On ℓ-Regular Bipartitions Modulo m

D. D. Somashekara and K. N. Vidya

In memory of Professor S. Srinivasan

Abstract

Let $b_{\ell}(n)$ denote the number of ℓ-regular partitions of n and $B_{\ell}(n)$ denote the number of ℓ-regular bipartitions of n. In this paper, we establish several infinite families of congruences satisfied by $B_{\ell}(n)$ for $\ell \in\{2,4,7\}$. We also establish a relation between $b_{9}(2 n)$ and $B_{3}(n)$.

Keywords. Congruence, partition, regular partition, regular bipartition, theta functions
2010 Mathematics Subject Classification. 11P83, 05A17.

1. Introduction and Notations

A partition of a positive integer n is any non-increasing sequence of positive integers whose sum is n. The number of such partitions is denoted by $p(n)$, and the number of partitions where the summands are distinct is denoted by $q(n)$. Let $b_{\ell}(n)$ denote the number of ℓ-regular partitions of n, where an ℓ-regular partition of n is a partition of n such that none of its parts is divisible by ℓ. It is known that $b_{2}(n)=q(n)$. The generating function for the number of ℓ-regular partitions of n is given by

$$
\sum_{n=0}^{\infty} b_{\ell}(n) q^{n}=\frac{f_{\ell}}{f_{1}}
$$

where f_{k} is defined by $f_{k}:=\prod_{m=1}^{\infty}\left(1-q^{k m}\right), k$, a positive integer.
In 1997 Gordon and Ono [GoOn97] obtained some divisibility properties of $b_{\ell}(n)$ by powers of certain special primes. In fact they have proved the following results:

1. Let $\ell=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{m}^{\alpha_{m}}$ be the prime factorization of a positive integer ℓ and let $b_{\ell}(n)$ denote the number of ℓ-regular partitions of n. If $p_{i}^{\alpha_{i}} \geq \sqrt{\ell}$, then for every positive integer j

$$
\lim _{N \rightarrow \infty} \frac{S_{\ell}\left(N ; p_{i}^{j}\right)}{N}=1
$$

where $S_{\ell}(N ; M)$ is the number of positive integers $n \leq N$ for which $b_{\ell}(n) \equiv 0(\bmod M)$. In other words the set of those positive integers n for which $b_{\ell}(n) \equiv 0\left(\bmod p_{i}^{j}\right)$ has arithmetic density one. In fact there exists a positive constant α depending on p_{i}, j and ℓ such that there are at most $\mathrm{O}\left(\frac{N}{\log ^{a} N}\right)$ many integers $n \leq N$ for which $b_{\ell}(n)$ is not divisible by p_{i}^{j}.
2. Let $\ell=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{m}^{\alpha_{m}}$ be the prime factorization of a positive integer ℓ and let $b_{\ell}(n)$ denote the number of ℓ-regular partitions of n. If $p_{i}^{\alpha_{i}} \geq \sqrt{\ell}$, then there are infinitely many integers n for which

$$
b_{\ell}(n) \not \equiv 0\left(\bmod p_{i}\right)
$$

[^0]These results have strongly influenced many authors to study the arithmetic properties of $b_{\ell}(n)$, its divisibility and the distribution. In fact Andrews, Hirschhorn and Sellers [AnHiSe10] derived some infinite families of congruences for $b_{4}(n)$ modulo 2. Hirschhorn and Sellers [HiSe10] obtained many Ramanujan-type congruences for $b_{5}(n)$ modulo 2 . Webb [We11] established an infinite family of congruences for $b_{13}(n)$ modulo 3. Xia and Yao [XiYa14a] established several infinite families of congruences for $b_{9}(n)$ modulo 2. Cui and Gu [CuGu13] derived congruences for $b_{\ell}(n)$ modulo 2 for certain values of ℓ by employing the p-dissection formulas of Ramanujan's theta functions. In [Xi14], Xia found congruences for $b_{4}(n)$ modulo 8 . Keith [Ke14] obtained the following conjecture which was proved by Xia and Yao in [XiYa14b]:

Theorem 1.1. For $k=0,2,3,4, \alpha \geq 1$ and $n \geq 0$,

$$
b_{9}\left(5^{2 \alpha} n+\frac{(3 k+2) 5^{2 \alpha-1}-1}{3}\right) \equiv 0(\bmod 3) .
$$

Dandurand and Penniston [DaPe09] gave the exact criteria for the divisibility of $b_{\ell}(n)$ for $\ell \in\{5,7,11\}$. Xia [Xi15] showed that $b_{\ell}(A(k) n+B(k)) \equiv C(k) b_{\ell}(n)(\bmod \ell)$, where $A(k), B(k)$ and $C(k)$ are functions in k and $\ell \in\{13,17,19\}$ and derived several strange congruences for $b_{\ell}(n)$ modulo ℓ. Wang [Wa17a][Wa17b] established several infinite families of congruences modulo powers of 5 for $b_{5}(n)$. Recently, in [AdRa18], Adiga and Ranganatha proved Ramanujan-type congruences modulo powers of 7 for $b_{7}(n)$ and $b_{49}(n)$.

An ℓ-regular bipartition of n is an ordered pair of ℓ-regular partitions $\left(\lambda_{1}, \lambda_{2}\right)$ such that the sum of all the parts equals n. Denote the number of ℓ-regular bipartitions of n by $B_{\ell}(n)$. Then, the generating function of $B_{\ell}(n)$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{\ell}(n) q^{n}=\frac{f_{\ell}^{2}}{f_{1}^{2}} . \tag{1.1}
\end{equation*}
$$

Using Ramanujan's two modular equations of degree 7, Lin [Li15] established an infinite family of congruences for $B_{7}(n)$ modulo 3 and in [Li16], he established infinite families of congruences for $B_{13}(n)$ modulo 3. In [KaFa17], Kathiravan and Fathima proved several infinite families of congruences satisfied by $B_{\ell}(n)$ for $\ell \in\{5,7,13\}$. They showed that for all $\alpha>0$,

$$
\begin{aligned}
B_{5}\left(4^{\alpha} n+\frac{5 \times 4^{\alpha}-2}{6}\right) & \equiv 0(\bmod 5), \\
B_{7}\left(5^{8 \alpha} n+\frac{5^{8 \alpha}-1}{2}\right) & \equiv 3^{\alpha} B_{7}(n)(\bmod 7) \text { and } \\
B_{13}\left(5^{12 \alpha} n+5^{12 \alpha}-1\right) & \equiv B_{13}(n)(\bmod 13) .
\end{aligned}
$$

A (k, ℓ)-regular bipartition of n is a bipartition (λ, μ) of n such that λ is a k-regular partition and μ is an ℓ-regular partition. Let $B_{k, \ell}(n)$ denote the number of (k, ℓ)-regular bipartitions of n. Then the generating function of $B_{k, \ell}(n)$ is given by

$$
\sum_{n=0}^{\infty} B_{k, \ell}(n) q^{n}=\frac{f_{k} f_{\ell}}{f_{1}^{2}}
$$

Dou [Do16] proved an infinite family of congruences modulo 11: for $\alpha \geq 2$ and $n \geq 0$

$$
B_{3,11}\left(3^{\alpha} n+\frac{5 \cdot 3^{\alpha-1}-1}{2}\right) \equiv 0(\bmod 11)
$$

She stated two conjectures:
Conjecture 1: For any $n \geq 0, B_{5,7}(7 n+6) \equiv 0(\bmod 7)$.
Conjecture 2: For any $n \geq 0$,

$$
\begin{aligned}
B_{3,7}(A n+B) & \equiv 0(\bmod 2) \\
B_{3,7}(C n+D) & \equiv 0(\bmod 3) \\
B_{3,7}(E n+F) & \equiv 0(\bmod 9)
\end{aligned}
$$

where $(A, B) \in\{(14,4),(14,10),(16,1),(28,6),(32,21)\},(C, D)=(4,3)$, and $(E, F) \in\{(7,3),(7,4)$, $(14,13),(21,6),(21,20),(25,3),(25,13),(25,18),(25,23)\}$. In [Wa16], Wang studied the arithmetic properties of $B_{3, \ell}(n)$ and $B_{5, \ell}(n)$ and confirmed the conjectures proposed by Dou. Xia and Yao [XiYa18] also confirmed the conjectures of Dou and proved several infinite families of congruences for $B_{s, t}(n)$ modulo 3,5 and 7. Adiga and Ranganatha [AdRa17] provided a simple proof for Ramanujan type congruence for the $(3,7)$-regular bipartitions modulo 3 which was conjectured by Dou and also found some new infinite families of congruences for (3, 7)-regular bipartitions modulo 3 .

In this sequel, we establish an infinite family of congruences modulo m for ℓ-regular bipartitions, where $\ell \in\{2,4,7\}$. Also, we establish a relation between $b_{9}(2 n)$ and $B_{3}(n)$.

2. Preliminary Lemmas

Ramanujan's [Ber91][Ra57] general theta function $f(a, b)$ is given by

$$
\begin{aligned}
f(a, b) & :=1+\sum_{n=1}^{\infty}(a b)^{n(n-1) / 2}\left(a^{n}+b^{n}\right) \\
& =\sum_{-\infty}^{\infty}(a b)^{n(n+1) / 2}(b)^{n(n-1) / 2}, \quad|a b|<1
\end{aligned}
$$

The special cases of $f(a, b)$ are given by

$$
\begin{gather*}
\varphi(q):=f(q, q)=1+2 \sum_{k=1}^{\infty} q^{k^{2}}=\frac{\left(-q ; q^{2}\right)_{\infty}\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}\left(-q^{2} ; q^{2}\right)_{\infty}} \tag{2.2}\\
\psi(q):=f\left(q, q^{3}\right)=\sum_{k=0}^{\infty} q^{k(k+1) / 2}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}} \tag{2.3}\\
f(-q):=f\left(-q,-q^{2}\right)=\sum_{k=-\infty}^{\infty}(-1)^{k} q^{k(3 k-1) / 2}=(q ; q)_{\infty} \tag{2.4}\\
\chi(q):=\left(-q ; q^{2}\right)_{\infty} \tag{2.5}
\end{gather*}
$$

Cui and $\mathrm{Gu}[\mathrm{CuGu} 13]$ found the following p-dissections of $\psi(q)$ and $f(-q)$.
Lemma 2.1. (Cui and Gu[CuGu13, Theorem(2.1)])For any odd prime p,

$$
\begin{equation*}
\psi(q)=\sum_{k=0}^{\frac{p-3}{2}} q^{\frac{k^{2}+k}{2}} f\left(q^{\frac{p^{2}+(2 k+1) p}{2}}, q^{\frac{p^{2}-(2 k+1) p}{2}}\right)+q^{\frac{p^{2}-1}{8}} \psi\left(q^{p^{2}}\right), \tag{2.6}
\end{equation*}
$$

where $\frac{k^{2}+k}{2}$ and $\frac{p^{2}-1}{8}$ are not in the same residue class modulo p for $0 \leq k \leq(p-3) / 2$.

Lemma 2.2. (Cui and Gu[CuGu13, Theorem(2.2)])For any prime $p \geq 5$,

$$
\begin{equation*}
f(-q)=\sum_{\substack{k=-\frac{p-1}{2} \\ k \neq \pm \frac{p-1}{6}}}^{\frac{p-1}{2}}(-1)^{k} q^{\frac{3 k^{2}+k}{2}} f\left(-q^{\frac{3 p^{2}-(6 k+1) p}{2}},-q^{\frac{3 p^{2}+(6 k+1) p}{2}}\right)+(-1)^{ \pm \frac{p-1}{6}} q^{\frac{p^{2}-1}{24}} f\left(-q^{p^{2}}\right), \tag{2.7}
\end{equation*}
$$

where \pm depends on the conditions that $(\pm p-1) / 6$ should be an integer. Moreover, note that $\left(3 k^{2}+k\right) / 2 \not \equiv\left(p^{2}-1\right) / 24(\bmod p)$ as k runs through the range of the summation.

3. Main Results

Theorem 3.1. We have

$$
\begin{equation*}
b_{9}(2 n) \equiv B_{3}(n)(\bmod 3) \tag{3.8}
\end{equation*}
$$

Proof. By the binomial theorem, it is easy to see that for any prime ℓ,

$$
\begin{equation*}
f_{\ell} \equiv f_{1}^{\ell}(\bmod \ell) \tag{3.9}
\end{equation*}
$$

Putting $l=3$ in (3.9) and then changing q to q^{3} in the resulting identity, we obtain

$$
\begin{equation*}
f_{9} \equiv f_{3}^{3}(\bmod 3) \tag{3.10}
\end{equation*}
$$

Changing q to q^{2} in (3.10) we obtain

$$
\begin{equation*}
f_{18} \equiv f_{6}^{3}(\bmod 3) \tag{3.11}
\end{equation*}
$$

Xia and Yao[XiYa12] proved that

$$
\sum_{n=0}^{\infty} b_{9}(n) q^{n}=\frac{f_{12}^{3} f_{18}}{f_{2}^{2} f_{6} f_{36}}+q \frac{f_{4}^{2} f_{6} f_{36}}{f_{2}^{3} f_{12}}
$$

Extracting those terms in which the power of q is congruent to 0 modulo 2 in the above equation and then changing q^{2} to q, we obtain

$$
\begin{gathered}
\sum_{n=0}^{\infty} b_{9}(2 n) q^{n}=\frac{f_{6}^{3} f_{9}}{f_{1}^{2} f_{3} f_{18}} \equiv \frac{f_{3}^{2}}{f_{1}^{2}}(\bmod 3) \\
\equiv \sum_{n=0}^{\infty} B_{3}(n) q^{n} \quad(\bmod 3)
\end{gathered}
$$

on using (3.10) and (3.11). This gives (3.8) on comparing coefficients of q^{n}.

Theorem 3.2. For any prime $p \geq 5$ and non negative integers α and n, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{2}\left(p^{2 \alpha} n+\frac{p^{2 \alpha}-1}{12}\right) q^{n} \equiv f^{2}(-q) \quad(\bmod 2) \tag{3.12}
\end{equation*}
$$

Proof. We prove the Theorem by induction on α.
When $\alpha=0$, we have by definition,

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{2}(n) q^{n}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{2}}{(q ; q)_{\infty}^{2}}=(-q ; q)_{\infty}^{2} \equiv f^{2}(-q) \quad(\bmod 2) \tag{3.13}
\end{equation*}
$$

Suppose that the result is true for $\alpha>0$. Then we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{2}\left(p^{2 \alpha} n+\frac{p^{2 \alpha}-1}{12}\right) q^{n} \equiv f^{2}(-q) \quad(\bmod 2) . \tag{3.14}
\end{equation*}
$$

Now we prove the case for $\alpha+1$. Squaring both the sides of (2.7), substituting the resulting identity to the right of (3.14), extracting those terms in which the power of q is congruent to $\frac{p^{2}-1}{12}$ modulo p in the resulting identity and then changing q^{p} to q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{2}\left(p^{2 \alpha}\left(p n+\frac{p^{2}-1}{12}\right)+\frac{p^{2 \alpha}-1}{12}\right) q^{n} \equiv f^{2}\left(-q^{p}\right) \quad(\bmod 2) \tag{3.15}
\end{equation*}
$$

Changing n to $p n$ and then changing q^{p} to q in the above identity, we obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty} B_{2}\left(p^{2 \alpha}\left(p^{2} n+\frac{p^{2}-1}{12}\right)+\frac{p^{2 \alpha}-1}{12}\right) & q^{n} \\
& =\sum_{n=0}^{\infty} B_{2}\left(p^{2 \alpha+2} n+\frac{p^{2 \alpha+2}-1}{12}\right) q^{n} \equiv f^{2}(-q) \quad(\bmod 2)
\end{aligned}
$$

Therefore, the result is true for $\alpha+1$ and hence for all $\alpha \geq 0$.

Corollary 3.3. For any prime $p \geq 5$, non negative integers α and n and for $i=1,2, \cdots, p-1$, we have

$$
\begin{equation*}
B_{2}\left(p^{2 \alpha+2} n+\frac{(12 i+p) p^{2 \alpha+1}-1}{12}\right) \equiv 0 \quad(\bmod 2) \tag{3.16}
\end{equation*}
$$

Proof. From (3.15), we have

$$
\sum_{n=0}^{\infty} B_{2}\left(p^{2 \alpha+1} n+\frac{p^{2 \alpha+2}-1}{12}\right) q^{n} \equiv f^{2}\left(-q^{p}\right) \quad(\bmod 2)
$$

Since there are no terms on the right of the above equation in which the powers of q are congruent to $1,2, \cdots, p-1$ modulo $p,(3.16)$ follows.

Theorem 3.4. For any odd prime p and for non negative integers α and n, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{4}\left(p^{2 \alpha} n+\frac{p^{2 \alpha}-1}{4}\right) q^{n} \equiv \psi^{2}(q) \quad(\bmod 2) \tag{3.17}
\end{equation*}
$$

Proof. When $\alpha=0$, we have by definition,

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{4}(n) q^{n}=\frac{\left(q^{4} ; q^{4}\right)_{\infty}^{2}}{(q ; q)_{\infty}^{2}} \equiv\left[(q ; q)_{\infty}^{3}\right]^{2} \quad(\bmod 2) \tag{3.18}
\end{equation*}
$$

From [Ja1881] we recall Jacobi's identity

$$
\begin{equation*}
(q ; q)_{\infty}^{3}=\sum_{n=0}^{\infty}(-1)^{n}(2 n+1) q^{n(n+1) / 2} \tag{3.19}
\end{equation*}
$$

Hence we have

$$
(q ; q)_{\infty}^{3} \equiv \sum_{n=0}^{\infty} q^{n(n+1) / 2} \equiv \psi(q) \quad(\bmod 2)
$$

Therefore from (3.18) we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{4}(n) q^{n}=\psi^{2}(q) \quad(\bmod 2) \tag{3.20}
\end{equation*}
$$

which is the case $\alpha=0$ of (3.17). Suppose the result holds for $\alpha>0$. Then we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{4}\left(p^{2 \alpha} n+\frac{p^{2 \alpha}-1}{4}\right) q^{n} \equiv \psi^{2}(q)(\bmod 2) \tag{3.21}
\end{equation*}
$$

Now we prove the case for $\alpha+1$. Squaring both the sides of (2.6), substituting the resulting identity to the right of (3.21), extracting those terms in which the power of q is congruent to $\frac{p^{2}-1}{4}$ modulo p in the resulting identity and then changing q^{p} to q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{4}\left(p^{2 \alpha}\left(p n+\frac{p^{2}-1}{4}\right)+\frac{p^{2 \alpha}-1}{4}\right) q^{n} \equiv \psi^{2}\left(q^{p}\right) \quad(\bmod 2) \tag{3.22}
\end{equation*}
$$

On changing n to $p n$ and then changing q^{p} to q, we obtain

$$
\sum_{n=0}^{\infty} B_{4}\left(p^{2 \alpha}\left(p^{2} n+\frac{p^{2}-1}{4}\right)+\frac{p^{2 \alpha}-1}{4}\right) q^{n} \equiv \psi^{2}(q) \quad(\bmod 2)
$$

which is same as

$$
\sum_{n=0}^{\infty} B_{4}\left(p^{2(\alpha+1)} n+\frac{p^{2(\alpha+1)}-1}{4}\right) q^{n} \equiv \psi^{2}(q) \quad(\bmod 2)
$$

Therefore, the result is true for $\alpha+1$ and hence for all $\alpha \geq 0$.

Corollary 3.5. For any odd prime p, non negative integers α and n, and for $i=1,2, \cdots, p-1$, we have

$$
\begin{equation*}
B_{4}\left(p^{(2 \alpha+1)} n+\frac{(4 i+p) p^{(2 \alpha+1)}-1}{4}\right) \equiv 0 \quad(\bmod 2) \tag{3.23}
\end{equation*}
$$

Proof. From (3.22) we have

$$
\sum_{n=0}^{\infty} B_{4}\left(p^{(2 \alpha+1)} n+\frac{p^{2 \alpha+2}-1}{4}\right) q^{n} \equiv \psi^{2}\left(q^{p}\right) \quad(\bmod 2)
$$

Since there are no terms on the right of the above equation in which the powers of q are congruent to $1,2, \cdots, p-1$ modulo p, (3.23) follows.

Theorem 3.6. For $\alpha \geq 1$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{7}\left(3^{(2 \alpha-1)} n+\frac{3^{2 \alpha}-1}{2}\right) q^{n} \equiv 3^{4 \alpha} f_{3}^{12} \quad(\bmod 7) \tag{3.24}
\end{equation*}
$$

Proof. We have by (3.19)

$$
\begin{aligned}
(q ; q)_{\infty}^{3} & =\sum_{k=0}^{2} \sum_{n=0}^{\infty}(-1)^{3 n+k}(2(3 n+k)+1) q^{\frac{(3 n+k)((3 n+k)+1)}{2}} \\
& =\sum_{k=0}^{2}(-1)^{k} q^{k(k+1) / 2} \sum_{n=0}^{\infty}(-1)^{n}(6 n+2 k+1) q^{3 n \cdot \frac{3 n+2 k+1}{2}} \\
& =\sum_{\substack{k=0 \\
k \neq 1}}^{2}(-1)^{k} q^{k(k+1) / 2} \sum_{n=0}^{\infty}(-1)^{n}(6 n+2 k+1) q^{3 n \cdot \frac{3 n+2 k+1}{2}}-3 q\left(q^{9} ; q^{9}\right)^{3}
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
(q ; q)_{\infty}^{6}=\left[\sum_{\substack{k=0 \\ k \neq 1}}^{2}(-1)^{k} q^{k(k+1) / 2} \sum_{n=0}^{\infty}(-1)^{n}(6 n+2 k+1) q^{3 n \cdot \frac{3 n+2 k+1}{2}}-3 q\left(q^{9} ; q^{9}\right)^{3}\right]^{2} \tag{3.25}
\end{equation*}
$$

Now we have by definition,

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{7}(n) q^{n}=\frac{\left(q^{7} ; q^{7}\right)_{\infty}^{2}}{(q ; q)_{\infty}^{2}} \equiv(q ; q)_{\infty}^{12} \quad(\bmod 7) \tag{3.26}
\end{equation*}
$$

From (3.25), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{7}\left(3 n+\frac{3^{2}-1}{2}\right) q^{n} \equiv 3^{4}\left(q^{3} ; q^{3}\right)_{\infty}^{12} \quad(\bmod 7), \tag{3.27}
\end{equation*}
$$

which is the case $\alpha=1$ of (3.24). Changing n to $3 n$ in (3.27) and then changing q^{3} to q in the resulting identity, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{7}\left(3^{2} n+\frac{3^{2}-1}{2}\right) q^{n} \equiv 3^{4}(q ; q)_{\infty}^{12} \quad(\bmod 7) . \tag{3.28}
\end{equation*}
$$

From (3.26) and (3.28), we deduce that

$$
\begin{equation*}
B_{7}\left(3^{2} n+\frac{3^{2}-1}{2}\right) q^{n} \equiv 3^{4} B_{7}(n) \quad(\bmod 7) . \tag{3.29}
\end{equation*}
$$

The theorem then follows from (3.27), (3.29) and induction on α.

Corollary 3.7. For $\alpha \geq 1$ and $i=1,2$, we have

$$
\begin{equation*}
B_{7}\left(3^{2 \alpha} n+\frac{(2 i+3) 3^{2 \alpha-1}-1}{2}\right) \equiv 0 \quad(\bmod 7) . \tag{3.30}
\end{equation*}
$$

Proof. The result follows directly from the fact that the right-hand side of (3.24) is a power series in q^{3}.

Acknowledgements: The authors are thankful to the refree for his/her valuable suggestions which has considerably improved the quality of the paper. The second author is thankful to UGC for awarding the Basic Science Research Fellowship, No.F.25-1/2014-15(BSR)/No.F.7-349/2012(BSR).

References

[AdRa17] C. Adiga, D. Ranganatha, A Simple Proof of a Conjecture of Dou on (3, 7)-Regular Bipartitions Modulo 3, Integers. 17 (2017), 1-14.
[AdRa18] C. Adiga, D. Ranganatha, Congruences for 7 and 49-regular partitions modulo powers of 7, Ramanujan J. 246 (2018), 821-833.
[AnHiSe10] G.E. Andrews, M.D. Hirschhorn, J.A. Sellers, Arithmetic properties of partitions with even parts distinct, Ramanujan J. 23 (2010), 169-181.
[Ber91] B.C. Berndt, Ramanujan's notebooks, Part III, Springer- Verlag, New York, 1991.
[CuGu13] S.-P. Cui, N.S.S. Gu, Arithmetic properties of l-regular partitions, Adv. Appl.Math 51 (2013), 507-523.
[DaPe09] B. Dandurand, D. Penniston, ℓ-Divisibility of ℓ-regular partition functions, Ramanujan J. 19 (2009), 63-70.
[Do16] D. Q. J. Dou, Congruences for (3,11)-regular bipartitions modulo 11, Ramanujan J. 40 (2016), 535-540.
[GoOn97] B. Gordon, K. Ono, Divisibility of certain partition functions by powers of primes, Ramanujan J. 1 (1997), 25-34.
[HiSe10] M.D. Hirschhorn, J.A. Sellers, Elementary proofs of parity results for 5-regular partitions, Bull. Aust. Math. Soc. 81 (2010), 58-63.
[Ja1881] C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Regiomonti. Sumptibus fratrum Bornträger; reprinted in Gesammelte Werke 1 (1881), 49-239, Reimer, Berlin; reprinted by Cheslea, New York, 1969.
[KaFa17] T. Kathiravan, S. N. Fathima, On ℓ-regular bipartitions modulo ℓ, Ramanujan J. 44 (2017), 549-558.
[Ke14] W.J. Keith, Congruences for 9-regular partitions modulo 3, Ramanujan J. 35 (2014), 157-164.
[Li15] B.L.S. Lin, Arithmetic of the 7-regular bipartition function modulo 3, Ramanujan J. 37 (2015), 469-478.
[Li16] B.L.S. Lin, An infinite family of congruences modulo 3 for 13 regular bipartitions, Ramanujan J. 39 (2016), 169-178.
[Ra57] S. Ramanujan, Notebooks, 2 Volumes, Tata Institute of Fundamental Research, Bombay, 1957.
[Wa16] L. Wang, Arithmetic properties of (k, ℓ)-regular bipartitions, Bull. Aust. Math. Soc. 95 (2016), 1-12.
[Wa17a] L. Wang, Congruences for 5-regular partitions modulo powers of 5, Ramanujan J. 44 (2017), 343-358.
[Wa17b] L. Wang, Congruences modulo powers of 5 for two restricted bipartitions, Ramanujan J. 44 (2017), 471-491.
[We11] J.J. Webb, Arithmetic of the 13-regular partition function modulo 3, Ramanujan J. 25 (2011), 49-56.
[Xi14] E.X.W. Xia, New infinite families of congruences modulo 8 for partitions with even parts distinct, Electron. J. Comb 21 (2014), 4-8.
[Xi15] E.X.W. Xia, Congruences for some ℓ-regular partitions modulo ℓ, J. Number Theory 152 (2015), 105-117.
[XiYa12] E.X.W. Xia, O.X.M. Yao, Some modular relations for the Gölnitz-Gordon functions by an even-odd method, J. Math. Anal. Appl. 387 (2012), 126-138
[XiYa14a] E.X.W. Xia, O.X.M. Yao, Parity results for 9-regular partitons Ramanujan J. 34 (2014), 109-117.
[XiYa14b] E.X.W. Xia, O.X.M. Yao, A proof of Keith's conjecture for 9-regular partitions modulo 3. Int. J. Number Theory 10 (2014), 669-674.
[XiYa18] E.X.W. Xia, O.X.M. Yao, Arithmetic properties for (s, t)-regular bipartition functions, Int. J. Number Theory $\mathbf{1 7 1}$ (2018), 1-17.

D. D. Somashekara

Department of Studies in Mathematics
University of Mysore
Manasagangotri, Mysuru - 570006
e-mail: dsomashekara@yahoo.com

K. N. Vidya

Department of Studies in Mathematics
University of Mysore
Manasagangotri, Mysuru - 570006
e-mail: vidyaknagabhushan@gmail.com

[^0]: We thank episciences.org for providing open access hosting of the electronic journal Hardy-Ramanujan Journal

