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1. Introduction

It is well-known that the sequence {Pn}n≥0 of Pell numbers is defined by

P0 = 0, P1 = 1, Pn+2 = 2Pn+1 + Pn, n ≥ 0.

The first Pell numbers are

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, . . .

In this paper, we are interested in the Diophantine equation

Pn − 2m = c (1..1)

for a fixed c and variable m and n. In particular, we are interested in those integers c admitting at
least two representations as a difference between a Pell number and a power of 2. This is a variation
of the equation

ax − by = c, (1..2)

in non-negative integers (x, y) where a, b, c are given fixed positive integers. The history of equation
(1..2) is very rich and goes back to 1935 when Herschfeld [He35], [He36] studied the particular case
(a, b) = (2, 3). Extending Herschfeld’s work, Pillai [Pi36], [Pi37] proved that if a, b are coprime positive
integers then there exists c0(a, b) such that if c > c0(a, b) is an integer, then equation (1..2) has at
most one positive integer solution (x, y). Since then, variations of equation (1..2) has been intensively
studied. Some recent results related to equation (1..1) are obtained by the third author and his
collaborators in which they replaced Pell numbers Pn by the Fibonacci numbers Fn (see [DdLuR17]),
Tribonacci numbers (see [BrLuYa17]), and k-generalized Fibonacci numbers (see [DdGLu17]).

The aim of this paper is to prove the following result.

Theorem 1.1. The only integers c having at least two representations of the form Pn − 2m are
c ∈ {−4,−3,−2,−1, 0, 1, 4}. Furthermore, all the representations of the above integers as Pn − 2m

with integers n ≥ 0 and m ≥ 0 are given by

−4 = P4 − 24 = P0 − 22;
−3 = P5 − 25 = P3 − 23 = P1 − 21;
−2 = P2 − 22 = P0 − 21;
−1 = P1 − 21 = P0 − 20;

0 = P2 − 21 = P1 − 20;
1 = P3 − 22 = P2 − 20;
4 = P4 − 23 = P3 − 20.

(1..3)
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We organize this paper as follows. In Section 2., we recall some results useful for the proof of
Theorem 1.1. The proof of Theorem 1.1 is done in the last section.

2. Auxiliary results

The next tools are related to the transcendental approach to solve Diophantine equations. For a non-
zero algebraic number γ of degree d over Q, whose minimal polynomial over Z is a

∏d
j=1

(
X − γ(j)

)
,

we denote by

h(γ) =
1

d

log |a|+
d∑

j=1

log max
(

1,
∣∣∣γ(j)

∣∣∣)


the usual absolute logarithmic height of γ.

Lemma 2.1. Let γ1, . . . , γs be a real algebraic numbers and let b1, . . . , bs be nonzero rational integer
numbers. Let D be the degree of the number field Q(γ1, . . . , γs) over Q and let Aj be a positive real
number satisfying

Aj = max{Dh(γj), | log γj |, 0.16} for j = 1, . . . , s.

Assume that
B ≥ max{|b1|, . . . , |bs|}.

If γb11 · · · γbss 6= 1, then

|γb11 · · · γ
bs
s − 1| ≥ exp(−C(s,D)(1 + logB)A1 · · ·As),

where C(s,D) := 1.4 · 30s+3 · s4.5 ·D2(1 + logD).

Lemma 2.2. Assume that τ and µ are real numbers and M is a positive integer. Let p/q be the
convergent of the continued fraction of the irrational τ such that q > 6M , and let A,B, µ be some
real numbers with A > 0 and B > 1. Let ε = ||µq|| −M · ||τq||, where || · || denotes the distance from
the nearest integer. If ε > 0, then there is no solution of the inequality

0 < mτ − n+ µ < AB−k

in positive integers m, n and k with

m ≤M and k ≥ log(Aq/ε)

logB
.

3. Proof of Theorem 1.1

Assume that there exist positive integers n,m, n1,m1 such that (n,m) 6= (n1,m1), and

Pn − 2m = Pn1 − 2m1 .

Because of the symmetry, we can assume that m ≥ m1. If m = m1, then Pn = Pn1 , so (n,m) =
(n1,m1), contradicting our assumption. Thus, m > m1. Since

Pn − Pn1 = 2m − 2m1 , (3..1)

and the right-hand side is positive, we get that the left-hand side is also positive and so n > n1. Thus,
n ≥ 2 and n1 ≥ 1. We use the Binet formula

Pk =
αk − βk

2
√

2
for all k ≥ 0,
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where (α, β) := (1 +
√

2, 1−
√

2) are the roots of the characteristic equation of the Pell sequence. It
is well-known that

αk−2 ≤ Pk ≤ αk−1 for all k ≥ 1.

Using the equation (3..1), we get

αn−4 ≤ Pn−2 ≤ Pn − Pn1 = 2m − 2m1 < 2m, (3..2a)

αn−1 ≥ Pn > Pn − Pn1 = 2m − 2m1 ≥ 2m−1, (3..2b)

therefore

1 +

(
log 2

logα

)
(m− 1) < n <

(
log 2

logα

)
m+ 4. (3..3)

If n < 150, then m ≤ 200. We ran a computer program for 2 ≤ n1 < n ≤ 150 and 1 ≤ m1 < m < 200
and found only the solutions from list (1..3). From now, we assume that n ≥ 150.

Note that the inequality (3..3) implies that
m

2
< n. So, to solve equation (3..1), we need an upper

bound for n.

3.A. Bounding n

Using the Binet formula in the Diophantine equation (3..1), we get∣∣∣∣ αn

2
√

2
− 2m

∣∣∣∣ =

∣∣∣∣ βn2
√

2
+
αn1 − βn1

2
√

2
− 2m1

∣∣∣∣ ≤ αn1 + 2

2
√

2
+ 2m1

≤ αn1

√
2

+ 2m1 < 2 max{αn1 , 2m1}.

Multiplying by 2−m, using the relation (3..2a) and using the fact that 2 < α, we get∣∣∣(√2)−1αn2−m−1 − 1
∣∣∣ < 2 max

{
αn1

2m
, 2m1−m

}
< max{αn1−n+5, 2m1−m+1}. (3..4)

For the left-hand side, we apply Theorem 2.1 with the data

s = 3, γ1 =
√

2, γ2 = α, γ3 = 2, b1 = −1, b2 = n, b3 = −m− 1.

Throughout we work with K := Q(
√

2) with D = 2. Since max{1, n,m + 1} ≤ 2n we take B := 2n.
Furthermore, we take A1 := 2h(γ1) = log 2, A2 := 2h(γ2) = logα, A3 := 2h(γ3) = 2 log 2. Put

Λ = (
√

2)−1αn2−m−1 − 1.

If Λ = 0, then α2n ∈ Q, which is false. Thus, Λ 6= 0. Then, by Theorem 2.1, the left-hand side of
(3..4) is bounded as

log |Λ| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log 2n)(log 2)(logα)(2 log 2).

Comparing with (3..4), we get

min{(n− n1 − 5) logα, (m−m1 − 1) log 2} < 8.3× 1011(1 + log 2n),

which gives
min{(n− n1) logα, (m−m1) log 2} < 8.4× 1011(1 + log 2n).

Now the argument splits into two cases.

Case 1. min{(n− n1) logα, (m−m1) log 2} = (n− n1) logα.
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In this case, we rewrite (3..1) as∣∣∣∣(αn−n1 − 1

2
√

2

)
αn1 − 2m

∣∣∣∣ =

∣∣∣∣βn − βn1

2
√

2
− 2m1

∣∣∣∣ < 2m1 + 1 ≤ 2m1+1,

which implies ∣∣∣∣(αn−n1 − 1

2
√

2

)
αn12−m − 1

∣∣∣∣ < 2m1−m+1. (3..5)

We put

Λ1 =

(
αn−n1 − 1

2
√

2

)
αn12−m − 1.

Clearly, Λ1 6= 0, for if Λ1 = 0, then

(αn−n1 − 1)αn1 =
√

2× 2m.

Conjugating this relation in K, we get that

(αn−n1 − 1)αn1 = −(βn−n1 − 1)βn1 . (3..6)

The absolute value of the left-hand side is at least αn − αn1 ≥ αn−2 ≥ α188, while the absolute value
of the right-hand side is at most (|β|n−n1 + 1)|β|n1 < 2, which is a contradiction.

We apply Theorem 2.1 by taking s = 3, and

γ1 =
αn−n1 − 1

2
√

2
, γ2 = α, γ3 = 2, b1 = 1, b2 = n1, b3 = −m.

The minimal polynomial of γ1 divides

8x2 − 8Pn−n1x− ((−1)n−n1 + 1−Qn−n1),

where {Qk}k≥0 is the Pell-Lucas companion sequence of the Pell sequence given by Q0 = 2, Q1 = 1,
Qk+2 = 2Qk+1 +Qk for all k ≥ 0, for which the Binet formula of its general term is

Qk = αk + βk for all k ≥ 0.

Thus, we obtain

h(γ1) ≤ 1

2

(
log 8 + log

(
αn−n1 + 1

2
√

2

))
<

1

2
log(4

√
2αn−n1)

<
1

2
(n− n1 + 2) logα < 4.2× 1011(1 + log 2n).

(3..7)

So, we can take A1 := 8.4 × 1011(1 + log 2n). Further, as before, we can take A2 := logα and
A3 := 2 log 2. Finally, since max{1, n1,m} ≤ 2n, we can take B := 2n. We then get that

log |Λ1| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log 2n)× (8.4× 1011(1 + log n))(logα)(2 log 2).

Thus,
log |Λ1| > −1.1 · 1024(1 + log 2n)2.

Comparing this with (3..5), we get that

(m−m1) log 2 < 1.1 · 1024(1 + log 2n)2.

Case 2. min{(n− n1) logα, (m−m1) log 2} = (m−m1) log 2.
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In this case, we rewrite (3..1) as∣∣∣∣ αn

2
√

2
− 2m1(2m−m1 − 1)

∣∣∣∣ =

∣∣∣∣βn + αn1 − βn1

2
√

2

∣∣∣∣ < αn1 + 2

2
√

2
< αn1 ,

so ∣∣(√2(2m−m1 − 1))−1αn2−m1−1 − 1
∣∣ <

αn1

2m − 2m1
≤ 2αn1

2m

≤ 2αn1−n+4 < αn1−n+5.

(3..8)

Let
Λ2 = (

√
2(2m−m1 − 1))−1αn2−m1−1 − 1.

Clearly, Λ2 6= 0, for if Λ2 = 0 implies α2n ∈ Q, which is not possible.
We apply again Theorem 2.1. In this application, we take again s = 3, and

γ1 =
√

2(2m−m1 − 1), γ2 = α, γ3 = 2, b1 = −1, b2 = n, b3 = −m1 − 1.

The minimal polynomial of γ1 is x2 − 2(2m−m1 − 1)2. Thus

h(γ1) = log
(√

2(2m−m1 − 1)
)
< (m−m1 + 1) log 2 < 8.5× 1011(1 + log 2n).

So, we can take A1 := 1.7 × 1012(1 + log 2n). Further, as before, we can take A2 := logα and
A3 := 2 log 2. Finally, since max{1, n,m1 + 1} ≤ 2n, we can take B := 2n.

We then get that

log |Λ2| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log 2n)× (1.7× 1012(1 + log 2n))(logα)(2 log 2).

Thus,
log |Λ1| > −2.1 · 1024(1 + log 2n)2.

Comparing this with (3..8), we get that

(n− n1) logα < 2.2 · 1024(1 + log 2n)2.

Thus, in both Case 1 and Case 2, we have

min{(n− n1) logα, (m−m1) log 2} < 8.4 · 1011(1 + log 2n)
max{(n− n1) logα, (m−m1) log 2} < 2.2 · 1024(1 + log 2n)2.

(3..9)

We now finally rewrite equation (3..1) as∣∣∣∣(αn−n1 − 1)

2
√

2
αn1 − 2m1(2m−m1 − 1)

∣∣∣∣ =

∣∣∣∣βn − βn1

2
√

2

∣∣∣∣ < |β|n1 =
1

αn1
.

Dividing both sides by 2m − 2m1 , we get∣∣∣∣( αn−n1 − 1√
2(2m−m1 − 1)

)
αn12−m1−1 − 1

∣∣∣∣ <
1

αn1(2m − 2m1)
≤ 2

αn12m

≤ 2α4−n−n1 ≤ α4−n,

(3..10)

because αn1 ≥ α > 2. To find a lower-bound on the left-hand side, we use again Theorem 2.1 with
s = 3, and

γ1 =
αn−n1 − 1√

2(2m−m1 − 1)
, γ2 = α, γ3 = 2, b1 = 1, b2 = n1, b3 = −m1 − 1.
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Using h(x/y) = h(x) + h(y) for any two nonzero algebraic numbers x and y, we have

h(γ1) ≤ h

(
αn−n1 − 1√

2

)
+ h(2m−m1 − 1) <

1

2
(n− n1 + 2) logα+ (m−m1) log 2

< 2.5 · 1024(1 + log 2n)2,

where in the above chain of inequalities, we used the argument from (3..7) as well as the bound (3..9).
So, we can take A1 := 5 · 1024(1 + log 2n)2 and certainly A2 := logα and A3 := 2 log 2. We need to
show that if we put

Λ3 =

(
αn−n1 − 1√

2(2m−m1 − 1)

)
αn12−m1−1 − 1,

then Λ3 6= 0. But Λ3 = 0 leads to

(αn−n1 − 1)αn1 =
√

2(2m − 2m1),

which upon conjugation in K leads to (3..6), which is impossible. Thus, Λ3 6= 0. Theorem 2.1 gives

log |Λ3| > −1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log 2n)× (5× 1024(1 + log 2n)2)(logα)(2 log 2),

which together with (3..10) gives

(n− 4) < 6 · 1036(1 + log 2n)3,

leading to n < 7 · 1042.

3.B. Reducing n

We now need to reduce the above bound for n and to do so we make use of Lemma 2.2 several times.
To begin with, we return to (3..4) and put

Γ := n logα−m log 2− log(2
√

2).

For technical reasons we assume that min{n− n1,m−m1} ≥ 20. We go back to the inequalities for

Λ, Λ1, Λ2. Since we assume that min{n − n1,m − m1} ≥ 20 we get |eΓ − 1| = |Λ| < 1

4
. Hence,

|Λ| < 1

2
and since the inequality |x| < 2|ex − 1| holds for all x ∈

(
−1

2 ,
1
2

)
, we get

|Γ| < 2 max{αn1−n+5, 2m1−m+1} ≤ max{αn1−n+6, 2m1−m+2}.

Assume Γ > 0. We then have the inequality

0 < n

(
logα

log 2

)
−m− 3

2
< max

{
α6

log 2
α−(n−n1),

4

log 2
2−(m−m1)

}
< max{286α−(n−n1), 6 · 2−(m−m1)}.

We apply Lemma 2.2 with

τ =
logα

log 2
, µ = −3

2
, (A,B) = (286, α) or (6, 2).

Let τ = [a0, a1, . . .] = [1, 3, 1, 2, 6, 1, 2, 11, 2, 2, 1, . . .] be the continued fraction of τ . We choose M :=
7 · 1042 and consider the 89-th convergent

p

q
=
p89

q89
=

348317200801236358620935022888502708006954949997

273930475375768068118103206105181460963472890299
.



28 3. Proof of Theorem 1.128 3. Proof of Theorem 1.1

It satisfies q = q89 > 6M . Further, it yields ε > 0.49, and therefore either

n− n1 ≤
log(286q/ε)

logα
< 132, or m−m1 ≤

log(6q/ε)

log 2
< 126.

In the case of Γ < 0, we consider the following inequality:

m

(
log 2

logα

)
− n+

log(2
√

2)

logα
< max

{
α6

logα
α−(n−n1),

4

logα
2−(m−m1)

}
< max{225α−(n−n1), 5 · 2−(m−m1)},

instead and apply Lemma 2.2 with

τ =
log 2

logα
, µ =

log(2
√

2)

logα
, (A,B) = (225, α) or (5, 2).

Let τ = [a0, a1, . . .] = [0, 1, 3, 1, 2, 6, 1, 2, 11, 2, 2, 1, . . .] be the continued fraction of τ (note that the
current τ is just the reciprocal of the previous τ). Again, we choose M = 4.2 · 1043, and in this case
we consider the 90-th convergent

p

q
=
p90

q90
=

116053085442077720965142600370109382756030794793

91268753856671834783420178148248093030868562298
,

which satisfies q = q90 > 6M . This yields again ε > 0.49, and therefore either

n− n1 ≤
log(225q/ε)

logα
< 132, or m−m1 ≤

log(5q/ε)

log 2
< 126.

These bounds agree with the bounds obtained in the case that Γ > 0. As a conclusion, we have either
n− n1 ≤ 131 or m−m1 ≤ 125 whenever Γ 6= 0.

Now, we have to distinguish between the cases n−n1 ≤ 131 and m−m1 ≤ 125. First, let assume
that n− n1 ≤ 131. In this case, we consider inequality (3..5) and assume that m−m1 ≥ 20. We put

Γ1 = n1 logα−m log 2 + log

(
αn−n1 − 1

2
√

2

)
.

Then inequality (3..5) implies that

|Γ1| <
4

2m−m1
.

If we further assume that Γ1 > 0, we then get

0 < n1

(
logα

log 2

)
−m+

log((αn−n1 − 1)/(2
√

2)

log 2
<

4

(log 2)2m−m1
<

6

2m−m1
.

Again we apply Lemma 2.2 with the same τ as in the case when Γ > 0. We use the 89-th convergent
p/q = p89/q89 of τ as before. But in this case we choose (A,B) := (6, 2) and use

µk =
log((αk − 1)/(2

√
2))

log 2
,

instead of µ for each possible value of k := n − n1 ∈ [1, 2, . . . 131]. We have problems at k ∈ {1, 4}.
We discard these values for now and will treat them later. For the remaining values of k, we get
ε > 0.0004. Hence, by Lemma 2.2, we get

m−m1 <
log(6q/0.0004)

log 2
< 172.
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Thus, n− n1 ≤ 131 implies m−m1 ≤ 171, unless n− n1 ∈ {1, 4}. A similar conclusion is reached if
Γ1 < 0 with the same two exceptions for n−n1 ∈ {1, 4}. The reason we have a problem at k ∈ {1, 4}
is because

α− 1

2
√

2
=

1

2
and

α4 − 1

2
√

2
= 2α2.

So, Γ1 = n1 logα− (m+ 1) log 2, or (n1 + 2) logα− (m− 1) log 2 when k = 1, 4 respectively. Thus we
get that ∣∣∣∣τ − m+ 1

n1

∣∣∣∣ < 4

2m−m1n1
, or

∣∣∣∣τ − m− 1

n1 + 2

∣∣∣∣ < 4

2m−m1(n1 + 2)
,

respectively. Assume that m−m1 > 150. Then 2m−m1 > 8× (8× 1042) > 8× (n1 + 2), therefore

4

2m−m1n1
<

1

2n2
1

and
4

2m−m1(n1 + 2)
<

1

2(n1 + 2)2
.

By a criterion of Legendre, it follows that (m + 1)/n1 or (m − 1)/(n1 + 2) are convergents of τ ,
respectively. So, say one of (m+1)/n1 or (m−1)/(n1+2) is of the form pk/qk for some k = 0, 1, . . . , 84.
Here, we use that q84 > 8× 1042 > n1 + 2. Then

1

(ak + 2)q2
k

<

∣∣∣∣τ − pk
qk

∣∣∣∣ .
Since max{ak : k = 0, . . . , 84} = 100, we get

1

102q2
k

<
4

2m−m1qk
and qk divides one of {n1, n1 + 2}.

Thus,
2m−m1 ≤ 4× 102(n1 + 2) < 4× 102× 8× 1042

giving m−m1 ≤ 152.
Now let us turn to the case that m−m1 ≤ 125 and let us consider inequality (3..8). We put

Γ2 = n logα−m1 log 2 + log(1/(2
√

2(2m−m1 − 1))),

and we assume that n− n1 ≥ 20. We then have

|Γ2| <
2α5

αn−n1
.

Assuming Γ2 > 0, we get

0 < n

(
logα

log 2

)
−m1 +

log((1/(2
√

2(2m−m1 − 1)))

logα
<

2α5

(log 2)αn−n1
<

237

αn−n1
.

We apply again Lemma 2.2 with the same τ , q, M , (A,B) := (237, α) and

µk =
log((1/(2

√
2(2k − 1)))

log 2
for k = 1, 2, . . . 125.

We get ε > 0.003, therefore

n− n1 <
log(237q/0.003)

logα
< 137.

A similar conclusion is reached when Γ2 < 0. To conclude, we first get that either n − n1 ≤ 131 or
m −m1 ≤ 125. If n − n1 ≤ 131, then m −m1 ≤ 171, and if m −m1 ≤ 125 then n − n1 ≤ 136. In
conclusion, we always have n− n1 < 137 and m−m1 < 172.



30 References30 References

Finally we go to (3..10). We put

Γ3 = n1 logα−m1 log 2 + log

(
αn−n1 − 1

2
√

2(2m−m1 − 1)

)
.

Since n ≥ 200, inequality (3..10) implies that

|Γ3| <
2

αn−4
=

2α4

αn
.

Assume that Γ3 > 0. Then

0 < n1

(
logα

log 2

)
−m1 +

log((αk − 1)/(2
√

2(2l − 1)))

log 2
<

2α4

(log 2)αn
<

99

αn
,

where (k, l) := (n−n1,m−m1). We apply again Lemma 2.2 with the same τ , M , q, (A,B) := (99, α)
and

µk,l =
log((αk − 1)/(2

√
2(2l − 1)))

log 2
for 1 ≤ k ≤ 137, 1 ≤ l ≤ 171.

We have problem at (k, l) = (1, 1), (4, 1)(as for the case of Γ1) and additionally for (k, l) = (8, 2) since

α8 − 1

2
√

2(22 − 1
= 4α4;

We discard the cases (k, l) = (4, 1), (12, 1), (8, 2) for the time being. For the remaining ones, we get
ε > 0.0002, so we obtain

n ≤ log(99q/0.0002)

logα
< 139.

A similar conclusion is reached when Γ3 < 0. Hence, n < 150. Now we look at the cases (k, l) =
(1, 1), (4, 1), (8, 2). The cases (k, l) = (1, 1), (4, 1) can be treated as we did before when we showed
that n− n1 ≤ 137 implies m−m1 ≤ 171. The case when (k, l) = (8, 2) can be dealt with similarly as
well. Namely, it gives

|(n1 + 4)τ − (m1 + 2)| < 99

αn
.

Hence, ∣∣∣∣τ − m1 + 2

n1 + 4

∣∣∣∣ < 99

(n1 + 4)α
. (3..11)

Since n ≥ 150, we have αn > 2 × 99 × (8 × 1042) > 2 × 99 × (n1 + 4), which shows that the
right–hand side of inequality (3..11) is at most 2/(n1 + 4)2. By Legendre’s criterion, we get that
(m1 + 2)/(n1 + 4) = pk/qk for some k ∈ [0, 84]. We then get by an argument similar to a previous
one that

αn ≤ 99× 102× (8× 1042),

giving n ≤ 123. So, the conclusion is that n < 150 holds also in the case of the pair (k, l) = (8, 2).
However, this contradicts our working assumption that n ≥ 150.

Theorem 1.1 is therefore proved.
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Department of Mathematics, Statistics, and Computer Science
Purdue University Northwest, 1401 S, U.S. 421
Westville IN 46391, USA
e-mail : atogbe@pnw.edu


	Introduction
	Auxiliary results
	Proof of Theorem 1.1
	Bounding n
	Reducing n


