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ON THE BARBAN-DAVENPORT-HALBERSTAM THEOREM: X 
by 

C. HOOLEY 

Before resuming our researches on the theme of the third [1] and ninth [3] articles 
of this series (denoted, respectively, by III and IX in what follows) concerning general 
theorems of Barban-Davenport-Halberstam type, we should remark that the class of se-
quences treated in the former and initial paper was influenced by our prior appreciation 
of the way in which the properties of the prime numbers entered into known proof::; of the 
Barban-Davenport-Halberstam theorem itself. All in fact that seemed to be needed in this 
respect was tantamount to just the prime number theorem for arithmetical progressions, 
the statement of which for present purposes is best divided into two parts. The first is the 
existence of an asymptotic formula of the form 

E(x;a,k) = B(x;a,k) -f(a,k)x = 2: log p- f(a,k)x = O(xlog-f1x) , (1) 
pSx 

p::a, mod k 

for any positive constant A, without which one would not naturally consider the moments 

G(x,Q) = L L E 2(x;a,k) 
kS:Q D<aS:k 

and without which the estimate for G(x , Q) supplied by the Barban- Davenport:..Halberstam 
theorem would be false. The second part is that 

f(a, k) = { 1/¢(k), if. (a, k) = 1, 
0, otherwtse, 

a feature expressing the equi-distribution of the primes among residue classes, mod k; for 
given values of k and (a, k) that is exploited directly and indirectly in several parts of the 
proof. In reflection of these features the sequences of integers s within the purview of III 
and the intermediate paper[2] were subject to the Criterion U to the effect that 

E(x; a, k) = S(x; a, k)- g{k, (a, k)}x = L 1- g{k, (a, k)}x = O(x log-Ax) 
s<:r: 

s::a,mod k 

for any positive constant A, the conclusion being that 

G(x, Q) = L L E 2(x; a, k) = O(Qx) + O(x2 log-A x). (2) 
kS:Q O<aS:k 

In the present article we begin by showing that Criterion U unnecessarily restricts 
the class of sequences that enjoy the feature of being the subject of a theorem of Barban-
Davenport-Halberstam type, since we shall demonstrate that we can altogether dispense 
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with any requirement about the equi-distribution of the sequences in various arithmetical 
progressions to a given modulus k. Thus, now only assuming that 

S(x;a,k) = 1 = f(a, k)x + O(x log-Ax) (3) 
•<"' s:=a, mod k 

and writing 
E(x; a, k) = S(x; a, k)- f(a, k)x, (4) 

we establish (2) in its extended sense and thus shew there is a strict equivalence between 
it and (3) that was previously absent. Of central importance in the new treatment is the 
entrance of inequalities of large sieve type in more contexts than in our [2], on which our 
work is partially based. 

We then proceed to the subject of generalized Barban-Montgomery theorems, one 
version of which was produced in IX for sequences (of positive density) satisfying Criterion 
U and a condition S to the effect that g(k, 0) was the product C'lj;(k) of a positive constant 
C and a multiplicative function 7f;( k ). Here, initiating our analysis by using the new result 
on the first part, we again shew that some earlier imposed restraints are and 
prove the asymptotic formulae 

G(x , Q) = [D1 + o(l)] Qx + O(x2 log-A x) (Q x; o(l)--> 0 as xjQ--> oo), (5) 

. ." l( .· . ; 

(6) 

of Bar ban-Montgomery type subject only to the fundamental condition (3) above. Much of 
the method in IX is retained, although there is an important departure from past practice 
that entails yet another application of a large sieve inequality. Yet the new result does not 
altogether imply the superannuation of its predecessor, since the condition under which 
the latter was established led to a determination of the constant D1 whose significance was 
indicated at the end of IX. 

It might be asked why the trouble is taken to enunciate the Barban-Davenport-
Halberstam type result when under the stated conditions it is contained in the Barban:-
.tv1ontgomery· r.esult. In. response, we would say, first that the former constitutes · an im.:. ·· 
portant stage in the proof of the latter and, secondly, that it is desirable to regard these 
theorems as being in different genres, it not necessarily being the case in general that two 
such results share a common domain of validity. 

Throughout A denotes a positive absolute constant on which and · on the· sequence 
the constants implied by. the 0-notation at most depend. The letter s not only denotes a 
member of the given sequence but also a complex variable a+ it, it being clear from the 
context which meaning is intended. 

The statement of the large sieve inequality required for the first part is due to Mont-
gomery [4], who also recorded it in his book [5). Translated into the language of this paper 
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and specialized for the sequence of numbers s, this asserts that 

(7) 

in contrast to a later quoted result in which the Mobius function occurs at a different place 
in the summation. 

We then take up the story at a point corresponding to the beginning of § 4, I I I in 
[2], having noted the bounds 

S(x; a, k) = O(x/k) (k $ x), f(a, k) = 0(1/k) (8) 

that spring from the same obvious source as did Lemma 2 in article III. If, as before, we 
write 

G(x, Q) = L L E 2 (x; a, k) = L H(x, k) 

and assume throughout that Q::; x, then (4) implies that 

H(x,k)= L {S(x;a,k)-f(a,k)x} 2 

= L S2(x; a, k)- 2x L f(a, k)S(x; a, k) + x2 L f 2(a, k) 

(9) 

in emulation of the initial stage of the derivation of (163) in [2]. Yet this is as far as we can 
go without taking a serious detour, since H(x, k) is no longer essentially a variance and 
since therefore 'lfx(k) becomes a covariance that cannot necessarily be easily estimated. 

The analysis of 'lfx(k) falls into two parts, in the first of which we obtain 

wk(k) = I: f(a, k) {!(a, k)x + 0 [l l} 
og X 

= x L f 2(a, k) + 0 [ L 1] 
k log X 

= xM(k) + O(x log-2A-4 x) (10) 
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by (3), (8), and (9). But having a weak remainder term for larger values of k, this estimate 
must be complemented by a result on the sum 

(11) 

which is the subject of the second part. 

To estimate ( 11) let us first extend the definition of f (a, k) in the obvious way by 
making it a periodic function in a, modulo k. Secondly, set 

1 
f(a, k) = k I: w(a, l) 

llk 

so that 

w(a,l) =I: p, [-dll df(a,d) 
dll . 

by one of the Mobius formulae, wherefore w( a, l) is periodic, mod £, and 

w(a,l) = 0 [2:1] = O{d(l)} 
dll 

by (8). Next, since 

Wx(k) = I: f(a, k) I: 1 = l:J(s,k) 
O<a:Sk •<z B:Sx 

8:a, mod k 

on account of (9), we have 

I: wx(k) =I: I: f(s,k) =I: I: 
k:SQ 

wherein 

1 . 
= I:- l:w(s,l) 

lm:SQ lm •:Sx 

W(x, l) 
= I: lm , say, 

lm:SQ 

w(s, l) 
lm 

W(x, l) = · L w(a, l) 1 = L l)S(x; a, l). 
O<a:Sl •=a, mod l 

O<a:Sl 

(12) 

(13) 

(14) 

(15) 

The sum W(x, l) is another example of an entity whose estimation must fall into two 
portions. ·On the one hand, if l 6 = log4A+l0 x, then we shall apply the equation 

X . 
W(x, l) = x L w(a, l)f(a, l) + 0 1 lOA+26 L lw(a, l)l , 

O<a<l og X O<a<l 
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[ 
xld(l) ·] = xN(l) + 0 10A+Z6 , say log x 

(16) 

that stems from (15) and (3), having noted in particular that 

N(!) = 0 [ T £, lw(a, !)I] . 

But, on the other hand, in the contrary instance we merely use (8) to obtain the trivial 
estimate 

W(x, l) = 0 [T L lw(a, l)l] = xN(l) + 0 [T L lw(a, l)l]., 
which, when inserted with (16) into (14), yields 

N(l) [ x l L 'llx(k) =X L -l- + 0 10A+25 L. ld(l) 
m log x 

+0 [x { L _!_} { L L lw(a,l)l}] 
m e1 <l$Q O<a$1 

N(l) [ xerlogel l [ 1 ·] = x L -1- + .0 lOA+ZS + 0 x logx L [2 L lw(a, l)l 
lm$Q m log X 

= x L M 1(k) + 0 [ ] + 0 [xlogx L L iw(a,l)ll (17) 
k$Q lo X <l$Q 

where 
Ml(k) = L N(l) 

llk . 
(18) 

and where it is helpful in what follows to note that the last double sum occurring in ( 17) 
is zero for given Q as x-+ oo. 

The above estimate would actually fully serve our purposes in the proof of the first 
theorem as soon as the final remainder term therein was suitably measured. But a more 
polished and tidy product is derived by immediately comparing (17) with (10) as x-+ oo 
to deduce that 

Mt(k) = M(k), (19) 
as identification that anyway becomes imperative when we embark on the demonstration 
of the sec;ond theorem. Proceeding then to the final remainder term in (18), we need to 
bring the large sieve inequality (7) into play by substituting (3) into it and deducing that 

2: 2: {L 11 d [f(a, d)x + 0 [1 xA ]] }
2 

= 0 [Qix] + O(x2
), 

l$Q1 O<a$1 dll og X 
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from which, by dividing by x2 and letting x-+ oo, we conclude that 

1 OC. 1 L y L w 2(a, l) = 0(1) and L f. 
I$Q1 O<a$1 l=-1 

L w2(a,l) converges. 
O<a:Sl 

Hence, by the Cauchy-Schwarz inequality, 

1 [ 1 [X 1 I: 2 L: lw(a,L)I s I: 3 I: 1 L: - L: w2(a,z) 
1>6 l O<a$1 l O<a$1 1=1 l O<a$1 

and so we finally see from (18) and (19) that 

L \lfx(k) =XL M(k) + 0 [ l' 
k:SQ k:SQ log x 

(20) 

which result is valid for all Q and contains the preliminary (10). 

Temporarily retreating to (9) to sum up what has so far been achieved, we obtain a 
counterpart of (163) in [2] in the form of the equation 

H(x,k) = L S2 (x;a,k)- x2M(k) + Zx(k) (21) 
0<a$k 

(22) 
where 

L Zx(k) = 0 [ ::+4 ] and Zx(k) = 0 [ ]· 
k:SQ log x . log x 

(23) 

This will be used in company with the bound 

[ 
kx2 l H(x, k) = 0 JA+S log x 

(24) 

that is immediate from (9) and (3). 

There are at least two ways of advancing from (22) to the first theorem, one of which 
entails the appearance of two different versions of the large sieve inequality that are distinct 
from (7) . We therefore retrace as closely as possible the final part of (2] , which only needed 
one large sieve inequality and permits us to present the treatment with brevity. First, 
letting y 2:: x be an auxiliary variable, we have 
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as in equation (164) of [2). Secondly, if 

1 
M(k) :::: k L v(l) 

qlk 

(so that actually v(q) :::: N(q), the replacement notation having been previously avoided 
lest it were felt that (19) was being assumed without proof) and :::: logA+l x , then 

1 1 y2 

H(y, k) = k L { Vy(q)- y2v(q)} + k L:Vy(q)- k L v(q) + Zy(k) (25) 
# # # 

qSE q>E q>E 

by (22). Next, as this, (24), and (23) imply that 

2 [ k2y2 l [ ky2 l [ y2 l L { Vy(q) - Y v(q)} = 0 1 3A+5 + 0 1 · 2A+4 = 0 1 A+3 
qlk og x og . x og x 

for k it follows that 
2 [ d(q)y2 l Vy(q) - y v(q) = 0 logA+3 x 

for q and hence that 

always. Hence (25) becomes 

H( k):::: "'V. ( ) - y2 R(k, + 0 [ d3(k)y2] + z (k) 
y, k L...J y q k k l A+3 y 

qlk og x 
q?.E 

in the notation of [2] , which equation when summed over k yields 

when the method of [2) is followed (the temporary restriction that Q in [2] is 
not really essential provided that empty sums be properly interpreted). From this, as in 
[2), we get 

and then, setting y === x, obtain our 
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THEOREM 1. For any sequence satisfying condition (3),we have 

L L {S(x;a,k)-f(a,k)x}2 =0(Qx)+O(x2 log-Ax) 
k<SQ O<a<Sk 

for Q x and any positive constant A. 
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The earlier part of the treatment of the second theorem is almost identical in method 
and notation to that of its analogue in IX, it therefore being enough merely to indicate 
the minor alterations needed. In the case Q > x log-Ax that it suffices to consider in view 
of Theorem 1, we substitute our equation (21) for IX (9), using our present M(k) in (9) 
above to denote what was previously written as C2M(k). Then, summing over k by means 
of (24) and retaining IX (10) with the new definition of M(k), we replace IX(ll) by 

G(x; Q1, Q2) = f(x; Q1, Q2)- x 2 {T(Q2)- T(Ql)} + O(x2log-A x), 

to which must be appended IX (12) with 

c = /(0, 1). ' (26) 

Afterwards f(b, l) must substitute for g(l, 6), whence we modify IX (17) by using the new 
A1(l) and omitting C. 

No longer do we treat the generating function for the sums T*(x/Q) arid T(Q) by the 
sieve method of IX but instead bring in the bound 

L L J.L [y] l L S2 (x; a, l) = O(Qix) + O(x2), 
n"SQ1 lin O<a<Sl 

which is a corollary of the large sieve inequality 
2 

L L L e21rispfq = O(Qix) + O(x2) 
q"SQ1 O<p$q s<Sx 

(p,q)=l 

and 2 2 

I: I: e21rispjq =I: J.l I: I: e21rishjd 

oq.:::;q sSx dlq O<h<Sd sSx 
(p,q)=l 

= L J.L d L S2(x; a, d). 
dlq o<aSd 

(27) 

In this we substitute formula (3) for S(x; a, d) and, letting x oo as in the application of 
( 7), infer that 

L nan= 0(1), 
nSQ1 

where 
nan = I: J.L [y] lM(l), 

lin 
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or. what is the same, 
1 

M(l) = l L nan. 
nil 

Hence 
00 

:Lnan 
1=1 

is absolutely convergent because (27) means that an is non-negative. Consequently. if F(s) 
be the Dirichlet's series 

then 

wherein 

x M(l) 2:-z-s ' 
n=l 

F(s) = ((s + 1)<P(s), 

oc an 
<P(s) = L-

n=l ns 
is absolutely convergent for a ;::: -1 and regular for a > -1. 

We have reached the same point in our work as at IX (28) and have set the scene for 
a treatment of T*(x/Q) and T(Q) that is identical to that of IX save for the substitution 
of <P ( s) for c2 <P ( s). Combining as before the consequential estimates with the earlier 
equations, we infer the truth of 

THEOREM 2. For any sequence satisfying condition (3), we have 

L L {S(x; a, k)- f(a, k)x }2 = (D1 + o(l)] Qx + 0 [x2 log-A x] , 
k$_Q 0<a$_k 

for Q x and any given positive constant A, where D1 is a non-negative constant 
depending only on the sequence and where o(1) --> 0 as xjQ --> oo. Also 

L L {S(x; a, k)- f(a, k)x} 2 = D2x2 + 0 [x2 log-A x] 
k$_x 0<a$_k 

where D2 is a non-negative constant depending only on the sequence. 

We note that 
00 

D1 = /(0, 1)- L nan, 
n=l 

a determination that ceases to be easy to interpret when Criteria U and S are no longer 
in place. However, we should at least observe that f(O, 1) is zero when and only when the 
sequence has zero density in which situation f (a, k) and therefore D1 are also zero. In this 
case we would need to adopt appropriate alternatives tosupposition (3) in order to seek a 
theorem of Barban-Montgomery type in which the explicit term would be of a lower order 
of magnitude than Qx unless weights were attached to the sequence. 



Barban-Davenport-Halberstam Theorem 11 

REFERENCE 

[1] C.Hooley, On the Barban-Davenport-Halberstam theorem: III, J.London. Math. 
Soc., (2), 10 (1975) 219-256. 

[2) C. Hooley, On a new approach to various problems of Waring's 5, [10) Recent 
Progress in Analytic Number Theory. Vol1, Academic Press (1981) 127-191. 

[3] C.Hooley, On the Barban-Davenport.,.Halberstam theorem, IX Acta Arith. 83 
(1998) 17-30. 

[4] H.L.Montgomery, A note on the large sieve, J. London Math. Soc., 43, (1968) 93-98. 

[5] H.L. Montgomery, Topics in multiplicative number theory, Lecture notes in Math-
ematics, 227, Springer-Verlag (1971). 

School of Mathematics 
University of Wales, Cardiff 
Senghennydd Road 
Cardiff CF2 4 YH 
Wales, Great Britain. 


