ℘∗). Let ` be a positive integer and let γ1, . . . , γ` (resp. γ∗1 , . . . , γ
∗
` ) be elements in

E(R)0 ∩ E(Q̄) (resp. in E∗(R)0 ∩ E∗(Q̄)) such that

a) γ1, . . . , γ` are not all torsion points on E(Q̄);

b) γ∗1 , . . . , γ
∗
` are not all torsion points on E∗(Q̄);

c) the subgroup Γ of E(Q̄) × E∗(Q̄) generated by the ` points (γj, γ
∗
j ), (1 ≤ j ≤ `)

has rank `.

Then

1) if ` ≥ 3, Γ is dense in E(R)0 × E∗(R)0.

2) if Ramachandra’s δ–Conjecture δ
(
℘(ωz), ℘∗(ω∗z)

)
≤ 1 is true, the same conclusion

holds already for ` ≥ 1.

Proof: We first translate the hypotheses concerning the points on the elliptic curves

in terms of elliptic logarithms. Let ω (resp. ω∗) be a real fundamental period of

℘ (resp. of ℘∗); for 1 ≤ j ≤ `, let uj ∈ R satisfy
(
℘(uj) : ℘′(uj) : 1

)
= γj, and

let u∗j ∈ R satisfy
(
℘∗(u∗j) : ℘∗′(u∗j) : 1

)
= γ∗j . Now u1, . . . , u` (resp. u∗1, . . . , u

∗
`) are

pseudo-algebraic points of ℘ (resp. of ℘∗), such that

a) two at least of the `+ 1 numbers u1, . . . , u`, ω are linearly independent over Q,

b) two at least of the `+ 1 numbers u∗1, . . . , , u
∗
` , ω

∗ are linearly independent over Q,

c) the `+ 2 points

y0 =

(
ω

0

)
, y∗0 =

(
0

ω∗

)
, yj =

(
uj
u∗j

)
, (1 ≤ j ≤ `)

are linearly independent over Q. We want to prove that the subgroup of R2 of rank

`+2 which is generated by y0, y
∗
0, y1, . . . , y` is dense in R2. Indeed, let s0, s

∗
0, s1, . . . , s`
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be rational integers, not all of which are zero; we shall deduce from Corollary 2.6

(with a shift of notations ` 7→ `+ 1) that the matrix ω 0 u1 · · · u`
0 ω∗ u∗1 · · · u∗`
s0 s∗0 s1 · · · s`


has rank 3. If s0 = 0 (resp if s∗0 = 0), this follows from the hypothesis b) (resp. a))

above. Assume now s0 6= 0 and s∗0 6= 0; we want to prove that the matrix(
−s∗0ω s0u1 − s1ω · · · s0u` − s`ω
ω∗ u∗1 · · · u∗`

)
has rank 2; in order to use part b) of Corollary 2.6, we need to check that the ` + 1

elements on the first row are linearly independent over Q, and the same for the `+ 1

elements on the second row; if this were not the case, and if the matrix had rank < 2,

we would get a non trivial linear dependence relation between the `+ 2 elements(
ω

0

)
,

(
0

ω∗

)
,

(
uj
u∗j

)
, (1 ≤ j ≤ `),

which would contradict the assumption rankZ Γ = `.

Remark: Ramachandra’s δ–Conjecture δ
(
℘(ωz), ℘∗(ω∗z)

)
≤ 1 implies the following:

Let ℘ (resp. ℘∗) be a Weierstrass elliptic function with algebraic g2, g3 (resp. g∗2, g
∗
3);

let ω (resp. ω∗) be a non-zero period of ℘ (resp. of ℘∗), and u ∈ C (resp. u∗ ∈ C)

be a pseudo-algebraic point of ℘ (resp. of ℘∗), with u/ω and u∗/ω∗ both irrational

numbers; assume that the two complex functions ℘(ωz) and ℘∗(ω∗z) are algebraically

independent; then the three numbers

1,
u

ω
,
u∗

ω∗

are linearly independent over Q.

In other words, according to this conjecture, for rational integers s0, s
∗
0, s, the

determinant

det

 ω 0 u

0 ω∗ u∗

s0 s∗0 s


can vanish only for s0 = s∗0 = s = 0.
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d) Complex points on an elliptic curve

Let E be an elliptic curve over C

E(C) =
{

(x : y : t) ∈ P2(C); y2t = 4x3 − g2xt2 − g3t3
}
,

and let γ ∈ E(C); we ask whether the subgroup Zγ spanned by γ is dense in the

topological group E(C).

Denote as before by ℘ the Weierstrass elliptic function with invariants g2 and g3:

℘′
2

= 4℘3 − g2℘− g3,

by Ω = Zω1+Zω2 the lattice of periods of ℘, by Ω = Zω1+Zω2 the complex conjugate

lattice and by E = C/Ω the Weierstrass elliptic curve with invariants g2 and g3; select

u = x1ω1 + x2ω2 ∈ C (with real x1 and x2) such that γ = (℘(u) : ℘′(u) : 1). The

three conditions

(i) γ is not a torsion point;

(ii) the three numbers u, ω1, ω2 are Q-linearly independent;

(iii) (x1, x2) 6∈ Q2

are equivalent.

On the other hand the three following conditions are also equivalent:

(j) Zγ is dense in the topological group E(C);

(jj) the three numbers 1, x1, x2 are Q-linearly independent over Q;

(jjj) if ω ∈ Ω is any non-zero period of ℘ and n ≥ 1 any positive integer, then nγ

does not belong to the 1-parameter subgroup
{

(℘(tω) : ℘′(tω) : 1); t ∈ R
}

of E(C).

Of course conditions (j), (jj) et (jjj) imply conditions (i), (ii) et (iii); clearly the

converse does not hold without any further assumption. Let us assume that g2 and

g3 are algebraic, as well as ℘(u) and ℘′(u).

The curve E is defined over R if and only if there exists θ ∈ C× such that θΩ = θΩ;

the set

E(E) =
{
θ ∈ C×; rankZ

(
θΩ ∩ θΩ

)
= 2};

is empty if and only if the two curves E and E are not isogeneous. We start with the

easiest case:

Corollary 7. – Let E be an elliptic curve which is defined over the field Q̄ of algebraic

numbers and is not isogeneous to its complex conjugate.

1) Any subgroup of E(Q̄) of rank ≥ 3 is dense in E(C) for the complex topology.

2) If Ramachandra’s δ–Conjecture δ
(
℘(ωz), ℘∗(ω∗z)

)
≤ 1 is true, any element in

E(Q̄) which is not a torsion point spans a dense subgroup of E(C).
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Proof. The proof is the same as for Corollary 3.2; also, Corollary 3.3 will follow

from Corollary 3.5 below.

Before we study the general case, we prove the following auxiliary lemma.

Lemma 1. – Let Ω = Zω1 +Zω2 be a lattice in C; let θ ∈ C× be such that θΩ∩ θΩ is

a subgroup of finite index in θΩ. Let Y be a finitely generated subgroup of C. Define

two subgroups of C by

Yθ =
{
θy − θy; y ∈ Y

}
and

Ω̃θ =
{
θω − θω′; (ω, ω′) ∈ Ω× Ω

}
⊂ C.

If Yθ ∩ Ω̃θ is a subgroup of finite index in Yθ, then Y is not dense in C.

Proof: a) From the hypotheses we deduce that there exists a positive integer m such

that mθω1 ∈ θΩ and mθω2 ∈ θΩ. Define a, b, c, d is Z by

mθω1 = aθω1 + bθω2 and mθω2 = cθω1 + dθω2.

We show the relations

a+ d = 0 and m2 + ad− bc = 0.

Using complex conjugation, we get

m2θω1 = amθω1 + bmθω2 = a(aθω1 + bθω2) + b(cθω1 + dθω2)

and

m2θω2 = cmθω1 + dmθω2 = c(aθω1 + bθω2) + d(cθω1 + dθω2),

hence

m2 = a2 + bc, (a+ d)b = 0, m2 = d2 + bc, (a+ d)c = 0.

The solution a = d and b = c = 0 is not possible because ω2/ω1 6∈ R.

b) We show that there exist ω0 and ω′0 which generate a subgroup of finite index in

Ω such that θω0 ∈ R and θω′0 ∈ iR.

We want to find λ, µ in Z such that ω0 = λω1 + µω2 satisfies θω0 = θω0: we need

to solve the system

(a−m)λ+ cµ = 0

bλ+ (d−m)µ = 0

whose determinant ad − bc − m(a + d) + m2 vanishes; hence there is a non trivial

solution, which means that θΩ ∩ R is a Z-module of rank 1. Similarly, since

ad− bc+m(a+ d) +m2 = 0, the system
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(a+m)λ′ + cµ′ = 0

bλ′ + (d+m)µ′ = 0

has a non trivial solution (λ′, µ′) ∈ Z2, and θΩ∩iR is generated by a non-zero element

ω′0 = λ′ω1 + µ′ω2.

c) For each v ∈ Ω̃θ ∩ iR we show that there exist a positive integer k and an element

ω ∈ Ω such that

kv = θω − θω.

Since v ∈ Ω̃θ there exist ω ∈ Ω and ω′ ∈ Ω such that v = θω− θω′. It follows from

the previous result in b) that there exist integers h, a, b, c, d with h ≥ 1 such that

hω = aω0 + bω′0 and hω′ = cω0 + dω′0.

We deduce

hv = (a− c)θω0 + (b+ d)θω′0.

From the hypothesis v = −v we conclude a = c, and the result follows with k = 2h

and ω = (b+ d)ω′0.

d) Define a linear form ϕ : C→ R of R-vector spaces by

ϕ(x1ω1 + x2ω2) = µx1 − λx2,

where (λ, µ) satisfies (as before) ω0 = λω1 + µω2 ∈ Ω ∩ R. If Yθ ∩ Ω̃θ is a subgroup

of finite index in Yθ, then we shall deduce ϕ(Y ) ⊂ Q (from which it follows that Y is

not dense in C).

For the proof, we take y = x1ω1 +x2ω2 ∈ Y with (x1, x2) ∈ R2. Let m be a positive

integer such that m(θy − θy) ∈ Ω̃θ; it follows from c) that there exist k ≥ 1 and

ω ∈ Ω with

mk(θy − θy) = θω − θω,
and therefore mkθ(y − ω) ∈ R. Put n = mk and write ω = aω1 + bω2:

(nx1 − a)θω1 + (nx2 − b)θω2 ∈ R;

however θω1 and θω2 are linearly independent over R and satisfy λθω1 + µθω2 ∈ R.

We deduce λ(nx2 − b) = µ(nx1 − a), which completes the proof.

We can now state and prove the following result:

Corollary 8. – Let E = C/Ω be a Weierstrass elliptic curve with algebraic g2, g3.

Define

E(E) =
{
θ ∈ C×; rankZ

(
θΩ ∩ θΩ

)
= 2};
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for each θ ∈ E(E), define

Ω̃θ =
{
θω − θω′; (ω, ω′) ∈ Ω× Ω

}
⊂ C.

Let Γ = Zγ1 + · · · + ZΓ` be a finitely generated subgroup of rank ` in E(Q̄). Define

Y ⊂ C by Y = exp−1E (Γ). For each θ ∈ E(E), put

Yθ =
{
θy − θy; y ∈ Y

}
.

Assume that for each θ ∈ E(E), the subgroup Yθ ∩ Ω̃θ is not of finite index in Yθ.

a) If ` ≥ 3, then Γ is dense in E(C).

b) If Ramachandra’s δ–Conjecture δ
(
℘(ωz), ℘∗(ω∗z)

)
≤ 1 is true, then Γ is a dense

subgroup of E(C).

It follows that for any elliptic curve E which is defined over Q̄, there exists an

algebraic number field K such that E(K) is dense in the topological group E(C).

Proof: A necessary and sufficient condition for Γ to be dense in E(C) is that Y

is dense in C. For 1 ≤ j ≤ `, let uj ∈ C be an elliptic logarithm of γj; then Y

is dense in C if and only if Zω1 + Zω2 + Zu1 + · · · + Zu` is dense in C; according

to Kronecker’s Theorem, this is equivalent to the following assertion: for each

(s′0, s
′′
0, s1, . . . , s`) ∈ Z`+2 \ {0}, the matrix ω1 ω2 u1 · · · u`

ω1 ω2 u1 · · · u`
s′0 s′′0 s1 · · · s`


has rank 3. This condition is clearly satisfied if either s′0 = 0 or s′′0 = 0, because we

assume Γ has rank `. If s′0 6= 0 and s′0 6= 0, we define

ω = s′0ω2 − s′′0ω1, vj = s′0uj − sjω1, (1 ≤ j ≤ `),

and we want to prove that the matrix(
ω v1 · · · v`
ω v1 · · · v`

)
has rank 2. If the two functions ℘(ωz) and ℘(ωz) are algebraically independent, we

can apply parts b) and c) of Corollary 2.6 (with ` replaced by `+1 again). Otherwise,

since the period lattices of ℘(ωz) and ℘(ωz) are respectively (1/ω)Ω and (1/ω)Ω, we

can use our assumption on Yθ with θ = 1/ω: firstly θΩ ∩ θΩ is of finite index in θΩ,

secondly the numbers

s′0(θu1 − θu1)− s1(θω1 − θω1)

do not all vanish; hence the above matrix has rank 2.
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4. Further contributions of Ramachandra to transcendental number

theory

a) On the numbers 2π
k
, (k = 1, 2, 3, . . .)

From the six exponentials Theorem follows that one at least of the three numbers

2π, 2π
2

and 2π
3

is transcendental. The result can be made effective, and a tran-

scendence measure for at least one of these three numbers can be derived. Using a

Theorem of Szemeredi, Srinivasan obtained a result which he himself states as follows:

for almost all k, the number 2π
k

has a transcendence measure of the type∣∣∣2πk − α∣∣∣ ≥ exp
{
− (logHν)

1+ε
}

(for any ε > 0 with respect to a sequence of heights Hν →∞, with height of α bounded

by Hν).

Starting from such a statement, he investigated the number of algebraic numbers

among the numbers 2π
k
, (1 ≤ k ≤ N); in [53] and [54] he got the upper bound

O
(√

N
)

(conjecturally, none of them is algebraic). The O constant was bounded

by 2 in [42] and by
√

2 in [4]. In fact, O
(√

N
)

can be replaced by a more explicit

expression of the type c
√
N + smaller order terms.

b) A note on Baker’s method

Ramachandra has several contributions to Baker’s theory on linear forms in

logarithms and its applications; see in particular [38], [39], and [41]. A survey of

this subject is given in [3]. It is fair to quote here also the important work of Shorey:

[50], [51] and [52] (one of the main contributions of Ramachandra’s to transcendental

number theory is Shorey).

For his investigations concerning lower bounds for linear forms in logarithms of

algebraic numbers, Ramachandra used Baker’s method (which is a generalization of

Gel’fond’s solution to Hilbert’s seventh problem). It turns out that a method closely

related to [36] yields similar results; see [31], [64] and [27] for “usual” logarithms, and

[69] for elliptic logarithms.

The paper [38] provides the first lower bound for simultaneous linear forms in

logarithms. This was done at a very early stage of Baker’s method, and the

estimate has been superseded now, but the interest lies in the idea of improving

the bound by considering several simultaneous linear forms; also the suggestion that

the simultaneous result should allow one to conjecture a stronger result for a single

linear form turned out to be correct.
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The subject has been developed more recently in [28], [35] and [18]. Using the

same argument as in [38], one might consider that these work give partial evidence

towards the Lang-Waldschmidt Conjectures (see the Introduction to Chapters X and

XI of [23]).

c) An easy transcendence measure for e

When θ is a complex transcendental number, a transcendence measure for θ is

a lower bound for |P (θ)| when P is a non-zero polynomial with rational integer

coefficients. Such a lower bound should depend on the degree of the polynomial

P as well as on the height H(P ) of the same (we consider the so-called “usual

height”, namely the maximum absolute value of the coefficients of P ). The very

first transcendence measure goes back to the nineteenth century: Borel gave a

transcendence measure for e in 1899. Later Popken (1929), Mahler (1932), Fel’dman

(1963), Galochkin (1972), Cijsouw (1974), Durand (1980), Ramachandra (1987),

Khassa and Srinivasan (1991) as well as other authors gave further transcendence

measure for the same number e. We quote here the result of [19] which rests on

Ramachandra’s method in [40].

For every positive integer n there exists a constant H0 which depends only on n such

that for each positive integer m, each positive real number H ≥ H0 and each non-zero

polynomial P ∈ Z[X] of degree ≤ n, with at most m non-zero coefficients, and with

height H(P ) ≤ H,

|P (e)| ≥ H
−m− cmn log(m+ 1)

log logH .

An interesting feature of this statement is that it takes into account the number of

non-zero coefficients of the polynomial in place of the degree; such an idea appears for

instance in some works dealing with complexity theory; in Diophantine approximation

it occurs in papers connected with Lehmer’s Conjecture; it seems it never occurred

before in connection with transcendence measures.

5. Open problems

We have already seen a few unsolved questions, notably the four exponentials

Conjecture and Ramachandra’s δ–Conjecture. Here are further unsolved questions.

a) Algebraic independence

Assume x1, . . . , xd are Q-linearly independent complex numbers, and y1, y2, y3 are

Q-linearly independent complex numbers; the six exponentials Theorem shows that
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at least d− 1 of the numbers

exiyj , (1 ≤ i ≤ d, j = 1, 2, 3)

are transcendental. A natural question is to ask whether at least d − 1 of these

numbers are algebraically independent. This amounts to ask if the transcendence

degree of the field generated by these 3d numbers is at least d− 1. This problem was

raised in [36]. The same argument was reproduced in [56] as follows: according to

the four exponentials Conjecture, at least d− 1 of the numbers

exiyj , (1 ≤ i ≤ d, j = 1, 2)

are expected to be transcendental; is-it true that at least d− 1 of these numbers are

algebraically independent?

Surprisingly enough, the answer to these questions is no! For instance take y1 = 1,

y2 = β, y3 = β2, where β is cubic (resp. y1 = 1, y2 = β, where β is quadratic) if one

wishes to use the six exponentials Theorem (resp. the four exponentials Conjecture),

and choose

d = 3k, {x1, . . . , xd} = {logαj, β logαj, β
2 logαj; (1 ≤ j ≤ k)}

(resp.

d = 2k, {x1, . . . , xd} = {logαj, β logαj; (1 ≤ j ≤ k)}),
where α1, . . . , αk are multiplicatively independent algebraic numbers; the transcen-

dence degree is at most 2k = 2d/3 (resp. k = d/2).

One way of repairing the conjecture (see [58] conjecture 7.5.5 and exercice 7.5.b)

is to assume that y1, y2 are linearly independent over the field of algebraic numbers.

A better view of looking at this kind of problem from a conjectural point of view is

to consider Schanuel’s Conjecture [22] Chapter 3 p. 30.

The first results of algebraic independence in this direction are due to Gel’fond

[15]: if `d ≥ 2(` + d), then the transcendence degree t of the field generated by the

d` numbers

exiyj , (1 ≤ i ≤ d, 1 ≤ j ≤ `)

is at least 2. Gel’fond’s statement involved a so-called “technical hypothesis”

(measure of linear independence for the xi’s, and also for the yj’s), which was removed

later by Tijdeman (see [58] Chapitre 7).

In the early 70’s, W.D.Brownawell and A.A.Smelev succeeded to prove t ≥ 3 under

suitable assumptions; in 1974, Chudnovsky obtained 2t ≥ `d/(` + d); references are

given in [9]. P.Philippon reached the estimate t + 1 ≥ `d/(` + d) in [33]; this was

improved by G. Diaz in [10] as t ≥
[
`d/(` + d)

]
provided that `d > ` + d (without
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the proviso, the four exponentials Conjecture would follow!). An interesting fact is

that all these results on “large transcendence degree” always involve a “technical

hypothesis”; it is an open problem to remove it.

The above mentioned theorems of algebraic independence deal with the usual

exponential function; here again, extensions can be given to commutative algebraic

groups; we only quote [8] and [61] which include extensions to results of algebraic

independence of Ramachandra’s transcendence results concerning the exponential

and elliptic functions.

b) Schneider’s second problem in [49]

Ramachandra’s method might be the right way towards a solution of the second

of Schneider’s eight problems in [49]: to prove Schneider’s Theorem on the transcen-

dence of j(τ) for τ an algebraic number in the upper half plane by means of the

modular function (and not by mean of elliptic functions). The best known results in

this direction are in [55].

c) Linear independence of elliptic logarithms in the non CM case by Schneider’s

method

We already quoted the paper [69] where lower bounds for linear forms in elliptic

logarithms are provided, by means of a method which is closely related to [36]; as a

matter of fact, an assumption is needed: namely one assumes that the elliptic curves

has non trivial endomorphisms (CM case). It is not known how to extend the method

to the non-CM case.

d) Effective results

Ramachandra was concerned (see top of p. 67 in [36]) by the fact that his

simplification of Schneider’s method might be at the cost of making the proof

ineffective in questions of transcendence measures. A quarter of a century later,

we know that effectivity is not lost by avoiding derivatives. The earliest work in this

direction is [Srinivasan 1974]; further developments have already been quoted ([31]

and [64] for instance). However it is clear that a lot of work is still to be performed in

this direction, and plenty of results are waiting to be unraveled by future generations

of mathematicians.

Recent references

We give only a few references to papers or books which have been published during

the last 10 years: [11], [32], [66], [13], [67], [44], [12] and [68]. They contain further

references to related works.
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5–52.

[34] Philippon, P., Nouveaux aspects de la transcendance, Journées Arithmétiques (Bordeaux,
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