ON THE RIESZ MEANS OF $\frac{n}{\phi(n)}$

A. SANKARANARAYANAN AND SAURABH KUMAR SINGH

In honor of Professor M. Ram Murty on his sixtieth birthday

ABSTRACT. Let $\phi(n)$ denote the Euler-totient function. We study the error term of the general k-th Riesz mean of the arithmetical function $\frac{n}{\phi(n)}$ for any positive integer $k \geq 1$, namely the error term $E_k(x)$ where

$$\frac{1}{k!} \sum_{n \le x} \frac{n}{\phi(n)} \left(1 - \frac{n}{x} \right)^k = M_k(x) + E_k(x).$$

The upper bound for $|E_k(x)|$ established here thus improves the earlier known upper bound when k=1.

1. Introduction

Investigating the growth (or decay) of the absolute value of the error term of the summatory function of an arithmetical function is a classical question in number theory. Many results on such interesting questions are available in the literature (for some of them, the readers may refer to chapter 14 of [3]). Let $\phi(n)$ denote the Eulertotient function defined to be the number of positive integers $\leq n$ which are co-prime to n. Let us write

(1)
$$\sum_{n \le x} \frac{1}{\phi(n)} = A(\log x + B) + E_0^*(x)$$

and

(2)
$$\sum_{n \le x} \frac{n}{\phi(n)} = Ax - \log x + E_1^*(x)$$

where

²⁰⁰⁰ Mathematics Subject Classification. Primary 11A25, Secondary 11N37.

Key words and phrases. Euler-totient function, Generating functions, Riemann zeta-function, mean-value theorems.

(3)
$$A = \frac{315\zeta(3)}{2\pi^4}, \quad B = \gamma_0 - \sum_p \frac{\log p}{p^2 - p + 1}.$$

Here $\zeta(s)$ and γ_0 denote the Riemann zeta-function and the Euler's constant respectively. The sum defining B extends over all primes p. In [4] (see p.184), E. Landau proved that

$$(4) E_0^*(x) \ll \frac{\log x}{x}$$

as $x \to \infty$. Using a theorem of Walfisz based on Weyl's inequality, in [6], R. Sitara-machandrarao established (by elementary methods) that

(5)
$$E_0^*(x) \ll \frac{(\log x)^{\frac{2}{3}}}{x}$$

as $x \to \infty$. In an another paper [7], R. Sitaramachandrarao studied the discrete average and integral average of these error terms $E_j^*(x)$ for j = 0, 1. In particular, he proved that

(6)
$$\int_{1}^{x} E_{1}^{*}(t)dt = -\frac{D}{2}x + O(x^{\frac{4}{5}}).$$

by elementary methods where

(7)
$$D = \gamma_0 + \log(2\pi) + \sum_p \frac{\log p}{p(p-1)}.$$

As a consequence of (2) and (6) (see Remark 4.1 of [7]), he derived that

(8)
$$\sum_{n \le x} \frac{n}{\phi(n)} (x - n) = \int_1^x \left(\sum_{n \le u} \frac{n}{\phi(n)} \right) du$$
$$= \frac{A}{2} x^2 - \frac{1}{2} x \log x + \left(\frac{1 - D}{2} \right) x + O\left(x^{\frac{4}{5}} \right)$$

Equivalently, he established that the first Riesz mean satisfies the asymptotic relation

(9)
$$\sum_{n \le x} \frac{n}{\phi(n)} \left(1 - \frac{n}{x} \right) = \frac{A}{2} x - \frac{1}{2} \log x + \left(\frac{1 - D}{2} \right) + O\left(x^{-\frac{1}{5}} \right).$$

If we denote the error term of the first Riesz mean related to the arithmetic function $\frac{n}{\phi(n)}$ in (9) by $E_1(x)$, then a conjecture of Sitaramachandrarao (see Remark 4.1 of [7]) asserts that

$$(10) E_1(x) \ll \frac{1}{x^{\frac{3}{4} - \delta}}$$

for every small fixed positive δ .

The aim of this article is to study the error term of the general k-th Riesz mean related to the arithmetic function $\frac{n}{\phi(n)}$ for any positive integer $k \geq 1$. More precisely, we write

(11)
$$\frac{1}{k!} \sum_{n \le x} \frac{n}{\phi(n)} \left(1 - \frac{n}{x} \right)^k = M_k(x) + E_k(x)$$

where $M_k(x)$ is the main term and $E_k(x)$ is the error term of the sum under investigation. It should be mentioned here that in [1], K. Chandrasekharan and R. Narasimhan have developed a general method to study Omega and O-results for the error term of the general k-th Riesz mean whenever the generating function (i.e the Dirichlet series) corresponding to the coefficients satisfies a functional equation (with multiple gamma factors) analogous to the functional equation of the Riemann zeta-type. Though the Lemma 3.1 in the sequel suggests that the generating function in our case do have some nice factors (essentially $\zeta(s)$ and its translate), in totality nothing can be drawn about its functional equation. Therefore, such problems need to be treated in a different way and of course we can make use of the presence of these nice factors in the generating function.

We prove

Main Theorem. Let $x \ge x_0$ where x_0 is a sufficiently large positive number. For any integer $k \ge 1$, we have

$$\frac{1}{k!} \sum_{n \le x} \frac{n}{\phi(n)} \left(1 - \frac{n}{x} \right)^k = c_1(k)x + c_2(k) \log x + c_3(k) + E_k(x)$$

where $c_1(k), c_2(k)$ and $c_3(k)$ are certain specific constants (depend only on k) and

$$E_k(x) \ll \frac{1}{x^{\frac{1}{2} - \delta}}$$

for any small fixed positive constant δ satisfying $\delta < \frac{1}{100}$ and the implied constant is independent of k.

Remark: One expects the error term of the sum

$$\sum_{n \le x} \frac{n}{\phi(n)} (x - n)$$

(whose average is the first Riesz mean of $\frac{n}{\phi(n)}$) to behave like the error term of the sum $\sum_{n \leq x} d(n)$ (where d(n) is the number of positive divisors of n) since the generating function related to $\frac{n}{\phi(n)}$ behaves almost like $\zeta(s)\zeta(s+1)$ (see for example Lemma 3.1 in the sequel). This justifies the conjecture of Sitaramachandrarao. We also observe that for every integer $k \geq 1$, we have

$$\frac{1}{k!} \sum_{n \le x} \frac{n}{\phi(n)} \left(1 - \frac{n}{x} \right)^k = \frac{1}{k!} \sum_{n \le x} \frac{n}{\phi(n)} \left(1 + O\left(2^k \frac{n}{x}\right) \right)$$

Thus, it is reasonable to expect the error $E_1(x)$ to dominate over all other errors $E_k(x)$ in absolute value. In view of the above main theorem, we propose the following:

Conjecture. For every integer $k \geq 1$,

$$E_k(x) \ll \frac{1}{x^{\frac{3}{4} - \delta}}$$

for any small fixed positive constant δ and the implied constant is independent of k.

Remark: The constants $c_1(k)$, $c_2(k)$ and $c_3(k)$ are determined explicitly in the last section 5. With k = 1, we find that

$$c_1(1) = \frac{315\zeta(3)}{2\pi^4}, \quad c_2(1) = -\frac{1}{2}$$

and

$$c_3(1) = \frac{1}{2} - \frac{\gamma_0}{2} - \frac{1}{2}\log(2\pi) - \frac{1}{2}\sum_{n}\frac{\log p}{p(p-1)} = \frac{1-D}{2}.$$

Thus, the main theorem with k = 1 improves Sitaramachandrarao's bound on $|E_1(x)|$ in (9) considerably though his conjecture is still far from being resolved.

2. Notations and Preliminaries

Notations: 1. Throughout the paper, $s = \sigma + it$; the parameters T and x are sufficiently large real numbers and k is an integer ≥ 1 .

- 2. δ , ϵ always denote sufficiently small positive constants.
- 3. As usual $\zeta(s)$ denotes the Riemann zeta-function and γ_0 is Euler's constant.

3. Some Lemmas

Lemma 3.1. For $\Re s > 1$, we have

$$F(s) := \sum_{n=1}^{\infty} \frac{n}{\phi(n)n^s} = \zeta(s)\zeta(s+1)g(s)$$

where

$$g(s) := \prod_{p} \left(1 + \frac{1/p^{s+2} - 1/p^{2s+2}}{(1 - 1/p)} \right)$$

with g(s) is absolutely and uniformly convergent in any compact set in the half-plane $\Re s \geq -\frac{1}{2} + 2\delta$ for any small fixed positive δ satisfying $0 < \delta < \frac{1}{100}$.

Proof. For $\Re s > 1$, we have

$$F(s) := \sum_{n=1}^{\infty} \frac{n}{\phi(n)n^{s}}$$

$$= \prod_{p} \left(1 + \frac{p}{\phi(p)p^{s}} + \frac{p^{2}}{\phi(p^{2})p^{2s}} + \cdots \right)$$

$$= \prod_{p} \left(1 + \frac{p}{(p-1)p^{s}} \frac{1}{(1-1/p^{s})} \right)$$

$$= \prod_{p} \left(\frac{(1-1/p)(1-1/p^{s}) + 1/p^{s}}{(1-1/p)(1-1/p^{s})} \right)$$

$$= \zeta(s) \prod_{p} \left(1 + \frac{1}{p^{s+1}(1-1/p)} \right)$$

$$= \zeta(s)\zeta(s+1) \prod_{p} \left(1 + \frac{1}{p^{s+1}(1-1/p)} \right) \left(1 - \frac{1}{p^{s+1}} \right)$$

$$= \zeta(s)\zeta(s+1) \prod_{p} \left(1 + \frac{1/p^{s+2} - 1/p^{2s+2}}{(1-1/p)} \right)$$

$$F(s) = \zeta(s)\zeta(s+1)g(s)$$

where

$$g(s) := \prod_{p} \left(1 + \frac{1/p^{s+2} - 1/p^{2s+2}}{(1 - 1/p)} \right).$$

We observe that g(s) is an infinite product of the form $\prod_{p} (1 + a_p)$ which is absolutely convergent if and only if the sum $\sum |a_p|$ is convergent. Thus, the sum

$$\left| \sum_{p} \left| \frac{1/p^{s+2} - 1/p^{2s+2}}{(1 - 1/p)} \right| \le 2 \sum_{p} \frac{1}{p^{\sigma+2}} + 2 \sum_{p} \frac{1}{p^{2\sigma+2}} \right|$$

is absolutely and uniformly convergent in any compact set in the half-plane $\sigma > -\frac{1}{2} + 2\delta$ for any fixed δ satisfying $0 < \delta < \frac{1}{100}$.

We prove the following lemma 3.2 adapting the arguments of A.E. Ingham (see p.31 Theorem B of [2]) with the dependence of the implied constants on k explicit.

Lemma 3.2. Let c and y be any positive real numbers and $T \geq T_0$ where T_0 is sufficiently large. Then we have,

$$\frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{y^s}{s(s+1)...(s+k)} ds = \begin{cases} \frac{1}{k!} \left(1 - \frac{1}{y}\right)^k + O\left(\frac{4^k y^c}{T^k}\right) & \text{if } y \ge 1, \\ O\left(\frac{1}{T^k}\right) & \text{if } 0 < y \le 1. \end{cases}$$

Proof. If $y \ge 1$, we move the line of integration to the far left say to the line $\Re s = -R$ (with $R \ge 10k$, sufficiently large). Then, in the rectangular contour formed by the line segments joining the points c - iT, c + iT, -R + iT, -R - iT and c - iT in this anti-clockwise order, we find that $s = 0, -1, \dots - k$ are the simple poles. The residue at s = -r is $\frac{(-1)^r}{r!(k-r)!}y^{-r}$ and hence the sum of the residues namely

(12)
$$\sum_{r=0}^{k} \frac{(-1)^r}{r!(k-r)!} y^{-r} = \frac{1}{k!} \left(1 - \frac{1}{y} \right)^k.$$

The sum of the horizontal lines contributions in absolute value is

(13)
$$\ll \int_{-R}^{c} \frac{y^{\sigma}}{T^{k+1}} d\sigma \ll \frac{(R+c)y^{c}}{T^{k+1}}.$$

The left vertical line contribution in absolute value is

$$\ll \int_{-T}^{T} \frac{y^{-R}}{|(-R+it)(-R+1+it)\dots(-R+k+it)|} dt
\ll \int_{|t| \le R} \dots + \int_{T \ge |t| > R} \dots
\ll \frac{Ry^{-R}}{R(R-1)(R-2)\dots(R-k)} + \frac{y^{-R}}{kR^k}
\ll \frac{2^k y^{-R}}{R^k} + \frac{y^{-R}}{kR^k}
\ll \frac{2^k y^{-R}}{R^k}.$$
(14)

With $R = \frac{T}{2}$, we obtain the desired asymptotic when $y \ge 1$.

If $0 < y \le 1$, then we move the line of integration to the far-right namely to the line $\Re s = R_1$ (say with R_1 sufficiently large). Since there are no poles in the rectangular contour formed by the line segments joining the points c - iT, c + iT, $R_1 + iT$, $R_1 - iT$ and c - iT in the anti-clockwise order and the integrand is analytic, by Cauchy's theorem for analytic function of a rectangular contour, we obtain the main term to be zero. However, the horizontal lines together contribute an error which is in absolute value

(15)
$$\ll \int_{c}^{R_1} \frac{y^{\sigma}}{T^{k+1}} d\sigma \ll \frac{R_1 y^{R_1}}{T^{k+1}} \ll \frac{R_1}{T^{k+1}},$$

and the vertical line contributes an error which is in absolute value

(16)
$$\ll \int_{-T}^{T} \frac{y^{R_1}}{|(R_1+it)(R_1+1+it)\cdots(R_1+k+it)|} dt \ll \frac{Ty^{R_1}}{R_1^{k+1}} \ll \frac{T}{R_1^{k+1}}.$$

We choose $R_1 = T$. This proves the lemma.

Lemma 3.3. The Riemann zeta-function is extended as a meromorphic function in the whole complex plane \mathbb{C} with a simple pole at s=1 and it satisfies a functional equation $\zeta(s)=\chi(s)\zeta(1-s)$ where

$$\chi(s) = \frac{\pi^{-(1-s)/2} \Gamma\left(\frac{1-s}{2}\right)}{\pi^{-s/2} \Gamma\left(\frac{s}{2}\right)}.$$

Also, in any bounded vertical strip, using Stirling's formula, we have

$$\chi(s) = \left(\frac{2\pi}{t}\right)^{\sigma + it - 1/2} e^{i\left(t + \frac{\pi}{4}\right)} \left(1 + O\left(t^{-1}\right)\right)$$

as $|t| \to \infty$. Thus, in any bounded vertical strip,

$$|\chi(s)| \approx t^{1/2-\sigma} \left(1 + O\left(t^{-1}\right)\right)$$

as $|t| \to \infty$.

Proof. See for example p.116 of [8] or p.8-12 of [3].

Lemma 3.4. For any fixed σ satisfying $\frac{1}{2} < \sigma < 1$, we have

$$\int_{1}^{T} |\zeta(\sigma + it)|^{2} dt = \zeta(2\sigma)T + O\left(T^{2-2\sigma}\log T\right).$$

Proof. See for example p.151 of [8].

Lemma 3.5. Let $U \ge U_0$ where U_0 is sufficiently large. Then, unconditionally there exists a point $t^* \in [U, U + U^{1/3}]$ such that the estimate

$$\max_{1/2 \le \sigma \le 2} |\zeta(\sigma + it^*)| \ll \exp(c^*(\log \log U)^2)$$

holds where c^* is an absolute positive constant.

Proof. This is part of theorem 2 of [5]. See for example Lemma 2 in p.73 of [5]. \Box

4. Proof of the Main Theorem

We first choose the free large parameter T such that

(17)
$$\max_{1/2 \le \sigma \le 2} |\zeta(\sigma + iT)| \ll \exp\left(c^* (\log \log T)^2\right).$$

The existence of such a T is ensured by Lemma 3.5.

From Lemma 3.2, with $c = 1 + \frac{1}{\log x}$ and writing $F(s) := \zeta(s)\zeta(s+1)g(s)$, we have

$$S := \frac{1}{k!} \sum_{n \le x} \frac{n}{\phi(n)} \left(1 - \frac{n}{x} \right)^k$$

$$= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s) \frac{x^s}{s(s+1)(s+2)\cdots(s+k)} ds$$

$$= \int_{c-iT}^{c+iT} F(s) \frac{x^s}{s(s+1)\cdots(s+k)} ds + O\left(\frac{4^k x^c \log x}{T^k}\right)$$
(18)

Now move the line of integration in the above integral to $\Re s = -1/2 + 2\delta$ (where δ is any fixed positive constant $<\frac{1}{100}$). In the rectangular contour formed by the line segments joining the points c-iT, c+iT, $-\frac{1}{2}+2\delta+iT$, $-\frac{1}{2}+2\delta-iT$ and c-iT in the anticlockwise order, we observe that s=1 is a simple pole and s=0 is a double

pole of the integrand, thus we get the main term from the sum of the residues coming from the poles s=1 and s=0, namely $c_1(k)x+c_2(k)\log x+c_3(k)$. We note that

$$\int_{c-iT}^{c+iT} F(s) \frac{x^s}{s(s+1)....(s+k)} ds$$
(19)
$$= \int_{-\frac{1}{2}+2\delta+iT}^{c+iT} \cdots + \int_{-\frac{1}{2}+2\delta-iT}^{-\frac{1}{2}+2\delta-iT} \cdots + \int_{c-iT}^{-\frac{1}{2}+2\delta-iT} \cdots + \text{sum of the residues.}$$

The left vertical line segment contributes the quantity:

$$Q_{1} = \frac{1}{2\pi} \int_{-T}^{T} F(-\frac{1}{2} + 2\delta + it) \frac{x^{-\frac{1}{2} + 2\delta + it}}{(-\frac{1}{2} + 2\delta + it)(\frac{1}{2} + 2\delta + it) \cdot \cdot \cdot (k - \frac{1}{2} + 2\delta + it)} dt$$

$$= \frac{1}{2\pi} \left(\int_{-1}^{1} + \int_{|-1|/2} \frac{x^{-\frac{1}{2} + 2\delta + it} \zeta(-\frac{1}{2} + 2\delta + it) \zeta(\frac{1}{2} + 2\delta + it) g(-\frac{1}{2} + 2\delta + it)}{(-\frac{1}{2} + 2\delta + it)(\frac{1}{2} + 2\delta + it) \cdot \cdot \cdot (k - \frac{1}{2} + 2\delta + it)} dt$$

$$\ll \frac{x^{-\frac{1}{2} + 2\delta}}{(k - 1)!} + x^{-\frac{1}{2} + 2\delta} \int_{1 < |t| \le T} t^{\frac{1}{2} - (-\frac{1}{2} + 2\delta)} |\zeta(3/2 + 2\delta + it)| |\zeta(1/2 + 2\delta + it)| \frac{dt}{t^{k}}$$

$$\ll \frac{x^{-\frac{1}{2} + 2\delta}}{(k - 1)!} + x^{-\frac{1}{2} + 2\delta} \int_{1 < |t| \le T} \frac{1}{\sqrt{t}} \frac{|\zeta(1/2 + 2\delta + it)|}{t^{k - \frac{1}{2}}} dt$$

$$\ll \frac{x^{-\frac{1}{2} + 2\delta}}{(k - 1)!} + x^{-\frac{1}{2} + 2\delta} \left(\int_{1}^{T} \frac{1}{t} dt \right)^{\frac{1}{2}} \left(\int_{1}^{T} \frac{|\zeta(1/2 + 2\delta + it)|^{2}}{t^{2k - 1}} dt \right)^{\frac{1}{2}}$$

$$(20) \ll \frac{x^{-\frac{1}{2} + 2\delta}}{(k - 1)!} + x^{-\frac{1}{2} + 2\delta} (\log T)$$

since, by Lemma 3.4, letting

(21)
$$v(T) := \int_{1}^{T} |\zeta(1/2 + 2\delta + it)|^{2} dt \ (\ll_{\delta} T)$$

we have using integration by parts

$$\int_{1}^{T} \frac{|\zeta(1/2 + 2\delta + it)|^{2}}{t^{2k-1}} dt = \int_{1}^{T} \frac{1}{t^{2k-1}} dv(T)$$

$$= \frac{v(t)}{t^{2k-1}} \Big|_{1}^{T} + (2k-1) \int_{1}^{T} \frac{v(t)}{t^{2k}} dt$$

$$\ll_{\delta} \frac{1}{T^{2k-2}} + 1 + \max(1, \log T)$$

$$\ll \log T$$

$$(22)$$

(by splitting the cases k=1 and $k\geq 2$ separately) where the implied constant in (22) is independent of k and note that δ is any small fixed positive constant.

Now we will estimate the contributions coming from the upper horizontal line (lower horizontal line is similar). Let

$$Q_{2} := \max_{-1/2 \le \sigma \le 1/2} |\zeta(\sigma + iT)|$$

$$\ll \max_{-1/2 \le \sigma \le 1/2} |T|^{1/2 - \sigma} |\zeta(1 - \sigma - iT)|$$

$$\ll T \max_{1/2 \le 1 - \sigma \le 3/2} |\zeta(1 - \sigma - iT)|$$

$$\ll T \exp(c^{*}(\log \log T)^{2})$$

$$(23)$$

Therefore with our choice of T, from (17), we have

(24)
$$\max_{-1/2 \le \sigma \le 2} |\zeta(\sigma + iT)| \ll T \exp(c^* (\log \log T)^2).$$

Thus the horizontal lines in total contribute a quantity which is in absolute value

$$\ll \int_{-1/2+2\delta}^{c} \left| \zeta(\sigma+iT)\zeta(\sigma+1+iT) \frac{g(\sigma+iT)x^{\sigma+iT}}{(\sigma+iT)(\sigma+1+iT)\cdots(\sigma+k+iT)} \right| d\sigma$$
(25)
$$\ll_{\delta} \frac{(x\exp(2c^{*}(\log\log T)^{2})}{T^{k}}$$

Collecting all the estimates, we get

(26)
$$E_k(x) \ll \frac{4^k x^c \log x}{T^k} + x^{-1/2 + 2\delta} (\log T) + \frac{(x \exp(2c^*(\log \log T)^2))}{T^k}.$$

Note that

$$\frac{(x\exp(2c^*(\log\log T)^2)}{T^k} \ll \frac{x}{T^{k-\delta}}$$

for any fixed small positive constant δ . Now we choose $T := 4x^{\frac{3}{2k}}$ so that from (26), we obtain

$$E_{k}(x) \ll \frac{1}{x^{\frac{1}{2} - 3\delta}} + \frac{1}{4^{k - \delta}} \cdot \frac{x}{x^{\frac{3}{2} - \frac{3\delta}{2k}}}$$

$$\ll \frac{1}{x^{\frac{1}{2} - 3\delta}} + \frac{x}{x^{\frac{3}{2} - 2\delta}}$$

$$\ll \frac{1}{x^{\frac{1}{2} - 3\delta}}.$$
(27)

Note that the implied constant in (27) is independent of k. This proves the theorem provided $c_1(k), c_2(k)$ and $c_3(k)$ are precisely determined. This is done in the following section.

5. Evaluation of the constants $c_1(k), c_2(k)$ and $c_3(k)$

We recall that

$$g(s) := \prod_{p} \left(1 + \frac{1/p^{s+2} - 1/p^{2s+2}}{(1 - 1/p)} \right)$$

is absolutely and uniformly convergent in any compact set contained in the half-plane $\Re s \geq -\frac{1}{2} + 2\delta$ for any fixed small positive δ and thus, we observe that, in any compact region in the half plane $\sigma \geq -\frac{1}{2} + 2\delta$ (taking the logarithmic derivative of g(s)) we have

$$g'(s) = g(s) \left(\sum_{p} \frac{1}{1 + \frac{1/p^{s+2}(1 - 1/p^s)}{1 - 1/p}} \frac{1}{1 - 1/p} \left(-\frac{\log p}{p^{s+2}} (1 - 1/p^s) + \frac{1}{p^{s+2}} \frac{\log p}{p^s} \right) \right).$$

We note that g(0) = 1 and

$$g(1) = \prod_{p} \left(1 + \frac{1/p^3 - 1/p^4}{1 - 1/p} \right) = \prod_{p} \left(1 + \frac{1}{p^3} \right) = \prod_{p} \left(\frac{\left(1 - \frac{1}{p^6} \right)}{\left(1 - \frac{1}{p^3} \right)} \right) = \frac{\zeta(3)}{\zeta(6)}$$

and
$$g'(0) = \sum_{p} \frac{\log p}{p(p-1)}$$
.

The Bernoulli numbers B_n are defined to be the coefficients of the exponential generating function, precisely by the relation

$$\frac{t}{e^t - 1} := \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}.$$

We note that $\zeta(2n) = (-1)^{n-1} \frac{(2\pi)^{2n} B_{2n}}{2(2n)!}$ for any integer $n \ge 1$, $B_2 = \frac{1}{6}$ and $B_6 = \frac{1}{42}$ so that $\zeta(2) = \frac{\pi^2}{6}$ and $\zeta(6) = \frac{(2\pi)^6}{2 \cdot 6! \cdot 42}$. Since s = 1 is a simple pole inside the rectangular

contour, we obtain

(28)
$$\operatorname{Res}_{s=1}\left(F(s)\frac{x^s}{s(s+1)(s+2)\cdots(s+k)}\right) = \frac{\zeta(2)\zeta(3)}{k!\zeta(6)} \ x = \frac{315\zeta(3)}{2\pi^4 \ k!} x.$$

Hence,

(29)
$$c_1(k) = \frac{315\zeta(3)}{2\pi^4 \ k!}.$$

We observe that in the neighbourhood of s = 0, we have

$$\zeta(s+1) - \frac{1}{s} = \gamma_0 + \gamma_1 s + \gamma_2 s^2 + \cdots$$

and hence

$$\lim_{s \to 0} \left(\zeta(s+1) - \frac{1}{s} \right) = \gamma_0.$$

If we write

$$h(s) := \prod_{i=1}^{k} \frac{1}{(s+j)},$$

then

$$h'(s) = h(s) \left(-\sum_{i=1}^{k} \frac{1}{(s+j)} \right)$$

and hence

$$h'(0) = h(0) \left(-\sum_{j=1}^{k} \frac{1}{j} \right) = \frac{1}{k!} \left(-\sum_{j=1}^{k} \frac{1}{j} \right).$$

Now s = 0 is a double pole in the rectangular contour and hence the residue is

$$Q_{3} := \operatorname{Res}_{s=0} \left[\frac{F(s)x^{s}}{s(s+1)(s+2)\cdots(s+k)} \right]$$

$$= \lim_{s\to 0} \frac{d}{ds} \left(s^{2} \frac{F(s)x^{s}}{s(s+1)(s+2)\cdots(s+k)} \right)$$

$$= \lim_{s\to 0} \frac{d}{ds} \left(s\zeta(s)\zeta(s+1)g(s) \frac{x^{s}}{(s+1)(s+2)\cdots(s+k)} \right)$$

$$= \lim_{s\to 0} \frac{d}{ds} \left[s\zeta(s) \left(\zeta(s+1) - \frac{1}{s} \right) g(s) \frac{x^{s}}{(s+1)(s+2)\cdots(s+k)} \right]$$

$$+ \lim_{s\to 0} \frac{d}{ds} \left[\zeta(s)g(s) \frac{x^{s}}{(s+1)(s+2)\cdots(s+k)} \right]$$

$$= \frac{1}{k!} \left\{ \zeta(0)\gamma_{0}g(0) + \zeta'(0)g(0) + \zeta(0)g'(0) + \zeta(0)g(0) \log x \right\} + \zeta(0)g(0)h'(0)$$

$$= \frac{1}{k!} \left\{ -\frac{\gamma_{0}}{2} - \frac{1}{2}\log(2\pi) - \frac{1}{2} \sum_{p} \frac{\log p}{p(p-1)} - \frac{1}{2}\log x + \frac{1}{2} \left(\sum_{j=1}^{k} \frac{1}{j} \right) \right\}.$$

Therefore,

(30)
$$c_2(k) = -\frac{1}{2(k!)}$$

and

(31)
$$c_3(k) = \frac{1}{k!} \left\{ \frac{1}{2} \left(\sum_{j=1}^k \frac{1}{j} \right) - \frac{\gamma_0}{2} - \frac{1}{2} \log(2\pi) - \frac{1}{2} \sum_p \frac{\log p}{p(p-1)} \right\}.$$

This completes the proof of the main theorem.

Acknowledgement: The authors wish to thank the referee for some fruitful comments.

References

- [1] K. Chandrashekharan, R. Narasimhan: Functional equations with multiple gamma factors and average order of an arithmetical functions, Ann. Math., 61(2), (1962) 93-136.
- [2] A.E. Ingham, The distribution of prime numbers, Cambridge University Press (1995).
- [3] A. Ivić, The Riemann Zeta-Function: Theory and Applications, Dover Publications, Inc, New York.
- [4] E. Landau: Über die zahlentheoretische Funktion $\phi(n)$ und ihre Beziehung zum Goldbachschen Satz, Nachr. koninglichen Gesellschaft wiss, Göttingen Math. Phys. klasse., 1900, 177-186. Collected works, Vol 1, Ed.by L. Mirsky et all, Thales Verlag, 106-115.
- [5] K. Ramachandra and A. Sankaranarayanan: Notes on the Riemann zeta-function, J. Indian Math. Soc.(N.S.)., 57, no. 1-4 (1991) 67-77.
- [6] R. Sitaramachandrarao: On an error term of Landau, Indian Jour. Pure and Appl. Math., 13, (1982) 882-885.
- [7] R. Sitaramachandrarao: On an error term of Landau- II, Rocky Mountain Jour. of Math., 15, (1985) 579-588.
- [8] E.C. Titchmarsh: The Theory of the Riemann Zeta function, (revised by Dr. Heath-Brown), Clarendon Press, Oxford (1986).

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai- 400 005, INDIA.

E-mail address: sank@math.tifr.res.in
E-mail address: skumar@math.tifr.res.in