10.46298/hrj.2019.5112
https://hrj.episciences.org/5112
Aggarwal
,
Keshav
Keshav
Aggarwal
Jo
,
Yeongseong
Yeongseong
Jo
Nowland
,
Kevin
Kevin
Nowland
Hybrid level aspect subconvexity for GL(2) × GL(1) Rankin-Selberg L-Functions
Let $M$ be a squarefree positive integer and $P$ a prime number coprime to $M$ such that $P \sim M^{\eta}$ with $0 < \eta < 2/5$. We simplify the proof of subconvexity bounds for $L(\frac{1]{2}, f \otimes \chi)$ when $f$ is a primitive holomorphic cusp form of level $P$ and $\chi$ is a primitive Dirichlet character modulo $M$. These bounds are attained through an unamplified second moment method using a modified version of the delta method due to R. Munshi. The technique is similar to that used by Duke-Friedlander-Iwaniec save for the modification of the delta method.
episciences.org
Special values of L-functions
Rankin-Selberg convolution
subconvexity
δ-method 2010 Mathematics Subject Classification 11F11
11F67
11L05
[
MATH
]
Mathematics [math]
[
MATH.MATH-NT
]
Mathematics [math]/Number Theory [math.NT]
2019-01-23
2019-01-23
2019-01-23
en
journal article
https://hal.archives-ouvertes.fr/hal-01986708v1
2804-7370
https://hrj.episciences.org/5112/pdf
VoR
application/pdf
Hardy-Ramanujan Journal
Researchers
Students