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On the Riesz means of δk(n)

Saurabh Kumar Singh

Abstract. Let k ≥ 1 be an integer. Let δk(n) denote the maximum divisor of n which is co-prime to k. We study the error term

of the general m-th Riesz mean of the arithmetical function δk(n) for any positive integer m ≥ 1, namely the error term Em,k(x)

where
1

m!

∑
n≤x

δk(n)
(

1−
n

x

)m
= Mm,k(x) + Em,k(x).

We establish a non-trivial upper bound for
∣∣Em,k(x)

∣∣, for any integer m ≥ 1.
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1. Introduction

For any fixed positive integer k, we define

δk(n) = max{d : d | n, (d, k) = 1}. (1.1)

Joshi and Vaidya [JV] proved that ∑
n≤x

δk(n) =
k

2σ(k)
x2 + Ek(x), (1.2)

with Ek(x) = O(x) and σ(k) =
∑

d|k d, when k is a square free positive integer. They also proved
that when k = p, a prime,

lim
n→∞

Ep(x)

x
= − p

p+ 1
, and lim

n→∞

Ep(x)

x
=

p

p+ 1
.

It was proved by Maxsein and Herzog [MH] that for any square free positive integer k,

lim
n→∞

Ek(x)

x
≤ − k

σ(k)
, and lim

n→∞

Ek(x)

x
≥ k

σ(k)
.

Around the same time, Adhikari, Balasubramanian and Sankaranarayanan [ABS] proved the above
results by a different method. While a tauberian theorem of Hardy-Littlewood and Karamata was
used in [MH] to get the asymptotic formula for

∑
n≤x γk(n), where γk(n) is defined by the relation

δk(n) = γk ∗ I(n) where ∗ is the Dirichlet convolution and I is the identity function, the method of
[ABS] consists of averaging over arithmetical progressions.

For k ≥ 1 and square free, Harzog and Maxsein [MH] had also observed that

lim sup
x→∞

Ek(x)

x
≤ 1

2
d(k),
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where d(k) denotes the number of divisors of k. Later Adhikari and Balasubramanian [AB]
improved this result of Maxsein and Herzog by showing that

lim
n→∞

|Ek(x)|
x

≤ 1

2

(
1− 1

p+ 1

)
d(k),

where p denotes the smallest prime dividing k.
Writing

Hk(x) =
∑
n≤x

δk(n)

n
− kx

σ(k)
,

one observes (see [ABS]) that
Ek(x)

x
= Hk(x) +O(1).

In [AS], more precise upper and lower bounds for the quantities limHk(x) and limHk(x) were estab-
lished. The aim of this article is to study the error term of the general m-th Riesz mean related to
the arithmetic function δk(n) for any positive integer m ≥ 1 and k ≥ 1. More precisely, we write

1

m!

∑
n≤x

δk(n)
(

1− n

x

)m
= Mm,k(x) + Em,k(x) (1.3)

where Mm,k(x) is the main term (exists) and Em,k(x) is the error term of the sum under investigation.
We prove the following.

Theorem 1.1. Let x ≥ x0 where x0 is a sufficiently large positive number and let c(η) = 2
1−2−η for

any η > 0. For any integer m ≥ 1 and for any integer k ≥ 1, we have

1

m!

∑
n≤x

δk(n)
(

1− n

x

)m
=

x2

(m+ 2)!

∏
p|k

p

p+ 1
+ Em,k(x),

where
E1,k(x)� kc(1/2)ω(k)x

1
2 log x,

and for m ≥ 2, we have
Em,k(x)� kc(η)ω(k)xη

for any small fixed positive constant η and the implied constant is independent of m.

2. Notation

1. Throughout the paper, s = σ + it ; the parameters T and x are sufficiently large real numbers
and m is an integer ≥ 1.

2. η, ε always denote sufficiently small positive constants.

3. As usual ζ(s) denotes the Riemann zeta-function.

4. k is any square free positive integer.
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3. Some Lemmas

Generating function for δk(n) is given by:

Lemma 3.1. We have
∞∑
n=1

δk(n)

ns
= ζ(s− 1)G(s),

where

G(s) =
∞∑
n=1

g(n)

ns
=
∏
p|k

(
1− p

ps

1− 1
ps

)
� k c(η)ω(k),

for σ ≥ η and

c(η) =
2

1− 2−η
.

Proof. We have (see [ABS, equation 2.2]),

∞∑
n=2

δk(n)

ns
=
∏
p

(
1 +

δk(p)

ps
+
δk(p

2)

p2s
+ · · ·

)

=
∏
p|k

(
1 +

1

ps
+

1

p2s
+ · · ·

)∏
p-k

(
1 +

p

ps
+
p2

p2s
+ · · ·

)

= ζ(s− 1)
∏
p|k

1− 1
ps−1

1− 1
ps

:= ζ(s− 1)G(s),

since

δk(p
m) =

{
1 if p | k
pm if p - k.

And for σ ≥ η (> 0), we observe that

|G(s)| =
∏
p|k

∣∣∣∣∣1−
1

ps−1

1− 1
ps

∣∣∣∣∣ ≤∏
p|k

1 + p1−η

1− 1
pη
≤
∏
p|k

2p

1− 1
2η
≤ kc(η)ω(k).

Lemma 3.2. Let m be an integer ≥ 1. Let c and y be any positive real numbers and T ≥ T0 where
T0 is sufficiently large. Then we have,

1

2πi

∫ c+iT

c−iT

ys

s(s+ 1) · · · (s+m)
ds =

{
1
m!

(
1− 1

y

)m
+O

(
4myc

Tm

)
if y ≥ 1,

O
(

1
Tm

)
if 0 < y ≤ 1.

Proof. See [SS, Lemma 3.2] and also [In, p.31 Theorem B]).

Lemma 3.3. The Riemann zeta-function ζ(s) is extended as a meromorphic function in the whole
complex plane C with a simple pole at s = 1 and it satisfies a functional equation ζ(s) = χ(s)ζ(1− s)
where

χ(s) =
π−(1−s)/2Γ

(
1−s

2

)
π−s/2Γ

(
s
2

) .

Also, in any bounded vertical strip, using Stirling’s formula, we have
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χ(s) =

(
2π

t

)σ+it−1/2

ei(t+
π
4 ) (1 +O

(
t−1
))

as |t| → ∞. Thus, in any bounded vertical strip,

|χ(s)| � t1/2−σ
(
1 +O

(
t−1
))

as |t| → ∞.

Proof. See [T, p.116] or [Iv, p.8-12].

Lemma 3.4. We have for t ≥ t0 (sufficiently large),

ζ(
1

2
+ it)� t1/6(log t)3/2

and
ζ(1 + it)� log t.

Proof. See [T, page 99, Theorem 5.5] and [T, page 49, Theorem 3.5]

4. Proof of theorem 1.1

From Lemma 3.2, with c = 2 + 1
log x and writing F (s) := ζ(s− 1)G(s), we have

S :=
∑
n≤x

δk(n)
(

1− n

x

)m
=

1

2πi

∫ c+i∞

c−i∞
F (s)

xs

s(s+ 1) · · · (s+m)
ds

=
1

2πi

∫ c+iT

c−iT
F (s)

xs

s(s+ 1) · · · (s+m)
ds+O

(
4mxc log x

Tm

)
. (4.4)

Note that the tail portion error term in the above expression is actually

� 4m

Tm
xc
∑
n≤x

δk(n)

nc
� 4mxc log x

Tm
,

since δk(n) ≤ n.
Case 1: Let m = 1. We move the line of integration in the above integral to <s = 1

2 . In the
rectangular contour formed by the line segments joining the points c− iT , c+ iT , 1

2 + iT , 1
2 − iT and

c − iT in the anticlockwise order, we observe that s = 2 is a simple pole of the integrand. Thus we
get the main term x2

(m+2)!

∏
p|k

p
p+1 from the residue coming from the pole s = 2.

We note that

1

2πi

∫ c+iT

c−iT
F (s)

xs

s(s+ 1)
ds

=
1

2πi

{∫ c+iT

1
2

+iT
· · ·+

∫ 1
2

+iT

1
2
−iT

· · ·+
∫ 1

2
−iT

c−iT
· · ·

}
+ sum of the residues. (4.5)

The left vertical line segment contributes the quantity:
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Q1 :=
1

2π

∫ T

−T
F (1/2 + it)

x1/2+itdt

(−1/2 + it)(1/2 + it)
dt

=
1

2π

 ∫
|t|≤t0

+

∫
t0<|t|≤T

 x
1
2

+itζ
(
−1

2 + it
)
G
(

1
2 + it

)
dt(

1
2 + it

) (
1
2 + it

)
)

� k c(1/2)ω(k)x1/2 + k c(1/2)ω(k)x1/2

∫
t0<|t|≤T

t1/2−(−1/2)

∣∣∣∣ζ(3/2 + it)G

(
1

2
+ it

)∣∣∣∣ dtt2
� k c(1/2)ω(k)x1/2 + k c(1/2)ω(k)x1/2

∫
t0<t≤T

dt

t
.

� k c(1/2)ω(k)x1/2 log T. (4.6)

Now we will estimate the contributions coming from the upper horizontal line (estimation for the
lower horizontal line is similar).
The horizontal lines in total contribute a quantity which is in absolute value

�
∫ c

1/2

∣∣∣∣ζ(σ − 1 + iT )G(σ + iT )
xσ+iT

(σ + iT )(σ + 1 + iT )

∣∣∣∣ dσ
�

(∫ 1

1/2
+

∫ 3/2

1
+

∫ c

3/2

)
|ζ(σ − 1 + iT )G(σ + iT )|x

σ

T 2
dσ

� k c(1/2)ω(k)

{(∫ 1

1/2
+

∫ 3/2

1

)
T 1/2−σ+1|ζ(2− σ + iT )|x

σ

T 2
dσ

+

∫ c

3/2
|ζ(σ − 1 + iT )|x

σ

T 2
dσ

}
(by Lemma 3.3)

� k c(1/2)ω(k)

(
x log T

T
+
x3/2 log T

T 3/2
+
x2 log T

T 11/6

)
(by Lemma 3.4).

Collecting all the estimates, and taking T = x10 we get:

E1,k(x)� k c(1/2)ω(k)

(
x1/2 log T +

x2

T
+
x log T

T
+
x3/2 log T

T 3/2
+
x2 log T

T 11/6

)
� k c(1/2)ω(k)x1/2 log x. (4.7)

Case 2: Let m ≥ 2. We move the line of integration to <s = η (> 0).
We note that

1

2πi

∫ c+iT

c−iT
F (s)

xs

s(s+ 1) · · · (s+m)
ds

=
1

2πi

{∫ c+iT

δ+iT
· · ·+

∫ δ+iT

δ−iT
· · ·+

∫ δ−iT

c−iT
· · ·
}

+ sum of the residue. (4.8)

The left vertical line segment contributes the quantity:
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Qm :=
1

2π

∫ T

−T
F (η + it)

xη+itdt

(η + it)(η + 1 + it) · · · (η +m+ it)
dt

=
1

2π

 ∫
|t|≤t0

+

∫
t0<|t|≤T

 xη+itζ (η − 1 + it)G (η + it) dt

(η + it)(η + 1 + it) · · · (η +m+ it)

� k c(η)ω(k)xη + k c(η)ω(k)xη
∫

t0<|t|≤T

t1/2−(η−1)|ζ(3/2− η + it)G(η + it)| dt
tm+1

� k c(η)ω(k)xη + k c(η)ω(k)xη
∫

t0<t≤T

t3/2−η

t3
dt.

� k c(η)ω(k) xη. (4.9)

Now we will estimate the contributions coming from the upper horizontal line (estimation for the
lower horizontal line is similar).
The horizontal lines in total contribute a quantity which is in absolute value

�
∫ c

η

∣∣∣∣ζ(σ − 1 + iT )G(σ + iT )
xσ+iT

(σ + iT )(σ + 1 + iT ) · · · (σ +m+ iT )

∣∣∣∣ dσ
� c(η)ω(k)k

(∫ 1

η
+

∫ 3/2

1
+

∫ c

3/2

)
|ζ(σ − 1 + iT )| x

σ

T k+1

� k c(η)ω(k)

{(∫ 1/2

η
+

∫ 1

1/2
+

∫ 3/2

1

)
T 1/2−σ+1|ζ(2− σ + iT )| xσ

Tm+1
dσ

+

∫ c

3/2
|ζ(σ − 1 + iT )| xσ

Tm+1
dσ

}

� k c(η)ω(k)

(
x1/2

Tm−1/2+η
+
x log T

Tm
+
x3/2(log T )3/2

Tm+5/6
+
x2(log T )3/2

Tm+5/6

)

Collecting all the estimates, and taking T = x10, for m ≥ 2 we get:

Em,k(x)� k c(η)ω(k)xη. (4.10)

This proves Theorem 1.1.

Remark 4.1. For m ≥ 2 we may try to move the line of integration slightly left of vertical line 0.
On the line <s = 0, the function G(s) has simple poles at the points s(`, p) = 2πi`

log p ∀` ∈ Z and for
each prime p | k. let p1, p2, · · · prk be the primes dividing k. The total contribution from the simple
poles at the points s(`, p) = 2πi`

log pj
for 1 ≤ j ≤ rk is given by:

M =

rk∑
j=1

∑
|`|≤

T log pj
2π

ζ

(
2πi`

log pj
− 1

) ∏
pi 6=pj

1− pi

p
2πi`
log pj

j

 x
2πi`
log pj

2πi`
log pj

(
2πi`

log pj
+ 1
)
· · ·
(

2πi`
log pj

+m
) .

If one establishes that M = o (xη), then this will improve the error term. This seems to be really
difficult.
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Remark 4.2. From the Theorem 1.1 observe that

E1,k(x)�ε x
1/2+10ε

uniformly for 3 ≤ k � xε since ω(k) � log
log log k for k ≥ 3. Also Em,k(x) � xc1η uniformly for

3 ≤ k � xε, where c1 is effective positive constant.
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