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Two applications of number theory

to discrete tomography
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Abstract. Tomography is the theory behind scans, e.g. MRI-scans. Most common is continuous tomography where an object

is reconstructed from numerous projections. In some cases this is not applicable, because the object changes too quickly or is

damaged by making hundreds of projections (by X-rays). In such cases discrete tomography may apply where only few projections
are made. The present paper shows how number theory helps to provide insight in the application and structure of discrete

tomography.
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1. Introduction

Tomography deals with the inverse problem of reconstructing an object from the knowledge of its
projections in a number of given directions. Mathematically the object is represented by a function
and a projection is the set of line integrals for all lines in a given direction. Tomography has a
wide range of applications, from medicine to industrial environments. Usually the number of used
projections is several hundreds and continous tomography applies and there is a unique solution which
can be found by Fourier analysis, the so-called filter-back method. See e.g. [Nat01].

Sometimes it is necessary to limit the number of used directions, e.g. since the object would be
damaged by using many X-rays or the object changes too rapidly. If the reconstruction is based on
only few projections, discrete tomography applies. The model for discrete tomography we consider is
an unknown real function on a finite lattice where the line sums in a small number of lattice directions
are given and the challenge is to reconstruct the original function.

A criterion for the uniqueness of the solution was given by M. Katz, [Kat77]. If his criterion is
satisfied, there is a fast method to find the solution, see e.g. [PaTi]. In general there will be many
solutions and the question arises which structure the set of solutions has. Here the Chinese Remainder
Theorem for polynomials provides insight. Since the solutions turn out to be well-spread, it may be
possible to decide which solution is the most likely to represent the original object by using additional
knowledge on the object, see e.g. [DaHaTi13]. For general information on discrete tomography we
refer to [HerKu99, HerKu07].

It turns out that discrete tomography can be used for coding theory, data storage, cryptography,
etc. by choosing the directions such that the solution is unique. See e.g. [GN95]. A theorem on the
sums of two squares of integers indicates how to choose the directions of the projections such that
already a small number of directions suffices to be able to reconstruct the original object.
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This paper is based on papers which contain much more material. The application of the Chinese
Remainder Theorem appeared for the first time in [HaTi01] and was elaborated in [HaTi07]. The
application of the sum of two squares theorem appeared in [PaTi]. The purpose of the present paper
is to highlight the applicability of classical number theory theorems to discrete tomography.

2. The mathematical model

We assume that the object is located in an m by n rectangle A = {a = (a, b) ∈ Z2 : 1 ≤ a ≤ m, 1 ≤
b ≤ n} of pixels and that the object is characterized by a function f : A → R where we assume
f(a) = 0 for those a ∈ A which are not in the domain of the object. A direction is a nonzero vector
d = (d, e) ∈ Z2 with gcd(d, e) = 1, d ≥ 0 and e = 1 if d = 0. We denote the line sum of the line
through a = (a, b) ∈ A in the direction d = (d, e) for any h ∈ Z by

`(d, h) =
∑

(a,b)∈A, ea−db=h

f(a, b). (2.1)

Let k > 1. Let D = {di = (di, ei) : i = 1, . . . , k)} be a set of directions. We assume throughout
the paper that the line sums `(di, h) are given for i = 1, . . . , k and all h ∈ Z. Note that the sum of
all the line sums in one direction equals the sum of all the line sums in any other direction so that
the line sums are not independent of each other.

If f, g : A→ R have the same line sums in the directions of D, then the line sums of f − g in the
directions of D are obviously 0. On the other hand, the line sums of f do not change if you add a
function g for which all the line sums in the directions of D vanish. Thus for finding all the functions
f which yield given line sums in the directions of D, it suffices to find one solution f and the set of
functions for which all the line sums in the directions of D vanish. Such functions are called switching
components.

3. Application of the Chinese Remainder Theorem

In this section we show that making a projection can be considered as computing the remainder of a
division of a polynomial by a polynomial.

For a commutative ring Z we write Z[x, y] for the set of polynomials
∑

i,j ci,jx
iyj with ci,j ∈ Z

for all i, j. The theorem we apply reads as follows.

Theorem 3.1. Let P1(x, y), . . . , Pr(x, y) ∈ Z[x, y] with Pj relatively prime to Pi for all j 6= i. For
given Q1(x, y), . . . , Qr(x, y) ∈ Z[x, y] there is a unique polynomial R0(x, y) ∈ Z[x, y] of degree less
than

∑r
i=1 deg(Pi) such that all solutions of

R(x, y) ≡ Qj(x, y) (mod Pj(x, y)) for 1 ≤ j ≤ r (3.2)

are given by

R(x, y) ≡ R0(x, y)

mod

r∏
j=1

Pj(x, y)

 .

Proof. See [Lan81] p. 63 or Exercise 3 on page 437 of [Knu81].
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In the above notation let A and D be given. For f : A → R let F (x, y) =
∑

(a,b)∈A f(a, b)xayb.
For direction (di, ei) write

Pi(x, y) =


xdiyei − 1 if di > 0, ei > 0,
xdi − y−ei if di > 0, ei < 0,

x− 1 if di = 1, ei = 0,
y − 1 if di = 0, ei = 1.

Put PD(x, y) =
∏k

i=1 Pi(x, y). The following application of Theorem 3.1 characterizes the functions
f : A → R which have given line sums in the directions of D. It is a simplified reformulation of
Theorem 1 of Hajdu and Tijdeman [HaTi01].

Theorem 3.2. Let A = {(a, b) ∈ Z2 : 1 ≤ a ≤ m, 1 ≤ b ≤ n} and D a set of directions. If
the function g : A → R has the same line sums in the directions of D as f : A → R, then the
corresponding polynomials G and F satisfy the congruence

G(x, y) ≡ F (x, y) (mod PD(x, y)).

Note that the polynomial PD has degree M :=
∑k

i=1 di in x and N :=
∑k

i=1 |ei| in y. Therefore
f is uniquely determined by its line sums if m ≤M or n ≤ N , as was proved by M. Katz [Kat77] in
1977. If this is the case, it is said that the Katz condition holds or that (A,D) is invalid. If, on the
contrary, (A,D) is valid, then the polynomials corresponding to the functions f : A → R with only
zero line sums in the directions of D are exactly the polynomial multiples of PD.

Sketch of the proof of Theorem 3.2. The polynomial F (1, y) =:
∑n

j=1 rjy
j has coefficients rj =∑m

i=1 f(i, j) for j = 1, . . . , n. Therefore, if (1, 0) ∈ D, then F (x, y) − G(x, y) is divisible by x − 1.
Similarly, if (0, 1) ∈ D, then F (x, y)−G(x, y) is divisible by y − 1. If de 6= 0 and∑

(a,b)∈A, ea−db=h

f(a, b) =
∑

(a,b)∈A, ea−db=h

g(a, b)

for all h ∈ Z, then

F (xe, x−d) =
∑

(a,b)∈A

f(a, b)xea−db =
∑
h∈Z

 ∑
(a,b)∈A, ea−db=h

f(a, b)

xh

=
∑
h∈Z

 ∑
(a,b)∈A, ea−db=h

g(a, b)

xh = G(xe, x−d).

It follows that F (x, y)−G(x, y) is divisible by xdye− 1 if d > 0, e > 0 and by xd− y−e if d > 0, e < 0.
Hence, by Theorem 3.1 with R0(x) ≡ F (x, y) and pairwise coprimality of P1, . . . , Pk, we obtain that
G(x, y)− F (x, y) is divisible by PD(x, y).

Remark 3.1. Theorem 3.2 has various generalizations. The original formulation was for polynomials
in Z[x, y] where Z[x, y] is a unique factorization domain. Stolk and Batenburg [StoBat10] extended
the theory to finite, convex sets A in place of rectangles A and to commutative rings Z in place
of unique factorization domains Z. See also [HaTi13]. Generalizations to higher dimensions can be
found in [Sto11, HaTi07].
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4. Good choices for the directions

In this section we show that the width of the beam used to compute a line sum in practice induces a
bound for the directions which can be considered.

Let again A = {(a, b) ∈ Z2 : 0 < a ≤ m, 0 < b ≤ n} for given (m,n). The larger the entries of
a direction are, the more information the line sums provide. However, there is a natural boundary
for the selectable directions. The beam measuring the line sum has a certain width and directions
should be chosen in such a way that a beam meets only the pixels on the line and no others. This
induces an upper bound for the length of a usable direction (d, e). If the width of the beam is w times
the distance between neighbouring pixels, then

√
d2 + e2 should be less than 1/w so that no pixels

outside the considered line are in the beam. See Figure 1.
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Figure 1: Maximal beams of lines in the direction (2,3). The distance between consecutive lines is 1/
√

22 + 32 =
1/
√

13.

For an optimal choice of the primitive directions, we have to determine the primitive directions
(d, e) with d2 + e2 < C for some C ≤ 1/w. In order to determine these directions we use the following
numbertheoretical result.

Theorem 4.1. If d and e are positive integers with gcd(d, e) = 1 and
d2 + e2 = N = 2mpm1

1 · · · pmr
r where p1, . . . , pr are odd distinct primes, then m ≤ 1 and p1, . . . , pr are

all ≡ 1 (mod 4). On the other hand, if N is of this form, then the number of ways N can be written
as d2 + e2 with (d, e) = 1, d > 0, e > 0 equals 2r.

Proof. See Theorem 7.5 of [Lev56].

Observe that among 24 consecutive positive integers at most 6 can be written as sum of two coprime
squares, viz. the numbers ≡ 1,2,5,10,13,17 (mod 24). All others are divisible by 4 or by a prime ≡ 3
(mod 4).

Let (d1, e1), . . . , (dk, ek) be the primitive directions with largest lengths < C and dj > ej for

j = 1, . . . , k and d1 ≥ d2 ≥ · · · ≥ dk, e1 ≤ e2 ≤ · · · ≤ ek such that
∑k

j=1(dj + ej) > C/2. We call
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such a set of directions doubly monotonic. We suggest to take as directions

D = {(d1,−e1), (d2,−e2), . . . , (dk,−ek), (ek,−dk), . . . , (e1,−d1),

(d1, e1), (d2, e2), . . . , (dk, ek), (ek, dk), . . . , (e1, d1)}.
Subsequently some directions may be removed provided that after removal D is still invalid for A.

Example 4.1. Suppose A is a 70 × 60 square and C = 50. Then following Theorem 4.1 and the
remark thereafter we find k = 2, 50 = 72 + 12, 41 = 52 + 42, 37 = 62 + 12, 34 = 52 + 32. Therefore we
choose, omitting (7,±1) and (6,±1),

D = {(5,−3), (5,−4), (4,−5), (3,−5), (1,−6), (1,−7),

(5, 3), (5, 4), (4, 5), (3, 5), (1, 6), (1, 7)}.
We have

∑12
h=1 eh = 60 = n, hence we have an invalid case.

Example 4.2. Suppose A is a 90×90 square and C = 90. Then Theorem 4.1 yields 89 = 82+52, 85 =
92 + 22 = 72 + 62, 82 = 92 + 12. Here we choose, omitting (9,±1) and (9, 2),

D = {(9,−2), (8,−5), (7,−6), (6,−7), (5,−8), (2,−9), (1,−9),

(8, 5), (7, 6), (6, 7), (5, 8), (2, 9), (1, 9), }.
We have

∑13
h=1 eh = 90 = n, hence we have an invalid case.

Remark 4.1. We claim that if the directions (di, ei) all satisfy

C ≥ d2
i + e2

i ≥ C − 2
√
C + 1,

then the directions (dj , ej) can be ordered such that they are doubly monotonic. Otherwise, there
would be (di, ei), (dj , ej) such that di > dj and ei > ej . This would imply

d2
j + e2

j ≤ (di − 1)2 + (ei − 1)2 = (
√

d2
i + e2

i − 1)2 + 2
√

d2
i + e2

i − 2di − 2ei + 1

≤ (
√

d2
i + e2

i − 1)2 < (
√
C − 1)2 = C − 2

√
C + 1.

Observe that in Example 4.2 the sums of squares are all between 90 and 90 − 2
√

90 + 1 < 73 and
therefore result in doubly monotonic directions. In Example 4.1 one sum of squares is smaller than
50− 2

√
50 + 1 > 36, but nevertheless the resulting directions are doubly monotonic.

5. Reconstruction

Many papers have been written on the actual reconstruction of the scanned object. If there is no
nontrivial function with zero line sums in the directions of D, unique reconstruction is possible.
Otherwise there is the possibility to reconstruct the function on certain parts of A and to find a good
approximation on the remaining part of A or, depending on additional data, even to reconstruct the
original function f completely. In general reconstruction is time-consuming and methods from linear
algebra have been developed to do it relatively quickly. See e.g. [BatSi11].

Under certain conditions, in particular if D is invalid for A, the reconstruction can be done in
time linear in the number mn of pixels. In the valid case this can be achieved for the complement of
the convex hull of the union of the switching components. See [PaTi].

In some cases the function f can be written down explicitly as an expression in terms of the line
sums, for example in the so-called Mojette case where A is a p by p square for p prime and the
directions are (1, 0), (1, 1), . . . , (1, p− 1) and (0, 1). See e.g. [GBB95].
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