
HARDY-RAMANUJAN JOURNAL 36 (2013), 8-20

ON THE RIESZ MEANS OF n
φ(n)

A. SANKARANARAYANAN AND SAURABH KUMAR SINGH

In honor of Professor M. Ram Murty on his sixtieth birthday

Abstract. Let φ(n) denote the Euler-totient function. We study the error term

of the general k-th Riesz mean of the arithmetical function n
φ(n) for any positive

integer k ≥ 1, namely the error term Ek(x) where

1

k!

∑
n≤x

n

φ(n)

(
1− n

x

)k
= Mk(x) + Ek(x).

The upper bound for |Ek(x)| established here thus improves the earlier known upper

bound when k = 1.

1. Introduction

Investigating the growth (or decay) of the absolute value of the error term of the

summatory function of an arithmetical function is a classical question in number

theory. Many results on such interesting questions are available in the literature (for

some of them, the readers may refer to chapter 14 of [3]). Let φ(n) denote the Euler-

totient function defined to be the number of positive integers ≤ n which are co-prime

to n. Let us write

(1)
∑
n≤x

1

φ(n)
= A (log x+B) + E∗0(x)

and

(2)
∑
n≤x

n

φ(n)
= Ax− log x+ E∗1(x)

where
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(3) A =
315ζ(3)

2π4
, B = γ0 −

∑
p

log p

p2 − p+ 1
.

Here ζ(s) and γ0 denote the Riemann zeta-function and the Euler’s constant respec-

tively. The sum defining B extends over all primes p. In [4] (see p.184), E. Landau

proved that

(4) E∗0(x)� log x

x

as x→∞. Using a theorem of Walfisz based on Weyl’s inequality, in [6], R. Sitara-

machandrarao established (by elementary methods) that

(5) E∗0(x)� (log x)
2
3

x

as x → ∞. In an another paper [7], R. Sitaramachandrarao studied the discrete

average and integral average of these error terms E∗j (x) for j = 0, 1. In particular,

he proved that

(6)

∫ x

1

E∗1(t)dt = −D
2
x+O(x

4
5 ).

by elementary methods where

(7) D = γ0 + log(2π) +
∑
p

log p

p(p− 1)
.

As a consequence of (2) and (6) (see Remark 4.1 of [7]), he derived that

∑
n≤x

n

φ(n)
(x− n) =

∫ x

1

(∑
n≤u

n

φ(n)

)
du

=
A

2
x2 − 1

2
x log x+

(
1−D

2

)
x+O

(
x

4
5

)
(8)

Equivalently, he established that the first Riesz mean satisfies the asymptotic relation

(9)
∑
n≤x

n

φ(n)

(
1− n

x

)
=
A

2
x− 1

2
log x+

(
1−D

2

)
+O

(
x−

1
5

)
.
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If we denote the error term of the first Riesz mean related to the arithmetic function
n

φ(n)
in (9) by E1(x), then a conjecture of Sitaramachandrarao (see Remark 4.1 of [7])

asserts that

(10) E1(x)� 1

x
3
4
−δ

for every small fixed positive δ.

The aim of this article is to study the error term of the general k-th Riesz mean

related to the arithmetic function n
φ(n)

for any positive integer k ≥ 1. More precisely,

we write

(11)
1

k!

∑
n≤x

n

φ(n)

(
1− n

x

)k
= Mk(x) + Ek(x)

where Mk(x) is the main term and Ek(x) is the error term of the sum under in-

vestigation. It should be mentioned here that in [1], K. Chandrasekharan and R.

Narasimhan have developed a general method to study Omega and O-results for the

error term of the general k-th Riesz mean whenever the generating function (i.e the

Dirichlet series) corresponding to the coefficients satisfies a functional equation (with

multiple gamma factors) analogous to the functional equation of the Riemann zeta-

type. Though the Lemma 3.1 in the sequel suggests that the generating function

in our case do have some nice factors (essentially ζ(s) and its translate), in totality

nothing can be drawn about its functional equation. Therefore, such problems need

to be treated in a different way and of course we can make use of the presence of

these nice factors in the generating function.

We prove

Main Theorem. Let x ≥ x0 where x0 is a sufficiently large positive number. For

any integer k ≥ 1, we have

1

k!

∑
n≤x

n

φ(n)

(
1− n

x

)k
= c1(k)x+ c2(k) log x+ c3(k) + Ek(x)

where c1(k), c2(k) and c3(k) are certain specific constants (depend only on k) and

Ek(x)� 1

x
1
2
−δ

for any small fixed positive constant δ satisfying δ < 1
100

and the implied constant is

independent of k.

Remark: One expects the error term of the sum
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∑
n≤x

n

φ(n)
(x− n)

(whose average is the first Riesz mean of n
φ(n)

) to behave like the error term of the

sum
∑
n≤x

d(n) (where d(n) is the number of positive divisors of n) since the generating

function related to n
φ(n)

behaves almost like ζ(s)ζ(s+ 1) (see for example Lemma 3.1

in the sequel). This justifies the conjecture of Sitaramachandrarao. We also observe

that for every integer k ≥ 1, we have

1

k!

∑
n≤x

n

φ(n)

(
1− n

x

)k
=

1

k!

∑
n≤x

n

φ(n)

(
1 +O

(
2k
n

x

))
Thus, it is reasonable to expect the error E1(x) to dominate over all other errors Ek(x)

in absolute value. In view of the above main theorem, we propose the following :

Conjecture. For every integer k ≥ 1,

Ek(x)� 1

x
3
4
−δ

for any small fixed positive constant δ and the implied constant is independent of k.

Remark: The constants c1(k), c2(k) and c3(k) are determined explicitly in the last

section 5. With k = 1, we find that

c1(1) =
315ζ(3)

2π4
, c2(1) = −1

2

and

c3(1) =
1

2
− γ0

2
− 1

2
log(2π)− 1

2

∑
p

log p

p(p− 1)
=

1−D
2

.

Thus, the main theorem with k = 1 improves Sitaramachandrarao’s bound on |E1(x)|
in (9) considerably though his conjecture is still far from being resolved.

2. Notations and Preliminaries

Notations: 1. Throughout the paper, s = σ + it; the parameters T and x are

sufficiently large real numbers and k is an integer ≥ 1.

2. δ, ε always denote sufficiently small positive constants.

3. As usual ζ(s) denotes the Riemann zeta-function and γ0 is Euler’s constant.
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3. Some Lemmas

Lemma 3.1. For <s > 1, we have

F (s) :=
∞∑
n=1

n

φ(n)ns
= ζ(s)ζ(s+ 1)g(s)

where

g(s) :=
∏
p

(
1 +

1/ps+2 − 1/p2s+2

(1− 1/p)

)
with g(s) is absolutely and uniformly convergent in any compact set in the half-plane

<s ≥ −1
2

+ 2δ for any small fixed positive δ satisfying 0 < δ < 1
100

.

Proof. For <s > 1, we have

F (s) :=
∞∑
n=1

n

φ(n)ns

=
∏
p

(
1 +

p

φ(p)ps
+

p2

φ(p2)p2s
+ · · ·

)
=
∏
p

(
1 +

p

(p− 1)ps
1

(1− 1/ps)

)
=
∏
p

(
(1− 1/p)(1− 1/ps) + 1/ps

(1− 1/p)(1− 1/ps)

)
= ζ(s)

∏
p

(
1 +

1

ps+1(1− 1/p)

)
= ζ(s)ζ(s+ 1)

∏
p

(
1 +

1

ps+1(1− 1/p)

)(
1− 1

ps+1

)
= ζ(s)ζ(s+ 1)

∏
p

(
1 +

1/ps+2 − 1/p2s+2

(1− 1/p)

)
F (s) = ζ(s)ζ(s+ 1)g(s)

where

g(s) :=
∏
p

(
1 +

1/ps+2 − 1/p2s+2

(1− 1/p)

)
.

We observe that g(s) is an infinite product of the form
∏
p

(1 + ap) which is absolutely

convergent if and only if the sum
∑
|ap| is convergent. Thus, the sum
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∑
p

∣∣∣∣1/ps+2 − 1/p2s+2

(1− 1/p)

∣∣∣∣ ≤ 2
∑
p

1

pσ+2
+ 2

∑
p

1

p2σ+2

is absolutely and uniformly convergent in any compact set in the half-plane σ >

−1
2

+ 2δ for any fixed δ satisfying 0 < δ < 1
100

. �

We prove the following lemma 3.2 adapting the arguments of A.E. Ingham (see p.31

Theorem B of [2]) with the dependence of the implied constants on k explicit.

Lemma 3.2. Let c and y be any positive real numbers and T ≥ T0 where T0 is

sufficiently large. Then we have,

1

2πi

∫ c+iT

c−iT

ys

s(s+ 1)...(s+ k)
ds =

 1
k!

(
1− 1

y

)k
+O

(
4kyc

Tk

)
if y ≥ 1,

O
(

1
Tk

)
if 0 < y ≤ 1.

Proof. If y ≥ 1, we move the line of integration to the far left say to the line <s = −R
(with R ≥ 10k, sufficiently large). Then, in the rectangular contour formed by the

line segments joining the points c− iT, c+ iT,−R + iT,−R− iT and c− iT in this

anti-clockwise order, we find that s = 0,−1, ....− k are the simple poles. The residue

at s = −r is (−1)r
r!(k−r)!y

−r and hence the sum of the residues namely

(12)
k∑
r=0

(−1)r

r!(k − r)!
y−r =

1

k!

(
1− 1

y

)k
.

The sum of the horizontal lines contributions in absolute value is

(13) �
∫ c

−R

yσ

T k+1
dσ � (R + c)yc

T k+1
.

The left vertical line contribution in absolute value is
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�
∫ T

−T

y−R

|(−R + it)(−R + 1 + it) . . . (−R + k + it)|
dt

�
∫
|t|≤R

· · ·+
∫

T≥|t|>R

. . .

� Ry−R

R(R− 1)(R− 2) · · · (R− k)
+
y−R

kRk

� 2ky−R

Rk
+
y−R

kRk

� 2ky−R

Rk
.(14)

With R = T
2
, we obtain the desired asymptotic when y ≥ 1.

If 0 < y ≤ 1, then we move the line of integration to the far-right namely to the line

<s = R1 (say with R1 sufficiently large). Since there are no poles in the rectangular

contour formed by the line segments joining the points c− iT, c+ iT,R1 + iT,R1− iT
and c − iT in the anti-clockwise order and the integrand is analytic, by Cauchy’s

theorem for analytic function of a rectangular contour, we obtain the main term

to be zero. However, the horizontal lines together contribute an error which is in

absolute value

(15) �
∫ R1

c

yσ

T k+1
dσ � R1y

R1

T k+1
� R1

T k+1
,

and the vertical line contributes an error which is in absolute value

(16) �
∫ T

−T

yR1

|(R1 + it)(R1 + 1 + it) · · · (R1 + k + it)|
dt� TyR1

R1
k+1
� T

R1
k+1

.

We choose R1 = T . This proves the lemma. �

Lemma 3.3. The Riemann zeta-function is extended as a meromorphic function in

the whole complex plane C with a simple pole at s = 1 and it satisfies a functional

equation ζ(s) = χ(s)ζ(1− s) where

χ(s) =
π−(1−s)/2Γ

(
1−s
2

)
π−s/2Γ

(
s
2

) .

Also, in any bounded vertical strip, using Stirling’s formula, we have

χ(s) =

(
2π

t

)σ+it−1/2
ei(t+

π
4 ) (1 +O

(
t−1
))
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as |t| → ∞. Thus, in any bounded vertical strip,

|χ(s)| � t1/2−σ
(
1 +O

(
t−1
))

as |t| → ∞.

Proof. See for example p.116 of [8] or p.8-12 of [3]. �

Lemma 3.4. For any fixed σ satisfying 1
2
< σ < 1, we have∫ T

1

|ζ(σ + it)|2dt = ζ(2σ)T +O
(
T 2−2σ log T

)
.

Proof. See for example p.151 of [8]. �

Lemma 3.5. Let U ≥ U0 where U0 is sufficiently large. Then, unconditionally there

exists a point t∗ ∈ [U,U + U1/3] such that the estimate

max
1/2≤σ≤2

|ζ(σ + it∗)| � exp(c∗(log logU)2)

holds where c∗ is an absolute positive constant.

Proof. This is part of theorem 2 of [5]. See for example Lemma 2 in p.73 of [5]. �

4. Proof of the Main Theorem

We first choose the free large parameter T such that

(17) max
1/2≤σ≤2

|ζ(σ + iT )| � exp
(
c∗(log log T )2

)
.

The existence of such a T is ensured by Lemma 3.5.

From Lemma 3.2, with c = 1 + 1
log x

and writing F (s) := ζ(s)ζ(s+ 1)g(s), we have

S :=
1

k!

∑
n≤x

n

φ(n)

(
1− n

x

)k
=

1

2πi

∫ c+i∞

c−i∞
F (s)

xs

s(s+ 1)(s+ 2) · · · (s+ k)
ds

=

∫ c+iT

c−iT
F (s)

xs

s(s+ 1) · · · (s+ k)
ds+O

(
4kxc log x

T k

)
(18)

Now move the line of integration in the above integral to <s = −1/2 + 2δ (where δ

is any fixed positive constant < 1
100

). In the rectangular contour formed by the line

segments joining the points c− iT , c+ iT , −1
2

+ 2δ+ iT , −1
2

+ 2δ− iT and c− iT in

the anticlockwise order, we observe that s = 1 is a simple pole and s = 0 is a double
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pole of the integrand, thus we get the main term from the sum of the residues coming

from the poles s = 1 and s = 0, namely c1(k)x+ c2(k) log x+ c3(k). We note that

∫ c+iT

c−iT
F (s)

xs

s(s+ 1)....(s+ k)
ds

=

∫ c+iT

− 1
2
+2δ+iT

· · ·+
∫ − 1

2
+2δ+iT

− 1
2
+2δ−iT

· · ·+
∫ − 1

2
+2δ−iT

c−iT
· · ·+ sum of the residues.(19)

The left vertical line segment contributes the quantity:

Q1 =
1

2π

∫ T

−T
F (−1

2
+ 2δ + it)

x−
1
2
+2δ+it

(−1
2

+ 2δ + it)(1
2

+ 2δ + it) · · · (k − 1
2

+ 2δ + it)
dt

=
1

2π

∫ 1

−1
+

∫
1<|t|≤T

x− 1
2
+2δ+itζ

(
−1

2
+ 2δ + it

)
ζ
(
1
2

+ 2δ + it
)
g
(
−1

2
+ 2δ + it

)(
−1

2
+ 2δ + it

) (
1
2

+ 2δ + it
)
· · ·
(
k − 1

2
+ 2δ + it

) dt

� x−
1
2
+2δ

(k − 1)!
+ x−

1
2
+2δ

∫
1<|t|≤T

t
1
2
−(− 1

2
+2δ)|ζ(3/2 + 2δ + it)||ζ(1/2 + 2δ + it)|dt

tk

� x−
1
2
+2δ

(k − 1)!
+ x−

1
2
+2δ

∫
1<|t|≤T

1√
t

|ζ(1/2 + 2δ + it)|
tk−

1
2

dt

� x−
1
2
+2δ

(k − 1)!
+ x−

1
2
+2δ

 T∫
1

1

t
dt


1
2 (∫ T

1

|ζ(1/2 + 2δ + it)|2

t2k−1
dt

) 1
2

� x−
1
2
+2δ

(k − 1)!
+ x−

1
2
+2δ(log T )(20)

since, by Lemma 3.4, letting

(21) v(T ) :=

∫ T

1

|ζ(1/2 + 2δ + it)|2 dt (�δ T )

we have using integration by parts
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∫ T

1

|ζ(1/2 + 2δ + it)|2

t2k−1
dt =

∫ T

1

1

t2k−1
dv(T )

=
v(t)

t2k−1
|T1 + (2k − 1)

∫ T

1

v(t)

t2k
dt

�δ
1

T 2k−2 + 1 + max (1, log T )

� log T(22)

(by splitting the cases k = 1 and k ≥ 2 separately) where the implied constant in

(22) is independent of k and note that δ is any small fixed positive constant.

Now we will estimate the contributions coming from the upper horizontal line

(lower horizontal line is similar). Let

Q2 := max
−1/2≤σ≤1/2

|ζ(σ + iT )|

� max
−1/2≤σ≤1/2

|T |1/2−σ|ζ(1− σ − iT )|

� T max
1/2≤1−σ≤3/2

|ζ(1− σ − iT )|

� T exp(c∗(log log T )2)(23)

Therefore with our choice of T , from (17), we have

(24) max
−1/2≤σ≤2

|ζ(σ + iT )| � T exp(c∗(log log T )2).

Thus the horizontal lines in total contribute a quantity which is in absolute value

�
∫ c

−1/2+2δ

∣∣∣∣ζ(σ + iT )ζ(σ + 1 + iT )
g(σ + iT )xσ+iT

(σ + iT )(σ + 1 + iT ) · · · (σ + k + iT )

∣∣∣∣ dσ
�δ

(x exp(2c∗(log log T )2)

T k
(25)

Collecting all the estimates, we get

(26) Ek(x)� 4kxc log x

T k
+ x−1/2+2δ(log T ) +

(x exp(2c∗(log log T )2)

T k
.

Note that

(x exp(2c∗(log log T )2)

T k
� x

T k−δ
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for any fixed small positive constant δ. Now we choose T := 4x
3
2k so that from (26),

we obtain

Ek(x)� 1

x
1
2
−3δ

+
1

4k−δ
· x

x
3
2
− 3δ

2k

� 1

x
1
2
−3δ

+
x

x
3
2
−2δ

� 1

x
1
2
−3δ

.(27)

Note that the implied constant in (27) is independent of k. This proves the theorem

provided c1(k), c2(k) and c3(k) are precisely determined. This is done in the following

section.

5. Evaluation of the constants c1(k), c2(k) and c3(k)

We recall that

g(s) :=
∏
p

(
1 +

1/ps+2 − 1/p2s+2

(1− 1/p)

)
is absolutely and uniformly convergent in any compact set contained in the half-plane

<s ≥ −1
2
+2δ for any fixed small positive δ and thus, we observe that, in any compact

region in the half plane σ ≥ −1
2

+ 2δ (taking the logarithmic derivative of g(s)) we

have

g′(s) = g(s)

(∑
p

1

1 + 1/ps+2(1−1/ps)
1−1/p

1

1− 1/p

(
− log p

ps+2
(1− 1/ps) +

1

ps+2

log p

ps

))
.

We note that g(0) = 1 and

g(1) =
∏
p

(
1 +

1/p3 − 1/p4

1− 1/p

)
=
∏
p

(
1 +

1

p3

)
=
∏
p

(
(1− 1

p6

(1− 1
p3

)
=
ζ(3)

ζ(6)

and g′(0) =
∑
p

log p
p(p−1) .

The Bernoulli numbers Bn are defined to be the coefficients of the exponential

generating function, precisely by the relation

t

et − 1
:=

∞∑
n=0

Bn
tn

n!
.

We note that ζ(2n) = (−1)n−1 (2π)
2nB2n

2(2n)!
for any integer n ≥ 1, B2 = 1

6
and B6 = 1

42
so

that ζ(2) = π2

6
and ζ(6) = (2π)6

2·6!·42 . Since s = 1 is a simple pole inside the rectangular
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contour, we obtain

(28) Ress=1

(
F (s)

xs

s(s+ 1)(s+ 2) · · · (s+ k)

)
=
ζ(2)ζ(3)

k!ζ(6)
x =

315ζ(3)

2π4 k!
x.

Hence,

(29) c1(k) =
315ζ(3)

2π4 k!
.

We observe that in the neighbourhood of s = 0, we have

ζ(s+ 1)− 1

s
= γ0 + γ1s+ γ2s

2 + · · ·

and hence

lim
s→0

(
ζ(s+ 1)− 1

s

)
= γ0.

If we write

h(s) :=
k∏
j=1

1

(s+ j)
,

then

h′(s) = h(s)

(
−

k∑
j=1

1

(s+ j)

)
and hence

h′(0) = h(0)

(
−

k∑
j=1

1

j

)
=

1

k!

(
−

k∑
j=1

1

j

)
.

Now s = 0 is a double pole in the rectangular contour and hence the residue is

Q3 := Ress=0

[
F (s)xs

s(s+ 1)(s+ 2) · · · (s+ k)

]
= lim

s→0

d

ds

(
s2

F (s)xs

s(s+ 1)(s+ 2) · · · (s+ k)

)
= lim

s→0

d

ds

(
sζ(s)ζ(s+ 1)g(s)

xs

(s+ 1)(s+ 2) · · · (s+ k)

)
= lim

s→0

d

ds

[
sζ(s)

(
ζ(s+ 1)− 1

s

)
g(s)

xs

(s+ 1)(s+ 2) · · · (s+ k)

]
+ lim

s→0

d

ds

[
ζ(s)g(s)

xs

(s+ 1)(s+ 2) · · · (s+ k)

]
=

1

k!
{ζ(0)γ0g(0) + ζ ′(0)g(0) + ζ(0)g′(0) + ζ(0)g(0) log x}+ ζ(0)g(0)h′(0)

=
1

k!

{
−γ0

2
− 1

2
log(2π)− 1

2

∑
p

log p

p(p− 1)
− 1

2
log x+

1

2

(
k∑
j=1

1

j

)}
.
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Therefore,

(30) c2(k) = − 1

2(k!)

and

(31) c3(k) =
1

k!

{
1

2

(
k∑
j=1

1

j

)
− γ0

2
− 1

2
log(2π)− 1

2

∑
p

log p

p(p− 1)

}
.

This completes the proof of the main theorem.

Acknowledgement: The authors wish to thank the referee for some fruitful com-

ments.

References

[1] K. Chandrashekharan, R. Narasimhan: Functional equations with multiple gamma factors and

average order of an arithmetical functions, Ann. Math., 61(2), (1962) 93-136.

[2] A.E. Ingham, The distribution of prime numbers, Cambridge University Press (1995).
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