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On the Wintner-Ingham-Segal summability method
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Abstract. The aim of this note is to establish a subclass of F considered by Segal if functions for which the Ingham-Wintner
summability implies F -summability as wide as possible. The subclass is subject to the estimate for the error term of the prime

number theorem. We shall make good use of Stieltjes integration which elucidates previous results obtained by Segal.
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1. Introduction

The purpose of this note is to establish a subclass of F for which I-summability implies F -summability
as wide as possible, the subclass being subject to the estimate for the error term of the prime number
theorem, PNT. It will turn out that such a result depends on a delicate relation between the reducing
factor appearing in (1.3) and in the estimate for M(x). We may slightly improve the result of Segal by
appealing to the best known estimate (1.6) for the Möbius functioncolorred, the result being stated
in Theorem 3.4. Seondly, we shall elucidate the argument in [Se75] by incorporating the view point
of the Stieltjes integration.

Given a sequence {an} let for x ≥ 1

I(x) =
1

x

∑
n≤x

∑
d|n

dad =
∑
d≤x

ad
d

x

[x
d

]
, (1.1)

where [x] denotes the integral part of x. We extend the domain of I by assuming I(x) = 0 for
0 < x < 1,

The series
∑∞

n=1 an is said to be I-summable to A if

lim
x→∞

I(x) = A. (1.2)

Or more precisely, Wintner-Ingham summable. [Win43], [In45], [Har49], [Win57]

Definition 1. The class F consists of all F : [0, 1] → R of class C2 which are monotone non-
increasing with F (0) = 1 and F (1) = 0, The domain is extended by assuming F (x) = 0 for x > 1.
Further −F ′ is monotone non-increasing and the order condition is satisifed:

F

(
1− 1

v

)
= O(δ(v)), v →∞ (1.3)

where δ(v) is the reducing factor related to the PNT and

δ(v) = δc(v) = e−c(log v)3/5−ε (1.4)

for every ε > 0 unconditionally, c not being the same at each occurence and

δRH(v) = e−ε(log v), (1.5)
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on the weak RH (in which case 0 < c < 1
2). The delta functions are slowly varying functions which

makes the estimation simpler, [deH70], [Sen76] The series
∑
an is said to be F -summable to A if

limr→∞AF (r) = A, where AF (r) is defined by (3.18).

It seems that Segal was led to the notion of F -summability by the following observation. The weight
in (1.1) is of the form v( 1

v −{
1
v}) = 1− v{ 1

v}, which he replaces by (1− v)δ in order to accommodate

the Riesz sum weight (Cf. [CM52], [HR72]). In this case F
(
1− 1

v

)
∼
(

1
v

)δ
, which is his original

definition. It turns out that one may assume a looser condition if one appeals to the best known
bound for the error term in PNT.

For the arithmetical function h (which may be either the Möbius function or the one defined in
(3.25)) we also assume the estimate in relation to (1.3):
Assumption.

M(x) = Mh(x) =
∑
n≤x

h(n) = O(xδ(x)) (1.6)

and
h(n) = O

(
(log n)A

)
(1.7)

for an arbitrarily large A unconditionally and

M(x) = Mh(x) = O(xb), 0 < b < 1 (1.8)

on the weak RH (WRH). Here the weak RH means that there exists an a > 1
2 such that ζ(s) 6= 0 in

a ≤ σ ≤ 1. This implies for any a < b < 1,
∑

n≤x µ(n) = O(xb). For the error term of the PNT, cf.
[Da80], [Iv85] [Tit86].

Table Reducing factor and Mh estimate

cond. red. factor Mh estimate

uncond (1.4) (1.6)+(1.7)

WRH (1.5) (1.8)

2. Preliminary materials

All the tools we need are contained in

Theorem 2.1. • (i) The Stieltjes integral exists if f is continuous and g is of bounded variation.
The role can be changed in view of Item (ii).

• (ii) The formula for integration by parts holds true:∫ b

a
f(x) dg(x) = [f(x)g(x)]ba −

∫ b

a
g(x) df(x), (2.9)

provided that f is continuous and g is of bounded variation or g is continuous and f is of
bounded variation.

• (iii) If g is a step function with jumps an at xn, the Stieltjes integral reduces to the sum:∫ b

a
f(x) dg(x) =

∑
a<xn≤b

f(xn)an. (2.10)
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• (iv) If f is continuous and g is differentiable, then the Stieltjes integral reduces to the Riemann
integral: ∫ b

a
f(x) dg(x) =

∫ b

a
f(x)g′(x) dx. (2.11)

Remark 2.2. There are many instances where the partial summation and integration by parts are
regarded as different processes. However, from the general point of view of Stieltjes integration they
are exactly the same as shown below.

If in (2.10), f is differentiable, then applying (2.9) to it, we deduce that

∑
a<xn≤b

f(xn)an =

∫ b

a
f(x) dg(x) = [f(x)g(x)]ba −

∫ b

a
g(x)f ′(x) dx, (2.12)

which is the partial summation. When f and g are differentiable of class C1, say, we combine (2.9)
and (2.11) to deduce ∫ b

a
f(x)g′(x) dx = [f(x)g(x)]ba −

∫ b

a
g(x)f ′(x) dx, (2.13)

which is the formula for integration by parts.

For more details cf. e.g. [Ap57], [Wi89].
We shall make a good use of a continuous version of the Möbius inversion formula. We state a

general form of the formula for curiosity. Cf. e.g. [HR72].

Lemma 2.3. (Möbius inversion formula) For arithmetic functions f, g, the following are equiv-
alent (n ∈ N):

(i)
∑
d|n
f(d) = g(n);

(ii) f(n) =
∑
d|n
µ(d)g

(
n
d

)
;

(Continuous version of (i),(ii))

(i)′ g(x) =
∑
n≤x

f
(
x
n

)
;

(ii)′ f(x) =
∑
d≤x

µ(d)g
(
x
d

)
;

(iii)
∑
n≤x

g(n) =
∑
d≤x

f(d)
[
x
d

]
, 1 ≤ x ∈ R,

where [x] indicates the greatest integer ≤ x.

Proof. We give a proof of (ii)′ which depends on the “double to repeated” integration principle. For
arbitrary arithmetic functions a, c let

b(x) =
∑
n≤x

c
(x
n

)
. (2.14)

Then consider the continuous convolution a∗̃b:

a∗̃b(x) =
∑
n≤x

a(n)b
(x
n

)
. (2.15)
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Substituting from (2.14), we deduce that

a∗̃b(x) =
∑
d≤x

a(d)
∑
δ≤x/d

c

(
x/d

δ

)
=
∑
dδ≤x

a(d)c
( x
dδ

)
=
∑
n≤x

c
(x
n

)∑
d|n

a(d). (2.16)

Putting c(n) = 1 and a = f in (2.16) gives (iii) in view of b(x) = [x] while a = µ and b = g gives
(ii)′ in view of

∑
d|n

µ(d) =

{
1 n = 1

0 n > 1.
(2.17)

3. Theorem 3.4

Our aim in this section is to prove Theorem 3.4 which entails the result that I-summability implies
F -symmability for F ∈ F .

We write A(x) =
∑

n≤x an. Inverting (1.1) by Möbius inversion, Lemma 2.3, (ii)′, we have∑
d≤x

µ(d)

d
I
(x
d

)
=

1

x

∑
n≤x

nan =
1

x

∫ x

1
t dA(t) =

1

x

(
xA(x)−

∫ x

1
A(t) dt

)
([Se75, (1)])

by Stieltjes integration. Also by Stieltjes integration∑
k≤r

akF

(
k

r

)
=

∫ r

1
F

(
t

r

)
dA(t) = −1

r

∫ r

1
F ′
(
t

r

)
A(t) dt. ([Se75, (2)])

The left-hand side member is the AF (r) sum defined in (3.18).

Lemma 3.1. For every F in the class F we have

AF (r) :=
∑
k≤r

akF

(
k

r

)
=
∑
d≤r

µ(d)

d

∫ r

1

I
(
t
d

)
t

G

(
t

r

)
dt, (3.18)

where
G(x) = F (x)− xF ′(x) (3.19)

This is [Se75, (4)] and its deduction is the simplest if we calculate the integral

I =

∫ r

1
F ′
(
t

r

)
1

t

∫ t

1
A(u) dudt. (3.20)

in two different ways. One is as given by Segal and applying integration by parts as follows.

I =

[
rF

(
t

r

)
1

t

∫ t

1
A(u) du

]r
1

− r
∫ r

1
F

(
t

r

)(
1

t

∫ t

1
A(u) du

)′
dt. (3.21)

Noting that the first term of the right-hand side is equal to 0 and the derivative inside the integral is

1

t

(
A(t)− 1

t

∫ t

1
A(u) du

)
=

1

t

∑
d≤t

µ(d)

d
I

(
t

d

)
,

by ([Se75, (1)], we obtain

I = −r
∫ r

1

∑
d≤t

µ(d)

d
I

(
t

d

)
1

t
F

(
t

r

)
dt = −r

∑
d≤r

µ(d)

d

∫ r

1

I
(
t
d

)
t

F

(
t

r

)
dt (3.22)
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on noting that I
(
t
d

)
= 0 for d > t.

The other way is to substitute for 1
t

∫ t
1 A(u) du from ([Se75, (1)]:

I =

∫ r

1
F ′
(
t

r

)
A(t) dt−

∫ r

1

∑
d≤t

µ(d)

d
I

(
t

d

)
F ′
(
t

r

)
dt. (3.23)

By [Se75, (2)], the first integral is −r
∑

k≤r akF
(
k
r

)
, so that it follows from (3.22) and (3.23) that

∑
d≤r

µ(d)

d

∫ r

1

I
(
t
d

)
t

F

(
t

r

)
dt =

∑
k≤r

akF

(
k

r

)
+
∑
d≤r

µ(d)

d

∫ r

1

I
(
t
d

)
t

t

r
F ′
(
t

r

)
dt, (3.24)

or (3.18).

Proposition 3.2. For any arithmetic function g(n) let

bn =
1

n

∑
d|n

dadg
(n
d

)
, h(n) =

∑
d|n

µ(d)g
(n
d

)
. (3.25)

Then we have

BF (r) :=
∑
k≤r

bkF

(
k

r

)
=
∑
d≤r

h(d)

d

∫ r

1

I
(
t
d

)
t

G

(
t

r

)
dt, (3.26)

which is a generalization of Lemma 3.1 with g the multiplicative identity. This further leads to

BF (r) =

∫ r

1

I
(
r
w

)
w

Hh(w) dw, (3.27)

where

H(w) = Hh(w) =
∑
n≤w

h(n)

n
G
( n
w

)
. (3.28)

Proof. Substituting from (3.25), we deduce that

BF (r) =
∑
k≤r

F

(
k

r

)
1

k

∑
d|k

dadg

(
k

d

)
=
∑
dδ≤r

F

(
dδ

r

)
1

δ
adg(δ) (3.29)

=
∑
δ≤r

1

δ
g(δ)AF

(r
δ

)
on writing k = dδ and then summing over d ≤ r/δ first. Substituting from Lemma 3.1, we transform
(3.29) into

BF (r) =
∑
δ≤r

1

δ
g(δ)

∑
d≤r/δ

µ(d)

d

∫ r/δ

1

I
(
t
d

)
t

G

(
δt

r

)
dt (3.30)

=
∑
n≤r

1

n

∑
d|n

µ
(n
d

)
g(d)

∫ r/d

n/d

I
(
ud
n

)
u

G

(
ud

r

)
du

after writing n = dδ, eliminating δ as n
d and making the change of variables t

d = n
du.

Further, writing ud = v, the integral becomes
∫ r/d
n

I( vn)
v G

(
v
r

)
dv since I(x) = 0 for x < 1 and

indeed, the integral is independent of d. Hence
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BF (r) =
∑
n≤r

h(n)

n

∫ r

1

I
(
v
n

)
v

G
(v
r

)
dv, (3.31)

or (3.26).
To deduce (3.27), we put t = rn

w in (3.26) and note that the resulting integral over n→ rn amounts
to 1→ r in view of the vanishing properties of I and G. The result follows by changing the order of
summation and integration, completing the proof.

By (3.19), (3.28) reads

Hh(w) =
∑
n≤w

h(n)

n
F
( n
w

)
− n

w

∑
n≤w

h(n)

n
F ′
( n
w

)
, (3.32)

in which the first term on the right may be expressed as∑
n≤w

h(n)

n
F
( n
w

)
=

∫ ∞
w

1

u2

∑
n≤u

h(n)F ′
(n
u

)
du (3.33)

on writing

F
( n
w

)
= −

∫ ∞
w

d

du
F
(n
u

)
du =

∫ ∞
w

F ′
(n
u

) n

u2
du. (3.34)

Hence integrating (3.32) over [2,∞) and incorporating (3.33) we deduce that∫ ∞
2

|H(w)|
w

dw ≤
∫ ∞

2

|J(w)|
w

dw + |J(2)|, (3.35)

where

J(x) =

∫ ∞
x

1

w2
K(w) dw (3.36)

and where

K(w) =
∑
n≤w

h(n)F ′
( n
w

)
. (3.37)

The main task from here is to establish the following

Lemma 3.3. We have ∫ ∞
2

|H(w)|
w

dw = O(1). (3.38)

Proof. We estimate the functions K, J and finally
∫∞

2
|H(w)|
w dw in (3.35).

To estimate K(w) we divide it into two: Σ1,Σ2, where the sum is over n ≤ α and α ≤ n ≤ w,
respectively, where α = α(w) is chosen later to be near to w up to a small distance of the order of δ.
By partial summation and (1.6), we obtain

|Σ1| =
∑
n≤α
� αδ(α)F ′

(α
w

)
, (3.39)

which is the hardest term in Segal’s treatment.
For Σ2 we find a formula by integration by parts∫ n

n−1
(t− [t]) dF ′

(
t

w

)
=

[
(t− [t])F ′

(
t

w

)]n
n−1

−
∫ n

n−1
F ′
(
t

w

)
d(t− [t]) (3.40)

= F ′
( n
w

)
−
∫ n

n−1
F ′
(
t

w

)
dt.
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Since the left-hand side is
∫ n
n−1(t− [t]) 1

wF
′′ ( t

w

)
dt, it follows that

F ′
( n
w

)
=

∫ n

n−1
F ′
(
t

w

)
dt+

∫ n

n−1
(t− [t])

1

w
F ′′
(
t

w

)
dt. (3.41)

Summing (3.41) over ([α], [w]) and using properties of −F ′ and (1.7) we deduce that

(logw)−A|Σ2| ≤
∑

α≤n≤w
−F ′

( n
w

)
(3.42)

� −wF
(

[w]

w

)
+ wF

(
[α]

w

)
− F ′

(
[w]

w

)
+ F ′

(
[α]

w

)
� wF

(
[α]

w

)
− F ′

(
[w]

w

)
by the properties of F . Hence together with (3.39) this implies

|K(w)| � −αδ(α)F ′
(α
w

)
+ (logw)A

(
wF

(
[α]

w

)
− F ′

(
[w]

w

))
which amounts to

|K(w)| � −wδ(w)F ′ (1− δ(w)) + (logw)A
(
wF (1− δ(w))− F ′

(
[w]

w

))
(3.43)

on choosing
α(w) = 1− δ(w). (3.44)

Substituting (3.43) in (3.36), we obtain

|J(x)| � −
∫ ∞
x

1

w
δ(w)F ′ (1− δ(w)) dw +

∫ ∞
x

(logw)A

w
F (1− δ(w)) dw (3.45)

−
∫ ∞
x

(logw)A

w2
F ′
(

[w]

w

)
dw

Recalling the form of δ in (1.4), we see that δ′ is of the form 1
w (logw)cδ(w) = 1

wδ(w). Hence the
first term on the right of (3.45) is [δ(w)F (1− δ(w))]∞x = δ(x) by (1.3). The mid term is of the same
form by (1.3). For the last term we express it as

−
∑
n≥x

∫ n+1

n

1

w2−εF
′
( n
w

)
dw =

∑
n≥x

1

n1−εF

(
n

n+ 1

)
�A

∑
n≥x

1

(log n)A
F

(
1− 1

n+ 1

)
.

Hence by (1.3), the third term is ∫ ∞
x

1

t
δ(t) dt = δ(x). (3.46)

Hence substituting the previous results in (3.35), we obtain (3.38).

We are now in a position to prove

Theorem 3.4. We suppose all the assumptions in Assumption are satisfied. If
∑
an is I-summable

to A, then
∑
bn (with bn defined in (3.25)) is F -summable to A for any F ∈ F .
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Proof. In (3.27) we divide the integral over [1, r] into [1,
√
r]∪ [
√
r, r] and substitute the result I(x) =

A+ o(1) for r/w ≥
√
r and I(x) = o(1) into the respective integrals, we deduce that

BF (r) = A

∫ √r
1

H(w)

w
dw + o(1) (3.47)

as r →∞ since the integral is absolutely convergent in view of Lemma 3.3.
On determining the value of the infinite integral as in [Se75, p.135], we complete the proof.

Remark 3.5. (3.27) is the formula appearing on [Se75, p. 137] and is a generalization of [Se75,
Formula (6)], which is (3.18). This follows on choosing g in Proposition 3.2 to be the multiplicative
identity, i.e. g(1) = 1 and g(n) = 0 for n 6= 1. Hence Theorem 3.4 entails [Se75, Theorem 1] to the
effect that I-summability implies F -summability.
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