On the Riesz means of $\delta_k(n)$

Saurabh Kumar Singh

Abstract. Let $k \ge 1$ be an integer. Let $\delta_k(n)$ denote the maximum divisor of n which is co-prime to k. We study the error term of the general m-th Riesz mean of the arithmetical function $\delta_k(n)$ for any positive integer $m \ge 1$, namely the error term $E_{m,k}(x)$ where

$$\frac{1}{m!}\sum_{n\leq x}\delta_k(n)\left(1-\frac{n}{x}\right)^m = M_{m,k}(x) + E_{m,k}(x).$$

We establish a non-trivial upper bound for $|E_{m,k}(x)|$, for any integer $m \ge 1$.

Keywords. Euler-totient function, Generating functions, Riemann zeta-function.2010 Mathematics Subject Classification. Primary 11A25; Secondary 11N37.

1. Introduction

For any fixed positive integer k, we define

$$\delta_k(n) = \max\{d : d \mid n, \ (d,k) = 1\}.$$
(1.1)

Joshi and Vaidya [JV] proved that

$$\sum_{n \le x} \delta_k(n) = \frac{k}{2\sigma(k)} x^2 + E_k(x), \qquad (1.2)$$

with $E_k(x) = O(x)$ and $\sigma(k) = \sum_{d|k} d$, when k is a square free positive integer. They also proved that when k = p, a prime,

$$\underline{\lim_{n \to \infty} \frac{E_p(x)}{x}} = -\frac{p}{p+1}, \quad \text{and} \quad \overline{\lim_{n \to \infty} \frac{E_p(x)}{x}} = \frac{p}{p+1}.$$

It was proved by Maxsein and Herzog [MH] that for any square free positive integer k,

$$\lim_{n \to \infty} \frac{E_k(x)}{x} \le -\frac{k}{\sigma(k)}, \quad \text{and} \quad \overline{\lim_{n \to \infty} \frac{E_k(x)}{x}} \ge \frac{k}{\sigma(k)}.$$

Around the same time, Adhikari, Balasubramanian and Sankaranarayanan [ABS] proved the above results by a different method. While a tauberian theorem of Hardy-Littlewood and Karamata was used in [MH] to get the asymptotic formula for $\sum_{n \leq x} \gamma_k(n)$, where $\gamma_k(n)$ is defined by the relation $\delta_k(n) = \gamma_k * I(n)$ where * is the Dirichlet convolution and I is the identity function, the method of [ABS] consists of averaging over arithmetical progressions.

For $k \geq 1$ and square free, Harzog and Maxsein [MH] had also observed that

$$\limsup_{x \to \infty} \frac{E_k(x)}{x} \le \frac{1}{2}d(k),$$

We thank episciences.org for providing open access hosting of the electronic journal Hardy-Ramanujan Journal

where d(k) denotes the number of divisors of k. Later Adhikari and Balasubramanian [AB] improved this result of Maxsein and Herzog by showing that

$$\varlimsup_{n \to \infty} \frac{|E_k(x)|}{x} \leq \frac{1}{2} \left(1 - \frac{1}{p+1}\right) d(k),$$

where p denotes the smallest prime dividing k.

Writing

$$H_k(x) = \sum_{n \le x} \frac{\delta_k(n)}{n} - \frac{kx}{\sigma(k)},$$

one observes (see [ABS]) that

$$\frac{E_k(x)}{x} = H_k(x) + O(1).$$

In [AS], more precise upper and lower bounds for the quantities $\underline{\lim} H_k(x)$ and $\overline{\lim} H_k(x)$ were established. The aim of this article is to study the error term of the general *m*-th Riesz mean related to the arithmetic function $\delta_k(n)$ for any positive integer $m \ge 1$ and $k \ge 1$. More precisely, we write

$$\frac{1}{m!} \sum_{n \le x} \delta_k(n) \left(1 - \frac{n}{x} \right)^m = M_{m,k}(x) + E_{m,k}(x)$$
(1.3)

where $M_{m,k}(x)$ is the main term (exists) and $E_{m,k}(x)$ is the error term of the sum under investigation. We prove the following.

Theorem 1.1. Let $x \ge x_0$ where x_0 is a sufficiently large positive number and let $c(\eta) = \frac{2}{1-2^{-\eta}}$ for any $\eta > 0$. For any integer $m \ge 1$ and for any integer $k \ge 1$, we have

$$\frac{1}{m!} \sum_{n \le x} \delta_k(n) \left(1 - \frac{n}{x} \right)^m = \frac{x^2}{(m+2)!} \prod_{p|k} \frac{p}{p+1} + E_{m,k}(x),$$

where

$$E_{1,k}(x) \ll kc(1/2)^{\omega(k)} x^{\frac{1}{2}} \log x,$$

and for $m \geq 2$, we have

$$E_{m,k}(x) \ll kc(\eta)^{\omega(k)} x^{\eta}$$

for any small fixed positive constant η and the implied constant is independent of m.

2. Notation

- 1. Throughout the paper, $s = \sigma + it$; the parameters T and x are sufficiently large real numbers and m is an integer ≥ 1 .
- 2. η , ϵ always denote sufficiently small positive constants.
- 3. As usual $\zeta(s)$ denotes the Riemann zeta-function.
- 4. k is any square free positive integer.

3. Some Lemmas

Generating function for $\delta_k(n)$ is given by:

Lemma 3.1. We have

$$\sum_{n=1}^{\infty} \frac{\delta_k(n)}{n^s} = \zeta(s-1)G(s),$$

where

$$G(s) = \sum_{n=1}^{\infty} \frac{g(n)}{n^s} = \prod_{p|k} \left(\frac{1 - \frac{p}{p^s}}{1 - \frac{1}{p^s}} \right) \ll k \ c(\eta)^{\omega(k)},$$

for $\sigma \geq \eta$ and

$$c(\eta) = \frac{2}{1 - 2^{-\eta}}.$$

Proof. We have (see [ABS, equation 2.2]),

$$\sum_{n=2}^{\infty} \frac{\delta_k(n)}{n^s} = \prod_p \left(1 + \frac{\delta_k(p)}{p^s} + \frac{\delta_k(p^2)}{p^{2s}} + \cdots \right)$$
$$= \prod_{p|k} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots \right) \prod_{p|k} \left(1 + \frac{p}{p^s} + \frac{p^2}{p^{2s}} + \cdots \right)$$
$$= \zeta(s-1) \prod_{p|k} \frac{1 - \frac{1}{p^{s-1}}}{1 - \frac{1}{p^s}} := \zeta(s-1)G(s),$$

since

$$\delta_k(p^m) = \begin{cases} 1 & \text{if } p \mid k \\ p^m & \text{if } p \nmid k. \end{cases}$$

And for $\sigma \geq \eta$ (> 0), we observe that

$$|G(s)| = \prod_{p|k} \left| \frac{1 - \frac{1}{p^{s-1}}}{1 - \frac{1}{p^s}} \right| \le \prod_{p|k} \frac{1 + p^{1-\eta}}{1 - \frac{1}{p^{\eta}}} \le \prod_{p|k} \frac{2p}{1 - \frac{1}{2^{\eta}}} \le kc(\eta)^{\omega(k)}.$$

Lemma 3.2. Let m be an integer ≥ 1 . Let c and y be any positive real numbers and $T \geq T_0$ where T_0 is sufficiently large. Then we have,

$$\frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{y^s}{s(s+1)\cdots(s+m)} ds = \begin{cases} \frac{1}{m!} \left(1-\frac{1}{y}\right)^m + O\left(\frac{4^m y^c}{T^m}\right) & \text{if } y \ge 1, \\ O\left(\frac{1}{T^m}\right) & \text{if } 0 < y \le 1 \end{cases}$$

Proof. See [SS, Lemma 3.2] and also [In, p.31 Theorem B]).

Lemma 3.3. The Riemann zeta-function $\zeta(s)$ is extended as a meromorphic function in the whole complex plane \mathbb{C} with a simple pole at s = 1 and it satisfies a functional equation $\zeta(s) = \chi(s)\zeta(1-s)$ where

$$\chi(s) = \frac{\pi^{-(1-s)/2} \Gamma\left(\frac{1-s}{2}\right)}{\pi^{-s/2} \Gamma\left(\frac{s}{2}\right)}.$$

Also, in any bounded vertical strip, using Stirling's formula, we have

$$\chi(s) = \left(\frac{2\pi}{t}\right)^{\sigma + it - 1/2} e^{i\left(t + \frac{\pi}{4}\right)} \left(1 + O\left(t^{-1}\right)\right)$$

as $|t| \to \infty$. Thus, in any bounded vertical strip,

$$|\chi(s)| \approx t^{1/2-\sigma} \left(1 + O(t^{-1})\right)$$

as $|t| \to \infty$.

Proof. See [T, p.116] or [Iv, p.8-12].

Lemma 3.4. We have for $t \ge t_0$ (sufficiently large),

$$\zeta(\frac{1}{2} + it) \ll t^{1/6} (\log t)^{3/2}$$

and

$$\zeta(1+it) \ll \log t$$

Proof. See [T, page 99, Theorem 5.5] and [T, page 49, Theorem 3.5]

4. Proof of theorem 1.1

From Lemma 3.2, with $c = 2 + \frac{1}{\log x}$ and writing $F(s) := \zeta(s-1)G(s)$, we have

$$S := \sum_{n \le x} \delta_k(n) \left(1 - \frac{n}{x} \right)^m = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s) \frac{x^s}{s(s+1)\cdots(s+m)} \, ds$$
$$= \frac{1}{2\pi i} \int_{c-iT}^{c+iT} F(s) \frac{x^s}{s(s+1)\cdots(s+m)} \, ds + O\left(\frac{4^m x^c \log x}{T^m}\right). \tag{4.4}$$

Note that the tail portion error term in the above expression is actually

$$\ll \frac{4^m}{T^m} x^c \sum_{n \le x} \frac{\delta_k(n)}{n^c} \ll \frac{4^m x^c \log x}{T^m},$$

since $\delta_k(n) \leq n$.

Case 1: Let m = 1. We move the line of integration in the above integral to $\Re s = \frac{1}{2}$. In the rectangular contour formed by the line segments joining the points c - iT, c + iT, $\frac{1}{2} + iT$, $\frac{1}{2} - iT$ and c - iT in the anticlockwise order, we observe that s = 2 is a simple pole of the integrand. Thus we get the main term $\frac{x^2}{(m+2)!} \prod_{p|k} \frac{p}{p+1}$ from the residue coming from the pole s = 2. We note that

$$\frac{1}{2\pi i} \int_{c-iT}^{c+iT} F(s) \frac{x^s}{s(s+1)} ds$$

$$= \frac{1}{2\pi i} \left\{ \int_{\frac{1}{2}+iT}^{c+iT} \cdots + \int_{\frac{1}{2}-iT}^{\frac{1}{2}+iT} \cdots + \int_{c-iT}^{\frac{1}{2}-iT} \cdots \right\} + \text{sum of the residues.}$$
(4.5)

The left vertical line segment contributes the quantity:

$$\begin{aligned} Q_{1} &:= \frac{1}{2\pi} \int_{-T}^{T} F(1/2 + it) \frac{x^{1/2 + it} dt}{(-1/2 + it)(1/2 + it)} dt \\ &= \frac{1}{2\pi} \left(\int_{|t| \le t_{0}} + \int_{t_{0} < |t| \le T} \right) \frac{x^{\frac{1}{2} + it} \zeta \left(-\frac{1}{2} + it \right) G \left(\frac{1}{2} + it \right) dt}{(\frac{1}{2} + it) \left(\frac{1}{2} + it \right)} \\ &\ll k \ c(1/2)^{\omega(k)} x^{1/2} + k \ c(1/2)^{\omega(k)} x^{1/2} \int_{t_{0} < |t| \le T} t^{1/2 - (-1/2)} \left| \zeta(3/2 + it) G \left(\frac{1}{2} + it \right) \right| \frac{dt}{t^{2}} \\ &\ll k \ c(1/2)^{\omega(k)} x^{1/2} + k \ c(1/2)^{\omega(k)} x^{1/2} \int_{t_{0} < t \le T} \frac{dt}{t} . \\ &\ll k \ c(1/2)^{\omega(k)} x^{1/2} \log T. \end{aligned}$$

$$(4.6)$$

Now we will estimate the contributions coming from the upper horizontal line (estimation for the lower horizontal line is similar).

The horizontal lines in total contribute a quantity which is in absolute value

$$\ll \int_{1/2}^{c} \left| \zeta(\sigma - 1 + iT)G(\sigma + iT) \frac{x^{\sigma + iT}}{(\sigma + iT)(\sigma + 1 + iT)} \right| d\sigma$$

$$\ll \left(\int_{1/2}^{1} + \int_{1}^{3/2} + \int_{3/2}^{c} \right) |\zeta(\sigma - 1 + iT)G(\sigma + iT)| \frac{x^{\sigma}}{T^{2}} d\sigma$$

$$\ll k \ c(1/2)^{\omega(k)} \left\{ \left(\int_{1/2}^{1} + \int_{1}^{3/2} \right) T^{1/2 - \sigma + 1} |\zeta(2 - \sigma + iT)| \frac{x^{\sigma}}{T^{2}} d\sigma$$

$$+ \int_{3/2}^{c} |\zeta(\sigma - 1 + iT)| \frac{x^{\sigma}}{T^{2}} d\sigma \right\} \text{ (by Lemma 3.3)}$$

$$\ll k \ c(1/2)^{\omega(k)} \left(\frac{x \log T}{T} + \frac{x^{3/2} \log T}{T^{3/2}} + \frac{x^{2} \log T}{T^{11/6}} \right) \text{ (by Lemma 3.4).}$$

Collecting all the estimates, and taking $T = x^{10}$ we get:

$$E_{1,k}(x) \ll k \ c(1/2)^{\omega(k)} \left(x^{1/2} \log T + \frac{x^2}{T} + \frac{x \log T}{T} + \frac{x^{3/2} \log T}{T^{3/2}} + \frac{x^2 \log T}{T^{11/6}} \right)$$
$$\ll k \ c(1/2)^{\omega(k)} x^{1/2} \log x.$$
(4.7)

Case 2: Let $m \ge 2$. We move the line of integration to $\Re s = \eta$ (> 0).

We note that

$$\frac{1}{2\pi i} \int_{c-iT}^{c+iT} F(s) \frac{x^s}{s(s+1)\cdots(s+m)} ds$$

$$= \frac{1}{2\pi i} \left\{ \int_{\delta+iT}^{c+iT} \cdots + \int_{\delta-iT}^{\delta+iT} \cdots + \int_{c-iT}^{\delta-iT} \cdots \right\} + \text{sum of the residue.}$$
(4.8)

The left vertical line segment contributes the quantity:

$$\begin{aligned} Q_m &\coloneqq \frac{1}{2\pi} \int_{-T}^{T} F(\eta + it) \frac{x^{\eta + it} dt}{(\eta + it)(\eta + 1 + it) \cdots (\eta + m + it)} dt \\ &= \frac{1}{2\pi} \left(\int_{|t| \le t_0} f(\eta) + \int_{|t| \le T} f(\eta) \frac{x^{\eta + it} \zeta(\eta - 1 + it) G(\eta + it) dt}{(\eta + it)(\eta + 1 + it) \cdots (\eta + m + it)} \right) \\ &\ll k \ c(\eta)^{\omega(k)} x^{\eta} + k \ c(\eta)^{\omega(k)} x^{\eta} \int_{t_0 < |t| \le T} t^{1/2 - (\eta - 1)} |\zeta(3/2 - \eta + it) G(\eta + it)| \frac{dt}{t^{m + 1}} \\ &\ll k \ c(\eta)^{\omega(k)} x^{\eta} + k \ c(\eta)^{\omega(k)} x^{\eta} \int_{t_0 < t \le T} \frac{t^{3/2 - \eta}}{t^3} dt. \\ &\ll k \ c(\eta)^{\omega(k)} x^{\eta}. \end{aligned}$$
(4.9)

Now we will estimate the contributions coming from the upper horizontal line (estimation for the lower horizontal line is similar).

The horizontal lines in total contribute a quantity which is in absolute value

$$\ll \int_{\eta}^{c} \left| \zeta(\sigma - 1 + iT)G(\sigma + iT) \frac{x^{\sigma + iT}}{(\sigma + iT)(\sigma + 1 + iT)\cdots(\sigma + m + iT)} \right| d\sigma$$

$$\ll c(\eta)^{\omega(k)} k \left(\int_{\eta}^{1} + \int_{1}^{3/2} + \int_{3/2}^{c} \right) |\zeta(\sigma - 1 + iT)| \frac{x^{\sigma}}{T^{k+1}}$$

$$\ll k c(\eta)^{\omega(k)} \left\{ \left(\int_{\eta}^{1/2} + \int_{1/2}^{1} + \int_{1}^{3/2} \right) T^{1/2 - \sigma + 1} |\zeta(2 - \sigma + iT)| \frac{x^{\sigma}}{T^{m+1}} d\sigma$$

$$+ \int_{3/2}^{c} |\zeta(\sigma - 1 + iT)| \frac{x^{\sigma}}{T^{m+1}} d\sigma \right\}$$

$$\ll k c(\eta)^{\omega(k)} \left(\frac{x^{1/2}}{T^{m-1/2 + \eta}} + \frac{x \log T}{T^{m}} + \frac{x^{3/2} (\log T)^{3/2}}{T^{m+5/6}} + \frac{x^{2} (\log T)^{3/2}}{T^{m+5/6}} \right)$$

Collecting all the estimates, and taking $T = x^{10}$, for $m \ge 2$ we get:

$$E_{m,k}(x) \ll k \ c(\eta)^{\omega(k)} x^{\eta}. \tag{4.10}$$

This proves Theorem 1.1.

Remark 4.1. For $m \ge 2$ we may try to move the line of integration slightly left of vertical line 0. On the line $\Re s = 0$, the function G(s) has simple poles at the points $s(\ell, p) = \frac{2\pi i \ell}{\log p} \quad \forall \ell \in \mathbb{Z}$ and for each prime $p \mid k$. let $p_1, p_2, \cdots p_{r_k}$ be the primes dividing k. The total contribution from the simple poles at the points $s(\ell, p) = \frac{2\pi i \ell}{\log p_j}$ for $1 \le j \le r_k$ is given by:

$$M = \sum_{j=1}^{r_k} \sum_{|\ell| \le \frac{T \log p_j}{2\pi}} \zeta \left(\frac{2\pi i \ell}{\log p_j} - 1 \right) \prod_{p_i \neq p_j} \left(1 - \frac{p_i}{\frac{2\pi i \ell}{\log p_j}} \right) \frac{x^{\frac{2\pi i \ell}{\log p_j}}}{\frac{2\pi i \ell}{\log p_j} \left(\frac{2\pi i \ell}{\log p_j} + 1 \right) \cdots \left(\frac{2\pi i \ell}{\log p_j} + m \right)}.$$

If one establishes that $M = o(x^{\eta})$, then this will improve the error term. This seems to be really difficult.

Remark 4.2. From the Theorem 1.1 observe that

$$E_{1,k}(x) \ll_{\epsilon} x^{1/2+10\epsilon}$$

uniformly for $3 \leq k \ll x^{\epsilon}$ since $\omega(k) \ll \frac{\log}{\log \log k}$ for $k \geq 3$. Also $E_{m,k}(x) \ll x^{c_1\eta}$ uniformly for $3 \leq k \ll x^{\epsilon}$, where c_1 is effective positive constant.

Acknowledgment.

The author would like to thank Prof. S. D. Adhikari and Prof. A. Sankaranarayanan for suggesting the problem and for all fruitful discussion and suggestions.

References

- [ABS] S. D. Adhikari, R. Balasubramanian and A. Sankaranarayanan, On an error term related to the greatest divisor of n which is prime to k, Indian J. pure and appl. Math., 19(9) (1988), 830–841.
 [AB] S. D. Adhikari and R. Balasubramanian, A note on a certain error term., Arch. Math., 56 (1991), 37–40.
- [AS] S. D. Adhikari and K. Soundararajan, Towards the exact nature of a certain error term-II, Arch. Math., 59 (1992), 442-449.
- [In] A. E. Ingham, The distribution of prime numbers, Cambridge University Press (1995).
- [Iv] A. Ivić, The Riemann Zeta-Function: Theory and Applications, Dover Publications, Inc, New York.
- [JV] V. S. Joshi and A. M. Vaidya, Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyái. Budapest (Hungary) 34 (1981).
- [MH] T. Maxsein and J. Herzog, Mathematiches Forschungsinstitut oberwalfach Tagungsbericht, 42 (1986).
- [SS] A. Sankaranarayanan and S.K. Singh, On the Riesz mean of $\frac{n}{\phi(n)}$, Hardy-Ramanujan Journal, **36** (2013), 8–20.
- [T] E. C. Titchmarsh, *The Theory of the Riemann Zeta function*, (revised by D. R. Heath-Brown), Clarendon Press, Oxford (1986).

Saurabh Kumar Singh

Stat-Math Unit, Indian Statistical Institute 203 BT Road, Kolkata-700108, India. *e-mail*: skumar.bhu12@gmail.com