Hardy-Ramanujan Journal 39 (2016), 1-20 submitted 27/04/2016, accepted 04/05/2016, revised 09/05/2016

Ramanujan-Fourier series of certain arithmetic
functions of two variables

Noboru Ushiroya

Abstract. We study Ramanujan-Fourier series of certain arithmetic functions of two variables. We generalize Delange’s theorem
to the case of arithmetic functions of two variables and give sufficient conditions for pointwise convergence of Ramanujan-Fourier
series of arithmetic functions of two variables. We also give several examples which are not obtained by trivial generalizations of
results on Ramanujan-Fourier series of functions of one variable.
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1. Introduction

Let ¢4(n) denote the Ramanujan sums defined in [Ralg] as
q

cg(n) = > exp(2mian/q),
a=1
(a7 ):1

where ¢ and n are positive integers and (a, ¢) is the greatest common divisor of @ and ¢q. Ramanujan
proved that c4(n) can be rewritten as

co(m) = 3 ula/d)d,
dl(g,n)

where p is the Mobius function. Hardy [Ha21] proved that, for fixed n, ¢4(n) is a multiplicative
function. In other words,

Cqrq2 (1) = Cq(n)Cgy (1)
holds for any q1, ¢2 € N satisfying (q1,¢2) = 1. Let f : N+ C be an arithmetic function. Ramanujan
[Ral8] investigated its Ramanujan-Fourier series which is an infinite series of the form

F(n) ~ ) ageq(n), (1.1)
q=1

where a4 are called the Ramanujan-Fourier coefficients of f, and he obtained the following results.

qg=1
p(n) 1 o plg) o( (1.3)

RSO Pt

) ==Y lojch(n), (1.4)
q=1
0 ivg—1

) =Y S o), (1.5

q
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2 2. Some Results

where o5(n) = >_4,d* with s > 0, ((s) is the Riemann zeta function, ¢(n) is Euler’s totient
function, ¢s(n) =n"[[,,(1 —1/p*), 7(n) is the number of divisors of n and r(n) is the number of
representations of n as the sum of two squares.

Let x denotes the Dirichlet convolution, that is, (f * g)(n) = >_4, f(d)g(n/d) for arithmetic
functions f, g, and let w(n) be the number of distinct prime divisors of n. We say that f: N+ C is
a multiplicative function if f satisfies f(mn) = f(m)f(n) for any m,n € N satisfying (m,n) = 1.

Delange [De76] proved the following theorem.

Theorem 1.1. ([De76]) Let f(n) be an arithmetic function satisfying

Then its Ramanujan-Fourier series is pointwise convergent and

n) = Z aqcq(n)
qg=1

holds where -
3 (f * p)(gm)

A, =
q qgm

m=1

Moreover, if f is a multiplicative function, then aq, can be rewritten as

H(Z f*“ =0y, (1.7)

PEP e=vp(q)

a if p%|n

where P is the set of prime numbers and vp(q) = { 0 if pin

Delange noted that, if f is a multiplicative function, then the condition (1.6) is equivalent to the
condition: 37 cp > 222, |f(p°) — f(pe™H|/p® < oo since (f * u)(p®) = f(p°) — f(p¢ 1) for e > 1. Under
this condition, we can directly calculate Ramanujan-Fourier coefficients a, for certain arithmetic
functions by using (1.7). For example, if we set f(n) = ¢(n)/n, then we can easily calculate the right-
hand side of (1.7) and obtain a; = (¢(2))~'1(g)/¥2(g) which coincide with the Ramanujan-Fourier
coefficients of (1.3).

Many results concerning Ramanujan-Fourier series of arithmetic functions of one variable are
obtained by many mathematicians hitherto, however, as for Ramanujan-Fourier series of arithmetic
functions of two variables, to my knowledge, few results are known. We would like to extend Delange’s
theorem to the case of functions of two variables and obtain several examples which are extensions of

(1.2) ~ (1.5).

2. Some Results

Let f, g : N x N — C be arithmetic functions of two variables. The Dirichlet convolution of f and g
is defined as follows.

(f *g)(n1,n2) = Z f(m1,m2)g(n1/mi, na/ma).

mi|ny, ma|nsg

We use the same notation u for the function

p(ni,n2) = p(ni)u(ng),
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which is the inverse of the constant function 1 under the Dirichlet convolution, that is, (u*1)(ny,ng) =
d(n1,mn2) holds where §(ni,mn2) =1 or 0 according to whether n; = ny =1 or not.

We investigate Ramanujan-Fourier series of arithmetical functions of two variables along Delange’s
article ([De76]). We first establish the following theorem which is an extension of Theorem 1.1 to the
case of arithmetic functions of two variables.

Theorem 2.1. Let f(ni,n2) be an arithmetic function of two variables satisfying
[e.e]

Z 2w(n1)2w(n2)|(f*:u)(n1?n2)| < 00, (28)

nin2

ni,na=1

Then its Ramanujan-Fourier series is pointwise convergent and

f(n1,n2) Z Qg1 ,q2Cq1 (N11)Cqz (N2) (2.9)
q1,q2=1
holds where
— ([ * p)(miq1, maga)
a = . 2.10
o= > Urilma 210)

For the proof of the above theorem, we need the following lemma.

Lemma 2.2. ([De76]) For every positive integer k,

Z’Cq )| £ n2v®),

qlk

Proof of Theorem 2.1. We proceed as in [De76]. We first note that (2.8) implies the absolute conver-
gence of the right-hand side of (2.10). Next we show that the series > % _ ag, ¢,¢q, (11)cg,(n2) is
absolutely convergent. It is easy to see that

o
(f * p)(qrma, gama)
Z |atI1,fI2CCI1 (nl)CQ2(n2)| S Z Z q1magq 77’7, CQ1(n1)CQ2(n2)
q1,q2=1 q1,92=1m1,m2=1 B
o
Z Wkl,kza
ki ko=1
where
(f * p)(qrma, gama) (f *x p)(k, k2)
%% = Z ‘ Cqr (n1)cgy (n ‘ = ‘ Z gy (n1)cg, (n
k1,k2 i qLm1gama ( 1) q2 \T02 k1 ko - | q1 1 q2 2)’
141=FK1 q1|Rk1
maqz=ka q2|k2

By (2.8) and Lemma 2.2 we have

o0 [e.e]
* )k, k
> Wik S ) ‘W‘nmﬂw(kl)zw(kﬂ < nyng < 00.
ki k=1 ki ka—=1 12
Hence the series Y ° | ag 4,4, (11)cq, (n2) is absolutely convergent. We have

f*M qi1mi, qa2msa
DS D) e (m) = S W,

qm m
q1,92=1mi1,ma=1 qumigama k1,k2=1
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where

(f * p) (K1, ko)

Whyy = U * p)avm, dym) > g (n1)cgy (n2).

Cq1 (nl)cth (n2> =

— q1m1g2ms2 k1ko
miq1=Fk; e
maga=ks o
i E if k|n _
Using the well known formula: quk cq(n) = ex(n) where gx(n) = 0 if kin ([Si89]), we have
3 X (f ) (ki o)
k1,ke=1 k1,ko=1
« ) (k1, k
— Z (f /Z: kl 2)k1k2:(f*u*l)(nan):(f*é)(nl,n2):f(nth)_
P 1k2
ka|na

Therefore (2.9) holds. This completes the proof of Theorem 2.1.

We say that f: N x N +— C is a multiplicative function of two variables if f satisfies

f(mini, mang) = f(my,ma) f(ni,ng)

for any mj,ma,n1,ny € N satisfying (mime, ning) = 1. It is well known that if f and g are
multiplicative functions of two variables, then f * g also becomes a multiplicative function of two
variables. For an arithmetical function f of two variable, the mean value M(f) is defined by

. 1
M(f)= lim = > flun)
n1sw, n2sy

if this limit exists. Ushiroya [Us07] proved the following theorem.
Theorem 2.3. ([Us07]) Let f be a multiplicative function of two variables satisfying

D f*“el+: Pl (2.11)

peP e1, 62>0
e1+ex>1

Then the mean value M (f) exists and

M= > et _ (@) et ), (212

We would like to investigate Ramanujan-Fourier series in the case when f is a multiplicative
function of two variables. The following theorem is an extension of Theorem 1.1 to the case of a
multiplicative function of two variables.

Theorem 2.4. Let [ be a multiplicative function of two variables satisfying

> ¥ Wnunatl ., 219

PEP e1,e220
e1+ex>1

Then its Ramanujan-Fourier series is pointwise convergent and

f(n1,n2) Z Aq1,g2Cq1 (1) Cqe (N2) (2.14)

q1,92=1
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holds where

e}

i mi1q1mage '

mi,mo=1

Moreover, if M(f) # 0 and {q1,q2} > 1, where {q1,q2} denotes the least common multiple of ¢ and
q2 , then agq, 4, can be rewritten as follows.

Qq1,q2 = H ( Z Z S l;zl(i:’pe2)>

PEP e1=vp(q1) e2=vp(q2)

—up [[{( X X VU (s s VR e

pl{a1,a2}  e1=wvp(q1) e2=1p(q2) e1=0e2=0

Remark 2.5. By (2.12) and (2.15), we have a11 = M(f).

Proof. First we note that, if f(n1,n2) is a multiplicative function of two variables, then f(ni,ng) =
HpeP f(prr() pp(n2)) holds. Let f satisfy (2.13). Since (n1,ng) — 290029M2)|(f 1) (ny, na)|/nins
isa multlphcatlve function of two variables, we have

Z gw(n1)gw(nz) |(f*:UJ ni,ng)| Z H ow(p*) 9w (p (f*ﬂ)(p 4 )|

k+¢
n1<z, na<y nanz k>0 peP p
€1 €2
IR (> '<f*‘;zfi;p )
peEP k20 peP e1, 220
e1+ea>1
|(f * ) (P, p™)|
< eXp(Z Z 61+62 ) < o0
PEP e1, 220
e1+ex>1

where we have used the well-known inequality 1+ x < exp(z) for z = 0. Since f satisfies (2.8), we
see by Theorem 2.1 that the Ramanujan-Fourier series of f is pointwise convergent and (2.14) holds.
Next we prove (2.16) under the condition M(f) # 0 and {q1, g2} > 1. Fori = 1,2, let ¢; = [], p"

(ei; 2 0) and m; = r; [] j p}iij (dij 2 0) be the prime factor decompositions of ¢; and m; respectively
where p;’s are prime numbers satisfying p; | {q1, g2} and r;’s are positive integers coprime to qiga.
Then we have

o () mag,mag)
Aq1,q2 = Z

miqimaq2

> (f ) TLps Y, o I o0 )

dij+eij+dsi+e
7,17,21_[ 1] 15 Ta25T€25

mi,ma=1 dijzo

ri21, (14, q1g2)=1
Since f * p is multiplicative, we have

s Lo T o) () (rers)

dl] +€1] +d2] +623
HJ p; 172

Aqy,q2 =
dijzo
ri21, (14, qig2)=1

_ (Z (f * w)(IT, P, H-pd?ﬁezj))( > (f*/t)(ﬁﬂ’z))

H d1]+€1]+d2]+52] r1re
iPj rizl, (ri, q1q2)=1

SI(Xx ety (s )

pl{q1,92} e1=vp(q1) e2=vp(q2) plgrgz e1=0e2=0

di;>0
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Since the condition M(f) # 0 implies >, .. _ (L) (P p°2) # 0 for every p € P by (2.12), we have

pel +eg

I(x X Wiy s o)

pl{q1,92} e1=vp(q1) ea=vp(q2) peP e1=0e2=0

[T (> ety

pl{q1,92} e1=0e2=0

SOI (D SIND S AR V) ) SUAT ]

pl{a1,a2}  e1=vp(q1) e2=1p(q2) e1=0e2=0

Aq1,q2 =

This completes the proof of Theorem 2.4.

Next we consider the case when f is represented in the form f(ni,ns) = g(ning) where g is a
multiplicative function of one variable. We begin with the following lemma.

Lemma 2.6. Let f(n1,n2) = g(ning) where g is a multiplicative function satisfying

> (3 oy W 2 D S0 O L )

p€1 +e2
pEP e>1 e1,e2=1

Then the mean value M (f) exists and

H(1+2Zg 9e) Z 9T = 29T g (prt 2)). (2.18)

p61+€2
peEP e>1 e1,e2=1

Proof. 1t is easy to see that

(Fxm)@, 1) =f510)—f1) =90 —gp") if ex1, (2.19)
(f* ), p2) = f,p?) — F( 1 p2) — f(p™,p ) + f(p L p=)
= g(p"’””) — 29T + g(p ) i erep 2 1. (2.20)

From (2.17), (2.19) and (2.20), it is also easy to see that (2.11) holds. Therefore Lemma 2.6 follows
by Theorem 2.3. This complete the proof of Lemma 2.6.

Now we can prove the following theorem.

Theorem 2.7. Let f(ni,n2) = g(ning) where g is a multiplicative function satisfying (2.17). Then
its Ramanujan-Fourier series is pointwise convergent and

f(n1,m2) Z Aq1,q2Cq1 (1) Cqz (n2)

q1,92=1

holds where

_ - (f * p)(mig1, m2g2)
Ag1,q2 = Z :

migim
S 191M2q2
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Moreover, if M(f) #0, q,q1,q2 > 1 and {q1,q2} > 1, then a1, a14 and aq, 4, can be rewritten as
follows.

i 9®%) ~ ") + i i g(pte2) = 2g(p 27t + g(pe1 T 7?)

pel +e2

)

0 ey 0 eite2) _ 9 e1+es—1 + e1+es—2
bl 1+2Zg(p) 9 | 3 g(p= ) g(ppel+62) 9(p )

i i g(pe¥e2) — 29(p el + g(p 2%

pel +e2

(
Agy,q0 = M(f) ; -
p|{£[12}1+229p8) g(pe 1) + i g el+52 f29(pe1+eg 1)+g(pel+62 2)
p61+62

e=1 e1,e2=1

Proof. Since (2.17), (2.19) and (2.20) implies (2.13), Theorem 2.7 holds by Theorem 2.4. We note
that if go = 1, then Zel:up(ql) D er=up(a2) P p%2) ) (2.16) can be rewritten as

pel +eo

(f * p)(p™, p*?) (f*p)(p™, 1) (f * ) (P, p)
P e DD . D> oY
e1= Vp(q1)62 =0 e1=vp(q1) e1=vp(q1) e221
0 S 1 e1+es—2
9(°) — g(r°~ g(pere) = 29(p 27 + g (T2
Z e + Z Z pe1+e2 ’
e=vp(q1) e1=vp(q1) e2=1

This complete the proof of Theorem 2.7.

Next we consider the case when f is represented in the form f(ny,n2) = g((n1,n2)) where g is a
multiplicative function of one variable. Before describing Ramanujan-Fourier series of this case, we
would like to cite the following theorem.

Theorem 2.8. ([Us07]) Let f(n1,n2) = g((n1,n2)) where g is a multiplicative function satisfying

>3 o) =9l (2.21)

pEP 21

Then the mean value M (f) exists and

M(f)zH(lJrig(p)_g(pe 1)>. (2.22)

2e
peEP e=1 p

Remark 2.9. We note that, if f(ni,n2) = g((n1,n2)), then it is easy to see that

R SR A (2.23)

otherwise.
Hence (2.21) clearly implies (2.13).

Now we can show the following theorem concerning Ramanujan-Fourier series in the case f(ni,ng) =
g((n1,n2)). Let k V £ denote max(k, £).
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Theorem 2.10. Let f(ni,n2) = g((n1,n2)) where g is a multiplicative function satisfying

Sy lg(p®) pzz(pe‘l)! = (2.24)

pEP e21

Then its Ramanugjan-Fourier series is pointwise convergent and

o0

fnime) = 7 agy g,¢q,(m1)cg, (n2)

q1,92=1

holds where

W i (f * 1) (m1g1, mags)
i _ m1q1maqo
mi,mo=1

Moreover, if M(f) #0 and {q1,q2} > 1, then aq, 4, can be rewritten as follows.

efl>

> ey _ e—1 oo ey
gy = M(f) H {( Z 9(r°) pi(p ))/<1+Zg(p) in(P
pl{g1,92}  e=vp(q1)Vrp(ge) e=1

)} (2.25)

Proof. Remark 2.9 says that (2.24) implies (2.13). Therefore the Ramanujan-Fourier series of f is
pointwise convergent by Theorem 2.4. It is easy to see that (2.25) holds by (2.16) and (2.23). This
completes the proof of Theorem 2.10.

Next we consider the case when f is represented in the form f(ni,n2) = g({ni,n2}) where g is
a multiplicative function of one variable. The following theorem is a special case of Theorem 1 in
[HT'16] by Hilberdink and Téth .

Theorem 2.11. ([HT16]) Let f(n1,n2) = g({n1,n2}) where g is a multiplicative function satisfying

Z Z ‘g(pe) _peg(p61>’ < 0. (226)

pEP e21

Then the mean value M (f) exists and

() =] <1 12y 9(r°) —peg(pe‘l) oy 9(r°) ;QZ(pe‘l))_ (2.27)

peP e>1 e>1

Proof. We prove this theorem using a different method from [HT16]. It is easy to see that for
€,€1,€2 z 1

(Fxm)®=1) =g — g,

—(g) —g(p71)) if er=ex21
€1 (5) _
(f ) (", p%) _{ 0 if e; #ey and ep,eq = 1.

Since the above relations and (2.26) imply (2.11), Theorem 2.11 holds by Theorem 2.3. This completes
the proof of Theorem 2.11.

Now we can prove the following theorem.
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Theorem 2.12. Let f(ni1,n2) = g({ni,n2}) where g is a multiplicative function satisfying (2.26).
Then its Ramanujan-Fourier series is pointwise convergent and

o0
f(n1,m2) Z Qg1 ,q2Cq1 (111)Cqz (n2)
q1,92=1
holds where -
oy s = Z (f * M)(m1Q17m2(Z2).
S m1q1m2q2

Moreover, if M(f) #0, q,q1,92 > 1 and {q1,q2} > 1, then aq1, a14 and aq, 4, can be rewritten as
follows.

i 9(p°) —9(r*) i g(°) — g(*)
er
e=vp(q) e=vp(q)
a1 e = M(f)H - > e e—1 e e—1y’
,,|q1+2zg(p)—f(p )_Zg(p)—i(p )
e=1 p e=1 p
N i g(p°) —g(p°™")
vy ({1.02}) P
Aqy,q20 = M(f) H = L 1 = o
9(p°) — g~ g(p ( el
pH{a1,92} 1 42 Z Z

e
e=1 p

Proof. By Theorem 2.4 and Theorem 2.11, we can easily prove this theorem in a similar way as the
proof of Theorem 2.7. This completes the proof of Theorem 2.12.

Next we consider a problem such that how f can be determined from given Ramanujan-Fourier
coefficients agq, 4,. We first consider the case when the Ramanujan-Fourier coefficients ag, 4, is repre-
sented in the form aq, 4, = M(f)h((g1, g2)) where h is a given multiplicative function of one variable.

Theorem 2.13. Let h be a multiplicative function of one variable. Then there does not exist a
multiplicative function f : N? — C which satisfies the following conditions.

€2
Z Z f*M€1+627p )l < o0,

PEP e1,e220
e1+ex>1

M(f) #0,
Fna,ma) = M(f) > h((qr,q2))q (n1)eg, (n2).

q1,92=1

Proof. Suppose there exists a multiplicative function f which satisfies the above conditions. Then we
have from (2.16)

/M) = (30 30 LWy (57 57 WD)y gt 1) <1

e1=k e2=0 e1=0e2=0

for every k 2 1. However, this never holds since

lim Z Z f*lue1+62 ) =0.

k—o00
e1=k e2=0

This completes the proof of Theorem 2.13.
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Next we consider the case when the Ramanujan-Fourier coefficients ag, 4, is represented in the
form agq, 4o = M(f)h(q1q2) where h is a given multiplicative function of one variable.

Theorem 2.14. Let h be a multiplicative function of one variable satisfying 1 — 2h(p) + h(p?) # 0
for every p € P, and let f : N> — C be a multiplicative function of two variables satisfying

62
Z Z f*H61+62 )] < 0,

PEP e1,e220
e1+ex>1
M(f) #0,
f(ni,n2) = M(f) Z h(q1g2)cq, (n1)cg, (n2).
q1,92=1
Then f is determined from h as follows.
k
P = F0) = Lt s ST e )0, (2:28)
k
FEF ) =1+ D P (hox e ) (pT?) + L > Pk o ) (pH?)
(p) = (p) =
1 k ¢
i 2 X B ) (), (2.29)
e1=1ea=1

where H(p) =1 — 2h(p) + h(p?) and k,£ = 1.

Proof. We set F(p) =Y .02 e,—0 ) 02) By (2.16) we have for any k, £ > 0

p51+62
apk,pf _ 1 (f = p)(p°, p%) K+
M F Z Z pertez h<p )
61 =k ea=/{

Considering differences of

S 3 ) pn)

e1=k ea=¢

with respect to k£ and ¢, that is, considering

IIED DD LD ND IR ID

e1=k+1ex=¢+1 e1=k+1ex=¢ e1=k eag=¢+1 e1=k ex=/

we have for any k,£ = 0

W = F(p)(h(p""%) = 2h(p" 1) + h(p*1)) (2.30)
_ F(p)(h % % M)(pk+€+2)- (231)

Putting k = £ = 0 in (2.30) we have 1 = F(p)(h(p?) — 2h(p) + 1). From this we obtain

1 1
~ h(p*) —2h(p)+1  H(p)
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Putting £ = 0 in (2.31) we have for any k = 1

k _ k—1
T D20 p) s meh )

Multiplying both sides by p* and considering summation, we have for any k > 1

k
F@* 1) =1+ Htp) D P (b ok ) (p°),

which implies (2.28). Next we prove (2.29). We can rewrite (2.31) as follows.

FOR PN = FOE ) = FORTL D) + F MY = Htp)(h gk ) (pM ).

Considering summation we have

k y4
F@", 0% = F5 1) + F(1,p") Z Z AT (hox ok ) (pr TR,

which implies (2.29). This completes the proof of Theorem 2.14.

Next we consider the case when the Ramanujan-Fourier coefficients ag, 4, is represented in the
form ag, g, = M(f)h({q1,q2}) where h is a given multiplicative function of one variable.

Theorem 2.15. Let h be a multiplicative function of one variable satisfying
> @) —h(@p“h) <o and h(p) #1 (2.32)
e=1

for every p € P and let f : N?> = C be a multiplicative function of two variables satisfying

62
> oy Mt

PEP e1,e220
e1+e2 >1

M(f) # 0,
fni,ma) = M(f) D h({a1, g2})cg (n1)cg, (n2).

q1,92=1

Then there exists a multiplicative function g : N — C such that f(ni,n2) = g((n1,n2)) for every
ni,ny € N and
k
1
k\ _ 2e e+1 e
g )=1——— p*(h(p — h(p%)). 2.33
(") 1—h(p)§ (h(p“"") = h(p%)) (2.33)

e=1

Proof. We set F(p) =Y . 0> e,—0 ) :02) By (2.16) we have for any k, £ = 0

pel +eg

Z Z f*ﬂel+e2 ) h(pk\/é)

61 =k eay=/{
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From this, as in the proof of Theorem 2.14, we have for any &,/ = 0

(f * uisgkvpé) _ F(p)(h(p(k+l)\/(€+l)) _ h(pkv(erl)) _ h(p(k+l)\/€) + h(pk\/é))
p

—F(p)(h(p**") = h(p*)) if k=020
:{0 A U =y (2.34)

Putting k = ¢ =0 in (2.34) we have 1 = —F(p)(h(p) — 1). From this we obtain

Putting £ = 0 in (2.34) we have for any k = 1

f@"1) - f* 1)
pk

=0.

From this it follows that for any k > 1

f(*, 1) = f(1,1) =1. (2.35)

When k > ¢ = 1, we can rewrite (2.34) as follows.

FR Y — FOFL DY — R ) + FF ) =0

From this and (2.35) we have

FO8 05 = O = FOR Y - O = = FOR, ) - FOMN L) =0,

and
FRph) = FO LY = = FO5 Y = R M.

Therefore, if we define the multiplicative function g : N — C by the relation g(p¢) = f(p°,p°) for
e 2 0, then we have

5,05 = F™ M) = g(F) = g((0", pY)).

Since g is defined to be multiplicative, f(ni,n2) = g((n1,n2)) holds for every ni,ny € N.
In order to show (2.33), we put k = ¢ = 1 in (2.34) and obtain

f" %) = FF, 0" —pJ;Ep’”,p’“) + ) _F) () — b)),

From this we have for any k = 1

B 1
g®*) —g(p" ") = —Wp%(h(pk“) — h(p")).

Considering summation, we see that (2.33) holds. This completes the proof of Theorem 2.15.

3. Examples

In this section, we give several examples. We begin with the following example which is a special case
of Theorem 2.7.
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Example 3.1. Let f(n1,n2) = p(ning)/ning. Then its Ramanujan-Fourier series is pointwise con-
vergent and

plrinz) _ oo i plan)pe(az)

niny oy e @2))P(@142)

holds where M(f) = [[,ep(1 — 2/p% +1/p®) and $(n) = Hp‘n(p2 +p—1).
Proof. Setting g(n) = ¢(n)/n = [],,,(1 — 1/p), we have

gp)=1-1/p if ez1

ey re-1yv_ ) —1/p if e=1

e e— e— I/p it e=2
g(%) —29(p°~) + g(p 2>:{ é if e>3.

Caq1 (nl)CQZ (n2)

Therefore g clearly satisfies (2.17). Using (2.18) we can calculate the mean value M (f) as follows.

Since M(f) # 0, we have by Theorem 2.7
1 1 2 1 M

p ' p p2 ' p P 4p-1
apeg =0 if k=2,
1 2 1 M(f)
:M — 1——+— = ,
o (f)<p3>/( p? p3> (p—1)(p*+p-1)
apk7pé:0 if k,¢=21 and k+/¢2=3.

Hence

B 1(q1)11(g2)
Qgr,q2 = M( o((q1,92))2(q162)

holds if (q1,q2) = (p*,p%) where k,¢ = 0. Since the function (q1,q2) > ag, ¢, /M (f) is multiplicative,
(3.36) holds for every g1, g2 € N. This completes the proof of Example 3.1.

The formula (1.3) says that, if we set f(n) = ¢(n)/n, then f(n) = M(f)> 72, (1(q)/p2(q))cq(n)
holds since M(f) = 6/7% in this case. However, Example 3.1 shows that the function f(ni,ns) =
w(n1nz2)/ning does not have a similar expression of Ramanujan-Fourier series to that of (1.3). We

want to find an arithmetic function f satisfying f(n1,n2) = M(f) X207 .1 o Q(gqllq;z)) Cq (N1)Cgy(n2). In

the following example, we give a function which satisfies the above relation.

(3.36)

Example 3.2. Let f(n1,n2) be the multiplicative function defined by

v oo [ 1=p/(@*+1) if k or £=0 and k+¢2=1

Then its Ramanujan-Fourier series is pointwise convergent and

fmme) = M) Y DR (o)

oy P2(1a2)
holds where 5
M = 1— —).
n=T10- %)
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Proof. By (3.37) it is easy to see that

—p/(p? +1) if (k,¢)=(1,0) or (0,1)

(f 'u)(pk’pe) - { 0 otherwise. (3.38)

From the above relation it is obvious that f satisfies (2.13). Hence its Ramanujan-Fourier series is
pointwise convergent by Theorem 2.4. Using (2.12) and (3.38) we have

2
peP p peP pe 1

As for the Ramanujan-Fourier coefficients of f, we obtain by (2.16) and (3.38)

{ M(f)(=25)/ (1= 27) = M(f) 7k = M(HLE: if k=1
aka = al,p =

_ 1(p*) . >
O_M(f)gog(pk) if k=22,
p(p™ph) .
apkml =0= M(f)m lf k‘,€ 2 1.
Hence ( )
Hq142
a =M(f)———= 3.39
q1,92 (f) 902(Q1Q2) ( )

holds if (q1,q2) = (p*,p%) where k,¢ = 0. Since the function (q1,q2) — ag, ¢, /M (f) is multiplicative,
(3.39) holds for every g1, g2 € N. This completes the proof of Example 3.2.

Remark 3.3. If we put h(n) = p(n)/pa2(n) in Theorem 2.14, then it is easy to see that f satisfies
(8.37) by (2.28) and (2.29). Thus we can make use of (2.28) and (2.29) when we want to find the
explicit function form of f satisfying f(n1,m2) = M(f) 327 ,,—1 h(ninz)cg, (n1)cg, (n2) for given h.

The following example is similar to Example 3.2.

Example 3.4. Let f(n1,n2) be the multiplicative function defined by

e o [ 1=p/(®+2) if kK or £=0 and k+(21
fp ’p)_{ 1-2p/(p° +2) if k0=1, (3.40)
where s > 1. Then its Ramanujan-Fourier series is pointwise convergent and
—  lg1g
Flom) = 2(F) Y HBR) )y, ()
“, (@a2)
q1,92=
holds where
M(f) =[] +2/p")7"
peEP
Proof. The proof is similar to that of Example 3.2. We note that
(Fm)(p",p7) = { 0 otherwise. (3.41)

From this we have

M(f):H(1+(f*/“‘)(l%l)Jr(f*u)(Lp)):H(l_ N |

s s "
P P pS+2 P 1+2/p
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As for the Ramanujan-Fourier coefficients of f, we obtain by (2.16) and (3.41)

| M(N(—552) /(= 5E5) = M(f) 5 = M(f)“lﬁf) if k=1
pk,1 = Apk = _ n(p*) ) >
0 M(f) (pk)s lf k = 27
n(ppt)
apkmz =0= M(f) (pkpe)s if ]{,g z 1.
Hence ( )
nq192
Ugr,q2 = M 3.42
q1,92 ( (q1q2)5 ( )

holds if (q1,q2) = (p*,p%) where k,¢ = 0. Since the function (q1,q2) — ag, ¢, /M (f) is multiplicative,
(3.42) holds for every g1, g2 € N. This completes the proof of Example 3.4.

Remark 3.5. If we put h(n) = u(n)/n® in Theorem 2.1}, then it is easy to see that f satisfies (3.40)
by (2.28) and (2.29).

The following two examples are special cases of Theorem 2.7.

Example 3.6. Let f(ni,ns) = p(ning). Then its Ramanujan-Fourier series is pointwise convergent

and
o0

N2(n1n2) = M(f) Z Aq1,92Cqn (nl)cqz (n2),

q1,92=1

where M(f) = [],ep(1 — 3/p? +2/p), and ag 4, is determined by the multiplicativity of (q1,q2) —
aq.q./M(f) and the following relations.

1 if (k,0)=(0,0)
—2/(p3+p—2) if (k,0)=(1,0) or (0,1)
_ ) Y +p-2) if (k,0)=(2,0) or (0,2)
it MU =9 (o)) = 3p+2) i (t) = (1,1)
1/(p® — 3p+2) if (k,¢)=(2,1) or (1,2)
0 otherwise.

Proof. We proceed as in the proof of Example 3.1. If we set g(n) = p%(n), then we have

1 if e=0 or 1
g(pe):{o if e>2

. e—1y | —1 if e=2
9(P°) — g(p )_{ 0 if e=1 or e=3

1 if e=2
g(°) —29(p° ") +g(p°?) = 1 if e=3
0 if e=4.

Therefore g clearly satisfies (2.17). Using (2.18) we can calculate the mean value M (f) as follows.

):H(l—%+%).

peEP peEP p p

112
J\4(f)=]'[(1+2><p—2+(p2 +3)
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As for the Ramanujan-Fourier coefficients ag, 4,, we have by Theorem 2.7

pa = M)~ + (5 + )/ (1= 5+ =) = M)

p p p? p pPP+p—2
1 1 3 2 —1

%Q’l_M(f)(_P—F}?)/(l_?—F}?)_M(f)]m’
Q=0 if k23,

12 32 —p+2
“p,p—M(f)<p7+]§>/<1—7+ﬁ)—M(f)m7

1 3 2 1
apQ,p—M(f)<Z§)/<1—p+]§>—M(f)p73_3p+2,
ape e =0 if kVEZ23 or k+ 1= 4.

This completes the proof of Example 3.6.

The following example is an extension of (1.2) to the case f(ni,n2) = g(ning).

Example 3.7. Let f(ni,n2) = os(ning)/(nin2)® where s > 0. Then its Ramanujan-Fourier series
is pointwise convergent and

os(nin >
(7123) = M(f) Z gy ,02Cqr (M11)Cgy (N2),
(nlnz) q1,92=1

where M(f) = (*(s +1)/C(s + 2), and aqy,q4, is determined by the multiplicativity of (q1,q2) —
Aqy,q0/M(f) and the following relations.

1-1/p
k:(erl)(l _ 1/ps+2)

a1 /M(f) = ay e /M(f) =

1_
ke /M(f) = pHHOGH) (1 — 1/ps+2)

Proof. If we set g(n) = os(n)/n®, then we have

11— p(e+1) 1 1
p= L (* ps) £ ez
9(p°) ez 1_ el s
() — g1 = — - A
gp gp _1_p5 6 1)5 1_p pes _pes =
_ B 1 1 1—p8
ey e—1 e—2 _ _ >
90°) =200 ) + 90 ) = o -y = e i e22

Therefore g clearly satisfies (2.17). Using (2.18) we can calculate the mean value M (f) as follows

un =12 o+ 38 )

peP e>1 e12lex>1

_ —1/p°"? _ Gls+1)
H 1—1/103“) Cl(s+2)]
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As for the Ramanujan-Fourier coefficients ag, 4,, we have by Theorem 2.7

% p° (1= 1/ph)?
a‘pk,l = M(f)( p pes Z Z 6’1+62 p(€1+62) ) 1— 1/ps+2

e1=k ea= 1
1-1/p
P

= M(f)

—p° \(L-1/pt)?
Apk p (Z Z peites p(61+62) ) 1—1/ps+?
e1=k ea= f
1—p°
pEHOGH) (1 — 1 /ps+2)

= M(f)

This completes the proof of Example 3.7.

Next we give examples which are special cases of Theorem 2.10. The following example is an
extension of (1.2) to the case f(n1,n2) = g((n1,n2)).

Example 3.8. Let f(ni1,n2) = os((n1,n2))/(n1,n2)® where s > —1. Then its Ramanujan-Fourier
series is pointwise convergent and

os((n1,12)) o~ Car (11)cqy (n2)
1,12 1 2
s L =((s+2) Y L=
(nlvn2) {qla C]2}
Proof. As in the proof of Example 3.7, if we set g(n) = os(n)/n®, then we have
1 1
9(p°) = 1—p (Ig —PS> for e 20,
1

9(p°) —g(p*") = oo for ezl

q1,92=1

Therefore (2.21) holds and we have by (2.22)

M(f) H(1+Z (s+2)e) (s +2).

peP e= lp

For k and ¢ satisfying k 4+ ¢ = 1 we also have by (2.25)

D g(p®)—g(p°~1)

oo 1
e=kV{ p2€ Ze:k,‘\/e p(2+s)e

%MZM”%+zwﬂuﬂiﬂ:M“H+zi@&m
1
=M e =M : =M :
= M) = MU g = MU)

1
1- p2+s

Therefore ag, 4, = M(f)/{p", p*}>** holds if (q1,q2) = (p¥,p’) where k,£ = 0. Since the function

(q1,92) — agq, ¢,/M(f) is multiplicative, we obtain the desired result. This completes the proof of
Example 3.8.

If we set s = 0 in Example 3.8, then we obtain the following example.

Example 3.9. Let f(ni1,n2) = 7((n1,n2)) where 7(n) is the number of divisors of n. Then its
Ramanujan-Fourier series is pointwise convergent and

T((n1,m2)) =C(2) Y Cqr (m1)cqs (n2)

q1,¢2=1 {an, 2}
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The following example is an extension of (1.3) to the case f(n1,n2) = g((n1,n2)).

Example 3.10. Let f(n1,n2) = ¢((n1,n2))/(n1,n2). Then its Ramanujan-Fourier series is pointwise
convergent and

o((n1,n2)) Z pw({q1, q2})

(n1,n2) ( o3({q1, q2}>cq1 (n1)cg, (n2).

q1,92= 1

Proof. If we set g(n) = p(n)/n, then g(p®) =1 —1/p for e = 1. Hence (2.21) holds and we have by
(2.22)

M) H(1+Zg R I B I (R e

peP peP P pEP !
We also have by (2.25)
e e—1
D Mge@)
a0 = M(f e P =0 if kve=2
Pep 14+ M
and / 3
—1/p -1
— = = M T 1 a2 — M 301 _ 1 /03)°
ap,1 = 1p = pp (1= 1/p3 (f)p3(1 - 1/p?)

Therefore ag, 4, = M(f)p({q1,q2})/p3({q1,q2}) holds if (q1,q2) = (p*, p’) where k,£ = 0. Since the
function (g1, q2) — ag, ¢ /M (f) is multiplicative, we obtain the desired result.

The proof of the following example is similar to that of the previous example.

Example 3.11. Let f(ni,n2) = ps((n1,n2))/(n1,n2)® where s > —1. Then its Ramanujan-Fourier
series is pointwise convergent and

psllnimg)) 1 5 ploeed) o
) D, 2 peatan ) ()

If we set s = 0 in Example 3.11, then we obtain the following example.

1 if (ni,ng) =

] Then its Ramanujan-Fourier
0 if (ni,ng2)>1.

Example 3.12. Let f(n1,n2) = §((n1,n2)) = {

series is pointwise convergent and

_ 1< planed) o
d((n1,m2)) 0 q1§2:1 o] g1 (n1)cgy (n2).

The following example is an extension of (1.5) to the case f(ni,n2) = g((n1,n2)).

Example 3.13. Let f(n1,n2) = 1r((n1,n2)) where r(n) = #{(A, B) € Z x Z; A> + B* = n}. Then
its Ramanujan-Fourier series is pointwise convergent and

Lo o o x{aned) o
4 (( 1, 2)) M(f)qh(p:l {quq2}2 Q1( 1) qz( 2)a
0 if n is even 1
s ={ s S =TT

p>2, peP
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Proof. Let g(n) = 1r(n) and e € N. Then ¢(2°) = 1 and
e+1 if p=1 (mod4)
g(p°) = 0 if p=3 (mod4) and e is odd
1 if p=3 (mod4) and e is even.

From this we have g(2¢) — g(2¢71) = 0 and

1 if p=1 (mod4)
gp®) —g(p=H=<{ —1 if p=3 (mod4) and e is odd
1 if p=3 (mod4) and e is even.

Hence (2.21) clearly holds. Furthermore, we have for k£ = 1

e=k

—~

0 if p=2
o~ 9(0°) — 9 Yl = prrapr i p=1 (modd) s
2T ) o, G o h s i p=3 (mod4) and k is odd (043
p=3

Y ek ;216)6 Zﬁl_ﬂl/pg if (mod 4) and k is even.

Using (2.22) and(3.43) we can calculate the mean value M(f) as follows.

= I (e 0 (0 paros)

p=1(mod 4) p=3( mod 4)
1 1 1
= Il 4 U +72= I —%
p=1( mod 4) 1 1/p p=3( mod 4) 1+ 1/]) p>2, peP 1 X(p)/p

Let k, ¢ be non-negative integers satisfying k 4+ ¢ = 1. Using (2.25) and (3.43) we obtain

a2k724 = O,
090 T/ 1
206V0) T-1/p .
Ak ¢ = M(f)F——— = M(f)—=—> if p=1 (mod 4),
(_l)k\/é 1
VD T41/p2 (=nkve
g e = MO = M)z i p=3 (mod 4).
P p

Therefore ag, 4, = M(f)x({q1,q2})/{q1,q2}? holds if (q1,q2) = (p*,p*) where p € P. Since the
function (g1, ¢2) — aq,,q,/M(f) is multiplicative, we obtain the desired result. This completes the

proof of Example 3.13.
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