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A note on Hardy’s theorem

Usha K. Sangale

Abstract. Hardy’s theorem for the Riemann zeta-function ζ(s) says that it admits infinitely many complex zeros on the line

<(s) = 1
2

. In this note, we give a simple proof of this statement which, to the best of our knowledge, is new.
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1. Introduction

The Riemann Hypothesis (RH) is perhaps one of the most challenging problems in mathematics
to this date. In 1859, Riemann asserted that all the complex zeros of the Riemann zeta function
ζ(s), s = σ + it lie on the critical line σ = 1/2. In other words, RH asserts that

ζ(s) 6= 0 in σ > 1/2 . (1.1)

So far a proof or disproof of this statement has eluded the best minds. The sharpest known result in
this direction is by I. M. Vinogradov [Vi36] who proved that there exists a positive constant c such
that

ζ(s) 6= 0 in σ > 1− c(log t)−2/3(log log t)−1/3. (1.2)

Riemann zeta-function was invented by Euler to study the distribution of primes. There is a deep
connection between the zero-free region of ζ(s) and the error term in the prime number theorem
(PNT) (see [Iv85, Chap. 12]). Let π(x) count the number of primes upto x, then the prime number
theorem says that there is an absolute constant C > 0 such that

π(x) =

∫ x

2

1

log u
du+O

{
x exp

(
−C(log x)3/5(log log x)−1/5

)}
.

The above error term is a consequence of (1.2), which is the best known unconditional result whereas
the error on RH is O(x1/2+ε).

It was G. H. Hardy who in 1914 [Ha14] showed that ζ(s) has infinitely many zeros on the critical
line σ = 1/2. This is generally known as a first step towards RH! The method of Hardy, simplified
further by Hardy and Littlewood [HaLi18] paved way to establish analogous results for more general
Dirichlet Series (see [MRS08]). Titchmarsh’s famous book on Riemann zeta-function [Ti86, Chap. X]
discusses several methods of proving Hardy’s theorem.

The basic idea behind the proof of Hardy’s theorem is very simple. Suppose f(x) ∈ C1[a, b], and
f(x) 6= 0 in a 6 x 6 b, then ∣∣∣ ∫ b

a
f(x) dx

∣∣∣ =

∫ b

a
|f(x)| dx. (1.3)

Therefore, if (1.3) is violated, then it shows that f(x) has a zero of odd order in [a, b].
The proof of Hardy’s theorem involves estimating a certain integral both from above and below

and arriving at a contradiction by comparing these estimates. The estimation from below is straight-
forward for the Riemann zeta function and not too difficult in the case of a general Dirichlet series
— thanks to a beautiful theorem of Ramachandra (see [MRS08]). However, obtaining good upper
bounds, which will lead to a contradiction, is a difficult problem!
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In this article, we shall first discuss the classical approach of Hardy’s theorem as given in [Ti86,
§10.5]. Then in the next section we shall give an alternative proof of this theorem, which is simpler
and seems to be new!

2. Hardy’s theorem for the Riemann zeta-function

The Riemann zeta function, denoted by ζ(s), s = σ + it, is defined by the series

ζ(s) =

∞∑
n=1

1

ns
, σ > 1.

It satisfies the following analytic properties:

i) Analytic Continuation: (s− 1)ζ(s) is an entire function of order 1.

ii) Functional Equation:

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1− s)/2)ζ(1− s). (2.4)

iii) Euler Product:

ζ(s) =
∏
p

(1− p−s)−1, σ > 1,

where the product is over all primes.
It is well known that the gamma function Γ(s) is analytic in σ > 0 and has no zeros. It has simple

poles at s = 0,−1,−2,−3, . . .. This fact, along with the functional equation (2.4) implies that ζ(s)
has zeros at s = −2,−4,−6, . . .. These zeros on the real line are called trivial zeros of ζ(s). From the
theory of entire functions of finite order, it can be derived that all the complex zeros of ζ(s) have real
parts 0 ≤ σ ≤ 1. It is also well known that ζ(1 + it) 6= 0 for t 6= 0 and therefore ζ(it) 6= 0 by (2.4).
Further, it is an elementary exercise to show that ζ(s) 6= 0 for 0 < s < 1. Thus, all the complex zeros
of ζ(s) lie in the vertical strip 0 < σ < 1. These zeros are called non-trivial zeros and the Riemann
Hypothesis asserts that all the non-trivial zeros are, in fact, on the line σ = 1/2.

Now, the theorem of Hardy for the Riemann zeta-function is the following:

Hardy’s Theorem. ζ(s) has infinitely many zeros on the line σ = 1/2.

Proof. The functional equation (2.4) can be rewritten as

ζ(s) = χ(s)ζ(1− s), (2.5)

where χ(s) = πs−1/2Γ(1
2(1− s))/Γ(1

2s).

Observe that χ(s)χ(1−s) = 1 or χ(1
2 + it)χ(1

2 − it) = 1, i.e., |χ(1
2 + it)| = 1. From (2.5), we obtain

χ(1
2 + it)−1/2ζ(1

2 + it) = χ(1
2 − it)

−1/2ζ(1
2 − it).

Thus the function
Z(t) := χ(1

2 + it)−1/2ζ(1
2 + it)

is real for real values of t 6= 0. Moreover, |Z(t)| = |ζ(1
2 + it)|. The function Z is popularly called

Hardy’s Z-function. From the above discussion, it is clear that the zeros of Z(t) correspond to the
zeros of ζ(s) on the critical line. We shall apply the basic idea elucidated in the beginning by taking
f = Z in (1.3).

To begin with, we shall assume that Z(t) has finitely many zeros or no zeros, then we can find a
real number T0 > 0 sufficiently large such that for all T ≥ T0, we have

|I| :=
∣∣∣ ∫ 2T

T
Z(t)dt

∣∣∣ =

∫ 2T

T
|Z(t)|dt. (2.6)
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Now, we need to estimate the integrals in (2.6) both from below and above and arrive at a
contradiction to our assumption.
Estimation from below: This is the easy step. We have∫ 2T

T
|Z(t)|dt =

∫ 2T

T
|ζ(1

2 + it)|dt ≥
∣∣∣ ∫ 2T

T
ζ(1

2 + it)dt
∣∣∣. (2.7)

Now, by a change of variable we get

i

∫ 2T

T
ζ(1

2 + it)dt =

∫ 1/2+2iT

1/2+iT
ζ(s)ds .

Moving the line of integration to σ = 2 and using Cauchy’s theorem, we obtain∫ 1/2+2iT

1/2+iT
ζ(s)ds =

(∫ 2+iT

1/2+iT
+

∫ 2+2iT

2+iT
+

∫ 1/2+2iT

2+2iT

)
ζ(s)ds . (2.8)

Now, from the convexity bound (2.16), it follows that∫ 2+iT

1/2+iT
ζ(s)ds =

∫ 2

1/2
ζ(σ + iT )dσ = O

(
T 1/4+ε

)
. (2.9)

On the other hand, ∫ 2+2iT

2+iT
ζ(s)ds =

∫ 2+2iT

2+iT

(
1 +

∞∑
n=2

n−s

)
ds

= iT + i

∞∑
n=2

n−2

∫ 2T

T
e−it logndt

= iT +O

( ∞∑
n=2

1
n2 logn

)
= iT +O(1). (2.10)

Therefore, from (2.7), (2.8), (2.9) and (2.10), we obtain∫ 2T

T
|Z(t)|dt > AT. (2.11)

where A > 0 is an absolute constant.

The main problem, as remarked before, is to find an upper bound of the type

|I| � Tα. (2.12)

If 0 < α < 1, this will contradict (2.11) and thus establishes the theorem.

Remark. As |χ(1
2 + it)| = 1, taking trivial estimate we see that∣∣∣ ∫ 2T

T
Z(t)dt

∣∣∣ =
∣∣∣ ∫ 2T

T
χ(1

2 + it)−1/2ζ(1
2 + it)dt

∣∣∣
≤

∫ 2T

T
|ζ(1

2 + it)|dt .

Even on Lindelöf hypothesis (which is a consequence of RH and which says that ζ(σ + it) � tε for
σ ≥ 1

2) the above is only O(T 1+ε), not enough to contradict (2.11).
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Thus we need to estimate |I| nontrivially, which we do below.

Estimation from above:

Our aim is to estimate the integral

|I| =
∣∣∣ ∫ 1/2+2iT

1/2+iT
χ(s)−1/2ζ(s)ds

∣∣∣.
We move the line of integration to the right of the line σ = 1 so that ζ(s) can be replaced by its series
representation and then evaluate the integral using Cauchy’s theorem. Accordingly, let us consider
the rectangle R with the vertices at 1/2 + iT, 1 + δ + iT, 1 + δ + 2iT, 1/2 + 2iT for some δ > 0 to be
chosen later.

As χ(s) 6= 0 in σ > 0, χ(s)−1/2 is single-valued analytic function in σ ≥ 1/2, therefore, by
Cauchy’s Theorem

1

2πi

∫
R
χ(s)−1/2ζ(s)ds = 0.

Thus,

1

2πi

∫ 1/2+2iT

1/2+iT
χ(s)−1/2ζ(s)ds =

1

2πi

(∫ 1+δ+iT

1/2+iT
+

∫ 1+δ+2iT

1+δ+iT
+

∫ 1/2+2iT

1+δ+2iT

)
χ(s)−1/2ζ(s)ds

= I1 + I2 + I3 (say). (2.13)

As I1 and I3 are of the same order of magnitude, it is enough to estimate I1 only.
We require growth estimates for the integrand in the region σ ≥ 1/2. The well-known Stirling’s

formula for Γ(s) says that in any fixed strip α ≤ σ ≤ β, we have,

Γ(σ + it) = tσ+it− 1
2 e−

1
2
πt−it+ 1

2
iπ(σ− 1

2
)(2π)

1
2
(
1 +O(t−1)

)
,

as t→∞. This gives
χ(s) = (t/2π)1/2−(σ+it) ei(t+π/4)

(
1 +O(t−1)

)
, (2.14)

as t→∞.

Therefore,

χ(s)−1/2 = O
(
tσ/2−1/4

)
, 0 ≤ σ ≤ 1 + δ . (2.15)

We also require an upper bound for ζ(s) in the critical strip which is uniform in σ. This is obtained
by using convexity principle. First, one shows that ζ(s) = O(log t) for σ ≥ 1. Then (2.5) combined
with (2.14) gives ζ(0 + it) = O(t1/2 log t). Finally the Phragmen-Lindelöf convexity principle implies

ζ(s) = O
(
t(1−σ)/2(log t)

)
, uniformly in 0 ≤ σ ≤ 1. (2.16)

Now, combining (2.15) and (2.16), we obtain

χ(s)−1/2ζ(s) =

{
O
(
t1/4(log t)

)
, 0 ≤ σ ≤ 1

O(t1/4+δ/2), 1 ≤ σ ≤ 1 + δ.

Thus,

|I1| =
∣∣∣ ∫ 1+δ

1/2
χ(σ + iT )−1/2ζ(σ + iT ) dσ

∣∣∣ = O
(
T 1/4+δ/2

)
. (2.17)

Now comes the difficult part, the estimation of I2, which we carry out below.
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We have

I2 =
1

2πi

∫ 1+δ+2iT

1+δ+iT
χ(s)−1/2ζ(s)ds

=
1

2π

∫ 2T

T
χ(1 + δ + it)−1/2ζ(1 + δ + it))dt.

By Stirling’s formula (2.14), we have

χ(1 + δ + it)−1/2 =
(
t

2π

)1/4+δ/2+it/2
e−i(t/2+π/8) {1 +O(1/t)} .

Therefore, the above integral is

=
∞∑
n=1

1
n1+δ

∫ 2T

T

(
t

2π

)1/4+δ/2+it/2
e−i(t/2+π/8)n−it {1 +O(1/t)} dt.

The O-term is O(
∫ 2T
T t−3/4+δ/2dt) = O(T 1/4+δ/2) = o(T ) provided δ < 3/2.

The main term is a constant multiple of

∞∑
n=1

1
n1+δ

∫ 2T

T

(
t

2π

)1/4+δ/2+it/2
e−it/2−it logndt

=
∞∑
n=1

1
n1+δ

∫ 2T

T

(
t

2π

)1/4+δ/2
e
it
2

log(t/2πen2)dt. (2.18)

Observe that a trivial estimation of the integral in (2.18) will not yield the desired upper bound,
thus we need to exploit the possible cancellations arising from the exponential term in the integrand
and hope that the resulting estimate will be small !

The following results are standard tools in the theory of exponential integral techniques (for
instance see [Ti86, pages 71–72]).

Lemma 2.1. Let F (x) be a real-valued differentiable function such that F ′(x) is monotonic, and
F ′(x) ≥ m > 0, or F ′(x) ≤ −m < 0, throughout the interval [a, b]. Then∣∣∣ ∫ b

a
eiF (x)dx

∣∣∣ ≤ 4

m
·

Lemma 2.2. Let F (x)be twice differentiable function and F ′′(x) ≥ r > 0 or F ′′(x) ≤ −r < 0,
throughout the interval [a, b] and let G(x)/F ′(x) be monotonic with |G(x)| ≤M , then∣∣∣ ∫ b

a
G(x)eiF (x)dx

∣∣∣ ≤ 8M√
r
·

Now, taking Fn(t) = t
2 log( t

2πen2 ), we see that F ′′n (t) = 1/2t ≥ 1/4T, T ≤ t ≤ 2T .
Thus from the Lemma 2.2 we obtain∫ 2T

T

(
t

2π

)1/4+δ/2
e
it
2

log(t/2πen2)dt = O
(
T 1/4+δ/2T 1/2

)
= O

(
T 3/4+δ/2

)
. (2.19)

Now combining (2.13), (2.17), (2.18) and (2.19), we obtain∣∣∣ ∫ 2T

T
Z(t)dt

∣∣∣ = O(T 3/4+δ/2) = o(T ) provided δ < 1/2. (2.20)
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Therefore, the desired contradiction is arrived from comparing (2.11) and (2.20), by choosing
δ < 1/2.

Remark. Another method of estimating the upper bound for |I| uses the following weak version of
the well-known Riemann-Siegel formula

Z(t) = 2
∑

n≤
√
t/(2π)

n−1/2 cos

(
t log

√
t/(2π)

n
− t

2
− π

8

)
+O

(
t−1/4

)
. (2.21)

The integral I is then evaluated using Lemma 2.2 to obtain I = O(T 3/4) (see [Iv13, Chap. 2] for
details).

3. A new approach using first approximation formula for ζ(s)

In this method, the integral

I =

∫ 2T

T
χ(1

2 + it)−1/2ζ(1
2 + it)dt (3.22)

is evaluated by replacing the zeta function with a Dirichlet polynomial having a good error term. As
mentioned in the remark above, a weak version of Riemann-Siegel formula can be used for the upper
bound estimation. We will use the well-known first order approximation of ζ(s) (see [Ti86, page 77])
to estimate I both from below and above. The estimation from above seems to be new.

Lemma 3.1. We have

ζ(s) =
∑
n≤x

n−s +
x1−s

s− 1
+O(x−σ), (3.23)

uniformly for σ ≥ σ0 > 0, |t| < 2πx/C when C is a given constant > 1.

Taking x = CT/π in the above Lemma and noting that T ≤ t ≤ 2T , we get

ζ(1
2 + it) =

∑
n≤CT/π

n−
1
2−it +O

(
T 1/2

|t|

)
+O(T−1/2). (3.24)

For the lower bound, recall that we have∫ 2T

T
|Z(t)|dt =

∫ 2T

T
|ζ(1

2 + it)|dt ≥
∣∣∣ ∫ 2T

T
ζ(1

2 + it)dt
∣∣∣. (3.25)

Therefore, from (3.24) we have∫ 2T

T
ζ(1

2 + it)dt =

∫ 2T

T
{1 +

∑
2≤n≤CT/π

n−
1
2−it}dt+O(T 1/2) (3.26)

= T +O(T 1/2) > AT, (3.27)

where A > 0 is an absolute constant.
Therefore, we have ∫ 2T

T
|Z(t)|dt ≥ AT. (3.28)

On the other hand, for estimation of upper bound, we have from (3.24),

Z(t) = χ(1
2 + it)−1/2

∑
n≤CT/π

n−
1
2−it +O

(
T 1/2

|t|

)
+O(T−1/2). (3.29)
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The O-terms contributes O(T 1/2) to the integral I. Thus, by Stirling’s formula for χ(s), we have

I =

∫ 2T

T

∑
n≤CT/π

n−
1
2−it

(
t

2π

)it/2
e−i(t/2+π/8)

{
1 +O

(
1
t

)}
dt+O(T 1/2). (3.30)

Note that the error term in the above expression is O(T 1/2). Thus the main term is a constant
multiple of ∑

n≤CT/π

1
n1/2

∫ 2T

T
eiF (n,t)dt, (3.31)

where F (n, t) = t
2 log

(
t

2πen2

)
. Observe that

F ′(n, t) = 1
2 log

(
t

2πn2

)
, F ′′(n, t) = 1

2t >
1

4T · (3.32)

As F ′(n, t) = 0 when t = 2πn2 or whenn =
√
t/2π, we break the sum over n into two parts viz.,

1 ≤ n ≤ 3
√
T/π and 3

√
T/π < n ≤ CT/π. The integral in the first sum is evaluated using Lemma

2.2 and the integral in the second sum is evaluated using Lemma 2.1.
Thus from Lemma 2.2 and (3.32) we obtain

∣∣∣ ∑
n≤3
√
T/π

1

n1/2

∫ 2T

T
eiF (n,t)dt

∣∣∣ = O

 ∑
n≤3
√
T/π

1

n1/2
T 1/2

 = O
(
T 3/4

)
. (3.33)

To evaluate the second sum, we use the elementary inequality log n
m ≥

n−m
n for n > m. This gives

log
(

2πn2

t

)
≥
(

2πn2−t
2πn2

)
≥ 8

9 ,

as T ≤ t ≤ 2T and 3
√
T/π < n ≤ CT/π. Thus F ′(n, t) = 1

2 log
(

t
2πn2

)
≤ −4/9. Now applying

Lemma 2.1, we get

∣∣∣ ∑
3
√
T/π<n≤CT/π

1

n1/2

∫ 2T

T
eiF (n,t)dt

∣∣∣ = O

 ∑
3
√
T/π<n≤CT/π

1

n1/2

 = O
(
T 1/2

)
. (3.34)

Thus, it follows that ∣∣∣ ∫ 2T

T
Z(t)dt

∣∣∣ = O(T 3/4) . (3.35)

Equation (3.28) and (3.35) leads to a contradiction to our assumption and thus establishes Hardy’s
theorem.
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