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Hybrid level aspect subconvexity for GL(2)×GL(1)

Rankin-Selberg L-Functions
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Abstract. Let M be a squarefree positive integer and P a prime number coprime to M such that P ∼ Mη with 0 < η < 2/5.
We simplify the proof of subconvexity bounds for L

(
1
2
, f ⊗ χ

)
when f is a primitive holomorphic cusp form of level P and χ is

a primitive Dirichlet character modulo M . These bounds are attained through an unamplified second moment method using a

modified version of the delta method due to R. Munshi. The technique is similar to that used by Duke-Friedlander-Iwaniec save
for the modification of the delta method.
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1. Introduction

Let f be a primitive holomorphic cusp form of level P and χ a primitive Dirichlet character modulo
M with (P,M) = 1, M a square-free positive integer, and P a prime number. The Rankin-Selberg
convolution L(s, f ⊗ χ) is given by

L(s, f ⊗ χ) =
∑
n≥1

λf (n)χ(n)

ns
,

at least for Re(s) sufficiently large. Let Q = Q(f ⊗ χ) = PM2 denote the size of the conductor of
L-function L(s, f ⊗ χ). For Re(s) = 1/2 and any ε > 0, the functional equation, Stirling’s estimate
for the gamma function along with the Phragmen-Lindelöf convexity principle yields the following
bound

L(s, f ⊗ χ)�ε Q1/4+ε

which is known as the convexity bound in [IwKo04, (5.21)], whereas the generalized Riemann hy-
pothesis implies the Lindelöf hypothesis [IwKo04, corollary 5.20]:

L(s, f ⊗ χ)�ε Qε.

One classical problem, subconvexity problem, is to establish the bound of the form

L(s, f ⊗ χ)� Q1/4−δ

for some δ > 0 when Re(s) = 1/2. Although the convexity bound is far from the expected Lindelöf
hypothesis, any power saving for this conductor has applications in proving certain equidistribution
problems. We refer to [Mi04, Sa92, Sa01] for the discussion of the link between the quantum unique
ergodicity problem and subconvexity bounds for certain higher degree L-functions.
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In studying the subconvexity problem for character twists of holomorphic modular forms of full
level, Duke-Friedlander-Iwaniec [DFIw93] introduced a simple yet powerful decomposition of the delta
symbol which detects when an integer is zero. The starting point for their method was an amplified
second moment average over primitive Dirichlet characters of a given level. The subconvexity problem
for twisted L-functions L(s, f ⊗χ) in the conductor-aspect was also solved in their paper for the first
time for f a holomorphic cusp form of level one, with subconvexity exponent 1/2 − 1/22 (following
the computation of section 4.3 in [Mi07] for example).

Recent works achieving hybrid subconvexity bounds for Rankin-Selberg convolution L-functions of
large level include Kowalski-Michel-Vanderkam [KoMiV02], Michel [Mi04] and Harcos-Michel [HaMi06].
Michel-Venkatesh [MiVe10] solve the subconvexity problem for the L-functions of GL(1) and GL(2)
automorphic representations over a fixed number field, uniformly in all aspects. Holowinsky-Munshi
[HoMu13] prove a hybrid level aspect bound for the L-function coming from the convolution of two
holomorphic modular forms of nontrivial levels, one being squarefree and the other being prime. Ye
[Zh14] relaxed the level conditions in [HoMu13] to both levels square-free. Moreover, the author
in [Zh14] used a large sieve inequality to achieve a subconvexity bound for the full range of levels
when both forms are holomorphic. The works of Holowinsky-Munshi and Ye relied on an application
of Heath-Brown’s refinement [He96] of the classical delta method due to Duke-Friedlander-Iwaniec
[DFIw93]. Browning-Munshi in [BrMu13] introduce a modification of the delta method with factor-
ization moduli to obtain a structural advantage.

In this paper we follow the work of Duke-Friedlander-Iwaniec [DFIw93] who studied the Rankin-
Selberg convolution of a primitive Dirichlet character with a holomorphic modular form for the full
modular group. Their paper, as ours, uses a second moment average over primitive Dirichlet characters
of a given level. In this paper, we allow for holomorphic forms with a range of permissible but
nontrivial levels relative to the conductor of the Dirichlet character. It is here that we make use of
the modified delta method with a conductor lowering trick, based on the work of Munshi in [Mu15].

The subconvexity of L-functions for the twisting modular form has already been established
in [Co03, DFIw93, Ha03, Mi07]. The main point of this paper, however, is to demonstrate how
using a modified application of the delta method simplifies the arithmetic structure and lengthens
the admissible hybrid range of the level parameters M and P . To be precise, we present a simple
method which ends with a trivial application of the Weil bound for Kloosterman sums and establishes
subconvexity for the hybrid range P = Mη for 0 < η < 2/5. Using the classical delta method without
the conductor lowering trick and following the same process, one would obtain a hybrid range of
0 < η < 2/7. In the meanwhile, Blomer and Harcos in theorem 2 of [BlHa14] establish the following
hybrid estimate

L

(
1

2
, f ⊗ χ

)
�k,ε P

1
4

+εM
3
8

+ε + P
1
2

+εM
1
4

+ε.

For P = Mη, we obtain that

L

(
1

2
, f ⊗ χ

)
�k,ε Q

1
4

+ε
(
Q−

1
8(2+η)

− 1−η
4(2+η)

)
,

The hybrid range 0 < η < 1 of Blomer and Harcos is stronger than our range 0 < η < 2/5. However we
emphasize that our technique does not require amplification or the large sieve inequality and recently
this method is adopted in [HoZh17] to extend a hybrid subconvexity range bound for L(1/2, g ⊗ h)
where g is a primitive holomorphic cusp form of level M and h is a primitive either holomorphic or
Mass cusp form of level P with (M,P ) = 1, M a squarefree integer, and P a prime.

Of course, one has the ability to push the analysis further, in either method, by analyzing the
resulting sum of Kloosterman sums through the large sieve inequality similar to the work of Ye.
Again, however, there is an advantage in the modified delta method in that we obtain sums of
standard Kloosterman sums for the group Γ0(P ) associated to the cusp at ∞. Without the modified
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delta method, one would instead get Kloosterman sums associated to the cusps 0 and ∞ and then
more work is required (using the work of Deshoullier-Iwaniec [DesIw82] for example).

We provide a sketch of these arguments below and note that our methods may also be applied to
analogous Rankin-Selberg convolutions.

1.A. Holomorphic cusp forms

In this section, we review the theory of holomorphic modular forms. The definitive reference for the
theory is in [IwKo04, chapter 14]. Let P > 0 be a prime number and k > 0 an even integer. Let
Sk(P ) be the linear space of holomorphic cusp forms of weight k, level P , and trivial nebentypus. We
let Γ0(P ) be the Hecke congruence subgroups defined by

Γ0(P ) =

{(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣ c ≡ 0 mod P

}
If f ∈ Sk(P ), then f : H→ C is holomorphic and satisfies

f(gz) = (cz + d)kf(z)

for every g =

(
a b
c d

)
∈ Γ0(P ) acting as a linear fractional transformation on z in the upper half-plane

H. Additionally, f vanishes at every cusp. Such an f has Fourier expansion

f(z) =
∞∑
n=1

ψf (n)n
k−1
2 e(nz),

where e(x) := exp(2πix), and the Fourier coefficients ψf (n) satisfy

ψf (n)� nε

for ε > 0 arbitrary with the implied constant depending on ε. This was proved by Deligne [Del74].
Sk(P ) is a finite dimensional Hilbert space with respect to the Petersson inner product. Sk(P )

has an orthogonal basis Bk(P ) which consists of eigenfunctions of all Hecke operators Tn such that
(n, P ) = 1, where Tn acts on f by the formula

Tnf(z) =
1√
n

∑
ad=n

(a,P )=1

(a
d

)k/2 ∑
b mod d

f

(
az + b

d

)
=: λf (n)f(z).

Such an f is called a Hecke eigen cusp form. The Hecke operators are multiplicative and satisfy

ψf (m)λf (n) =
∑

d|(m,n)

ψf

(mn
d2

)
for n coprime with P . In particular, ψf (1)λf (n) = ψf (n) for (n, P ) = 1. We normalize such that
ψf (1) = 1 and we have λf (n) = ψf (n) for (n, P ) = 1. There exists a subset B∗k(P ) of Bk(P ) of
newforms or primitive holomorphic cusp forms which are eigenfunctions of all Hecke operators Tn for
n ≥ 1 with λf (n) = ψf (n). Let f ∈ B∗k(P ) be a newform and χ a primitive Dirichlet character modulo
M with (P,M) = 1. Let f ⊗ χ be a twisted modular form on H given by the Fourier expansion

(f ⊗ χ)(z) =

∞∑
n=1

χ(n)λf (n)n
k−1
2 e(nz).

Then f ⊗ χ is a newform of level PM2.
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1.B. Rankin-Selberg L−functions

Let f ∈ B∗k(P ) be a newform and χ a primitive Dirichlet character modulo M where M and P
are coprime, M is squarefree, and P is a prime. Then the Rankin-Selberg convolution L-function
associated to f ⊗ χ is

L(s, f ⊗ χ) =

∞∑
n=1

λf (n)χ(n)

ns
.

The associated completed L-function is

Λ(s, f ⊗ χ) = Qs/2L∞(s, f ⊗ χ)L(s, f ⊗ χ),

where Q = Q(f ⊗ χ) = PM2 and the local factor at infinity L∞ is a product of gamma functions.
The approximate functional equation shows that the special value L(1/2, f ⊗ χ) is given by

L

(
1

2
, f ⊗ χ

)
=

∞∑
n=1

λf (n)χ(n)√
n

V

(
n√
Q

)
+ ε(f ⊗ χ)

∞∑
m=1

λf (m)χ(m)√
m

V

(
m√
Q

)
(see chapter 5 of [IwKo04]) where V is a smooth function with rapid decay at infinity, and for any
positive integer A, the derivatives of V (y) satisfy

yjV (j)(y)�k Qε(1 + y)−A log(2 + y−1)

for any ε > 0. We also have the asymptotic

V (y) = 1 +O

((
y√
Q

)α)
for α > 0. Let h be a smooth function which is compactly supported on [1/2, 5/2] with bounded
derivatives and suppose that X runs over 2ν with ν = −1, 0, 1, 2, 3, · · · . Applying a smooth partition
of unity and the asymptotic for V , we are left with∣∣∣∣L(1

2
, f ⊗ χ

)∣∣∣∣�k,ε Qε
{

max
Q

1
2−δ≤X≤Q

1
2+ε

|Lf⊗χ(X)|+Q
1
4
− δ

2

}
,

where

Lf⊗χ(X) :=
∑
n

λf (n)χ(n)√
n

h
( n
X

)
. (1.1)

2. Statement of main results

We prove the hybrid range and subconvexity bounds for L(1/2, f ⊗ χ). We average over primitive
characters modulo M through a second moment method to achieve subconvexity bounds.

Theorem 2.1. (Second Moment) Let P and M be coprime positive integers with P prime and M
squarefree. Let k be a fixed positive even integer. Set Q = PM2. Let h be a smooth function with
support in [1/2, 5/2] and bounded derivatives. Let ε, δ > 0 and choose any X such that Q

1
2
−δ ≤ X ≤

Q
1
2

+ε. If f ∈ B∗k(P ) and χ is a primitive Dirichlet character modulo M , then

1

ϕ?(M)

∑?

χ mod M

|Lf⊗χ(X)|2 �k,ε Qε
(

1 +
Q

1
2

M
· P

5
8

+ δ
4

M
1
4
− δ

2

)
. (2.2)
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∑? means summation over primitive characters or over integers coprime with the specified modulus,
and ϕ? is the number of primitive multiplicative characters modulo M . We apply the theorem below
to F (x, y) = h(x)h(y), f1 = f2, and X = Y for any Q

1
2
−δ ≤ X ≤ Q

1
2

+ε to obtain the above second
moment bound. The first and second terms on the right hand side in (2.2) are the contributions from
a zero shift and theorem 2.2, respectively.

In analytic number theory, we are often concerned with the following shifted convolution sums:∑
`1m−`2n=h

λf (m)λg(n)H(`1m, `2n)

for f , g two primitive cusp forms, h 6= 0, `1, `2 two comprime integers. Here H(x, y) is a bounded,
smooth, compactly supported function in [X, 2X]× [Y, 2Y ] for some X,Y ≥ 1/2. The works involving
estimates of these sums with the divisor functions, known as the additive divisor problems, have a
long history (See [DFIw94, Mo94] and the reference given there). Shifted convolution sums with two
Fourier coefficients have been extensively investigated in [BlHa14, DFIw93, Ha03, HaMi06, Mi04] for
the case when λg(n) = λf (n) or λg(n) = λf (n) and [HoMu13, HoZh17] for the general case. Thus it
is natural to compare the strategies of the existing approaches and ponder about the tools necessary
to study the hybrid level aspect problem. Is an application of spectral methods and the large sieve
required or are there other more direct or softer methods available? Here we study the following
shifted convolution sum by using a delta method with a conductor lowering trick, Voronoi summation
formula and only the Weil bound for individual Kloosterman sums.

Theorem 2.2. (Shifted Convolution Sums) Let f1, f2 be newforms in B∗k(P ). Let M be a posi-
tive squarefree integer coprime with P . Let r 6= 0 be an integer coprime with P . Let X,Y ≥ 1 and F
a smooth function supported on [1/2, 5/2]× [1/2, 5/2] satisfying

xiyj∂ixi∂jyjF
( x
X
,
y

Y

)
� ZZixZ

j
y ,

for Z > 0 and Zx, Zy ≥ 1. Then

∑
n

∑
m=n+rM

λf1(n)λf2(m)√
nm

F
( n
X
,
m

Y

)
�k,ε (PMr)εZ(ZxZy)

1
2 max{Zx, Zy}2P

3
4

max{X,Y }
3
4

(XY )
1
2

. (2.3)

The second moment bound which is better by a power of Q than the convexity bound means that
we must have a bound which is better than

1

ϕ?(M)

∑?

χ mod M

|Lf⊗χ(X)|2 � Q
1
2

+ε

M
.

Therefore the bounds in (2.2) induce the hybrid subconvexity range P ∼Mη for 0 < η < 2/5.

Corollary 2.3. (Subconvexity) Let f and χ be as above with η = logP
logM . Then

L

(
1

2
, f ⊗ χ

)
�k,ε

Q
1
4

+ε

Q
2−5η

20(2+η)

.

This produces a subconvexity bound for 0 < η < 2/5.

Proof. From the reduction in section 1,∣∣∣∣L(1

2
, f ⊗ χ

)∣∣∣∣�k,ε Qε
{
Q

1
4
− δ

2 + max
Q

1
2−δ≤X≤Q

1
2+ε

|Lf⊗χ(X)|

}
. (2.4)
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To bound this, weaken the bound in the above theorem by just taking the second term in (2.2) as
the first provides saving for any P and M having size. This gives

|Lf⊗χ(X)| � Q
1
4

+ε P
5+2δ
16

M
2−4δ
16

.

Equate the first term and second terms on the right hand side of (2.4) while replacing P and M with

powers of Q by using P = Mη. We have P = Q
η

2+η and M = Q
1

2+η . Therefore the optimal choice of
δ satisfies

−δ
2

=
5 + 2δ

16
· η

2 + η
− 2− 4δ

16
· 1

2 + η
.

Then the saving δ is then explicitly calculated to be δ = 2−5η
10(2+η) .

3. Proof Sketch

We give a quick sketch of the proof which results in the 0 < η < 2/7 bound when we do not use the
conductor lowering trick followed by the sketch to get the improved range 0 < η < 2/5.

The standard approximate functional equation argument in section 1 reduces our L-function to
the analysis of the following sum ∑

n∼
√
PM

λf (n)χ(n)√
n

.

A second moment average over primitive characters leads us to needing to understand the sum∑
n∼
√
PM

λf (n)√
n

∑
m∼
√
PM

m≡n mod M

λf (m)√
m

.

Using the delta symbol, we rewrite the above as∑
06=|r|≤

√
P

∑
n∼
√
PM

λf (n)√
n

∑
m∼
√
PM

λf (m)√
m

δ(m− n+ rM, 0),

where the r = 0 term can be bounded trivially. Applying the usual delta method and using Voronoi
summation on both the n- and m-sums, one can obtain Kloosterman sums of the form∑

0 6=|r|≤
√
P

1

Q

∑
q≤Q

1

q

∑
n∼P

λf (n)√
n

∑
m∼P

λf (m)√
m

S(rM, (n−m)P̄ ; q). (3.5)

with Q = M1/2P 1/4 the square root of the size of the equation. Applying the Weil bound for each

Kloosterman sum leads to the of second moment average being bounded by
√
P
(
P 7

M2

)1/8
, such that

0 < P < M2/7 is a range for subconvexity, as a bound of
√
P would produce the convexity bound.

However, using the conductor lowering trick by instead using δ((n − m + rM)/P, 0) with the
condition n − m + rM ≡ 0 mod P followed by Voronoi summation as in the previous case, one
instead obtains the sum of Kloosterman sums∑

06=|r|≤
√
P

1

Q

∑
q≤Q

1

qP

∑
n∼P

λf (n)√
n

∑
m∼P

λf (m)√
m

S(rM, n−m; qP ). (3.6)

The length of the n- and m-sums is the same as before, whereas we have additional saving P in the
denominator on the q-sum, which comes from detecting the congruence condition n −m + rM ≡ 0
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mod P . The Weil bound for Kloosterman sums allows us to have a better bound by P 1/2. However,
Q has also changed and is now M1/2/P 1/4 as the equation in the delta symbol has changed and the
division by Q – which ends up a division by Q1/2 because of the Weil bound – means we only save

P 1/4. Dividing the previous bound by this gives
√
P
(
P 5

M2

)1/8
. The subconvexity range has been

improved to 0 < P < M2/5.
We conclude this section with two remarks. Let σ be the element in Γ0(P ). If a is a cusp of Γ0(P ),

its stabilizer is defined by Γa = {σ ∈ Γ0(P ) | σ · a = a}. In particular Γ∞ =

{
±
(

1 b
1

) ∣∣∣∣ b ∈ Z
}

.

Let a and b be two cusps of Γ0(P ). Let σa ∈ SL(2,R) be a scaling matrix such that σa · ∞ = a and
σ−1

a Γaσa = Γ∞. We define similarly for σb. The Kloosterman sum attached to two cusps a and b is
defined in [DesIw82] as

Sab(α, β; c) =
∑

a ∗
c d

∈Γ∞\σ−1
a Γ0(P )σb/Γ∞

e

(
αa+ βd

c

)
.

Resuming our analysis, we obtain the standard Kloosterman sum associated simply to the cusp at ∞
for the group Γ0(P ) in (3.6). Previously, P was attached to (n −m) and not the modulus q, which
gave a Kloosterman sum associated with the cusps at 0 and ∞ for Γ0(P ) in (3.5).

Finally, we should mention that we can improve the hybrid range further by using a large sieve
inequality as in [DesIw82] to estimate the sums of Kloosterman sums instead of bounding them
individually. Even using the Kuznetsov formula with a large sieve inequality would improve the
subconvexity estimate if not the range of subconvexity. One could also introduce an amplifier to
improve the the range Mη � P � M2/5−η to the left to cover the case P ∼ 1. Since our purpose is
simply to demonstrate the utility of the modified delta method in improving the range of subconvexity
and simplifying the Kloosterman sum structure, we do not continue the argument in these ways.

4. Lemmas: summation formulas, the delta method

Before beginning the proof of the theorem, we collect several lemmas which will be employed in the
proof. The crux of the work is an application of the delta method, which we state below. The delta
method was used in [DFIw93]. This is a decomposition of the δ-symbol via a character sum. We
utilize the version given by Heath-Brown [He96].

Lemma 4.1. (The delta method, [He96]) For any Q > 1 there exist cQ > 0 and a smooth func-
tion g(x, y) defined on (0,∞)× R, such that

δ(n, 0) =
cQ
Q2

∞∑
q=1

∑?

a mod q

e

(
an

q

)
g

(
q

Q
,
n

Q2

)
.

The constant cQ satisfies cQ = 1 + O(Q−A) for any A > 0. Moreover, g(x, y) � x−1 for all y, and
g(x, y) is non-zero only for x ≤ max{1, 2|y|}. If x ≤ 1 and 2|y| ≤ x, then

xi∂ixig(x, y)� x−1, ∂yg(x, y) = 0.

If 2|y| > x, then
xiyj∂ixj∂jyjg(x, y)� x−1.

Let k be a positive integer. We recall elementary properties of the Bessel functions as can be seen
in [WhWa96]. The Bessel function of the first kind with order k can be decomposed as

Jk(x) = eixWk(x) + e−ixWk(x)
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where

Wk(x) =
ei(

π
2
k−π

4
)

Γ(k + 1
2)

√
2

πx

∫ ∞
0

e−y
(
y

(
1 +

iy

2x

))k− 1
2

dy.

Applying the asymptotic expansion for Whittaker functions W for x� 1, we have

xjW
(j)
k (x)�k,j

1

(1 + x)
1
2

with j ≥ 0. Using the Taylor series expansion for x� 1, we obtain the bound

xjJ
(j)
k (x)�k,j x

k

with j ≥ 0. The Bessel function is used in the integral transform found in Voronoi summation.

Lemma 4.2. (Voronoi summation, [KoMiV02]) Let (a, q) = 1 and let h be a smooth function
compactly supported in (0,∞). Let P denote the prime and let f denote a holomorphic newform
of level P and weight k. Set P2 := P/(P, q). Then there exists a complex number η of modulus 1
(depending on a, q, f) and a newform f∗ of the same level P and same weight k such that∑

n

λf (n)e

(
n
a

q

)
h(n) =

2πη

q
√
P2

∑
n

λf∗(n)e

(
−naP2

q

)∫ ∞
0

h(y)Jk−1

(
4π
√
ny

q
√
P2

)
dy.

In general, given e(ā/q) the overline on the numerator a indicates the multiplicative inverse modulo
the denominator q. In order to truncate and bound the sums which result after Voronoi summation,
we use the following lemma.

Lemma 4.3. Let k,M,P be positive integers with k ≥ 2 and let r be a nonzero integer. Take Q > 1
and X,Y ≥ 1. For any a, b > 0, define

J(a, b ; c) :=

∫ ∞
0

∫ ∞
0

1
√
xy
F
( x
X
,
y

Y

)
g

(
qc

Q
,
x− y + rM

PQ2

)
Jk−1(4πa

√
x)Jk−1(4πb

√
y)dxdy,

where g
(
qc
Q ,

x−y+rM
PQ2

)
is the function in lemma 4.1 and F is a smooth function supported in [1/2, 5/2]×

[1/2, 5/2] with partial derivatives satisfying

xiyj∂ixi∂jyjF (x, y)� ZZixZ
j
y

for some Z > 0, Zx, Zy � 1. We have

J(a, b ; c)� Z
√
XY

Q

qc

1

(1 + a
√
X)1/2

1

(1 + b
√
Y )1/2

[
1

a
√
X

(
Zx +

X

qcQP

)]i [ 1

b
√
Y

(
Zy +

Y

qcQP

)]j
.

(4.7)

Also,

J(a, b ; c)� Z

ab(1 + a
√
X)1/2(1 + b

√
Y )1/2

Q

qc
min

{
Zxb
√
Y , Zya

√
X
}

(XY |r|MQqP )ε. (4.8)

Proof. Starting with the change of variables x 7→ xX and y 7→ yY and then integrating by parts and
using the bound of the Bessel function gives (4.7). For example, integrating by parts once in the x
integral leads to

J(a, b ; c)� Z
√
XY

Q

qc

1

(1 + a
√
X)1/2

1

(1 + b
√
Y )1/2

[
1

a
√
X

(Zx +XI)

]
,
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where

I :=

∫ 5/2

1/2

∫ 5/2

1/2
2|xX−yY+rM |>qQP

1

|xX − yY + rM |
dxdy.

The condition on the integral comes from where the g function is nonzero. However, we have |xX −
yY + rm|−1 � (qcQP )−1, which gives (4.7) for i = 1 and j = 0. Repeated integration by parts gives
the same result for higher values of i and j.

For (4.8), we treat the integral I differently. Let u = xX − yY rM to get

I � 1

X

∫ 5/2

1/2

∫ (X+Y+|r|M)

qQP/2

1

u
dudy � (XY |r|MqQP )ε

X
.

Doing the same thing with i = 0 and j = 1 and taking the minimum of the two bounds finishes the
proof.

5. Reduction of the second moment to shifted sums

Let ε, δ > 0 and choose any X such that Q1/2−δ ≤ X ≤ Q1/2+ε. Define

Sf (X) :=
1

ϕ?(M)

∑?

χ mod M

|Lf⊗χ(X)|2,

where Lf⊗χ(X) is given in (1.1). The proof of the reduction to shifted sums is similar to [DFIw93].
We open the square and write the primitive characters in terms of Gauss sums to obtain

Sf (X) =
1

Mϕ?(M)

∑?

χ mod M

∣∣∣∣∣ ∑
b mod M

χ(b)
∑
n

λf (n)√
n
h
( n
X

)
e

(
nb

M

)∣∣∣∣∣
2

.

Adding the nonprimitive characters to this sum produces the summation over all characters modulo
M . By the orthogonality of multiplicative characters,

Sf (X) ≤ ϕ(M)

Mϕ?(M)

∑?

b mod M

∣∣∣∣∣∑
n

λf (n)√
n
h
( n
X

)
e

(
nb

M

)∣∣∣∣∣
2

.

We extend the summation to all residue classes M by adding the residues which are not coprime with
M , and open the square. Using the orthogonality of additive characters,

Sf (X)�M ε

∣∣∣∣∣∑
n

λf (n)√
n
h
( n
X

) ∑
m≡n mod M

λf (m)√
m

h
(m
X

)∣∣∣∣∣ .
Write m = n+ rM and note that r � X

M ≤
Q

1
2+ε

M . The diagonal term m = n satisfies

∑
n

λf (n)2

n
h
( n
X

)2
� Qε.

We are left to consider the off-diagonal terms

Rf (X) :=
∑

06=|r|�Q1/2+ε

M

∑
n

λf (n)√
n
h
( n
X

) ∑
m=n+rM

λf (m)√
m

h
(m
X

)
.



K. Aggarwal, Y. Jo, and K. Nowland, Hybrid level aspect subconvexity 113K. Aggarwal, Y. Jo, and K. Nowland, Hybrid level aspect subconvexity 113

6. Treatment of shifted convolution sums

Let X,Y ≥ 1. Motivated by the reduction of the second moment problem to bounding the shifted
convolution sums, we now take f1, f2 to newforms in B∗k(P ) and consider

Sf1,f2(X,Y ) :=
∑
n

∑
m=n+rM

λf1(n)λf2(m)√
nm

F
( n
X
,
m

Y

)
,

where r is a nonzero integer coprime to P (valid in our specific application, where |r| � P 1/2+ε). In
this section we establish theorem 2.2.

6.A. Modified delta method

We start with detecting the equation m = n + rM in Sf1,f2(X,Y ). In this regard, we note that
n−m+ rM = 0 is equivalent to (n−m+ rM)/P = 0 and n−m+ rM ≡ 0 modulo P . Therefore,

Sf1,f2(X,Y ) =
∑∑

n−m+rM≡0 mod P

λf1(n) λf2(m)√
nm

F
( n
X
,
m

Y

)
δ

(
n−m+ rM

P
, 0

)
.

Using lemma 4.1 to detect (n − m + rM)/P = 0 and a sum of additive characters to detect the
congruence gives

Sf1,f2(X,Y ) =
∑
n

λf1(n)√
n

∑
m

λf2(m)√
m

F
( n
X
,
m

Y

) 1

P

∑
b mod P

e

(
b(n−m+ rM)

P

)

×
cQ
Q2

∞∑
q=1

∑?

a mod q

e

(
a(n−m+ rM)

Pq

)
g

(
q

Q
,
n−m+ rM

PQ2

)

=
cQ
PQ2

∞∑
q=1

∑?

a mod q

∑
b mod P

e

(
rM(a+ bq)

qP

)∑
n

λf1(n)√
n

e

(
n(a+ bq)

qP

)

×
∑
m

λf2(m)√
m

e

(
−m(a+ bq)

qP

)
F
( n
X
,
m

Y

)
g

(
q

Q
,
n−m+ rM

PQ2

)
.

From lemma 4.1, g
(
q
Q ,

n−m+rM
PQ2

)
6= 0 for q

Q ≤ max
{

1, 2|n−m+rM |
PQ2

}
. We want to choose Q such that

the max is always 1. To do this, note that

2
|n−m+ rM |

PQ2
≤ 2

X + Y + |r|M
PQ2

.

For there to be any solutions to m−n+ rM = 0, we need |r| ≤ (X +Y )/M . Therefore it is sufficient
to choose Q such that

8
max{X,Y }

PQ2
≤ 1.

Set Q2 := 8max{X,Y }
P so that the outer q-sum only extends to Q. We write γ = a + bq. Since the a-

and b-sums yield a complete set of residue γ modulo qP with (γ, q) = 1, Sf1,f2(X,Y ) reduces to

cQ
PQ2

Q∑
q=1

∑
γ mod qP

(γ,q)=1

e

(
rMγ

qP

)∑
n

λf1(n)√
n

e

(
nγ

qP

)∑
m

λf2(m)√
m

e

(
−mγ
qP

)
F
( n
X
,
m

Y

)
g

(
q

Q
,
n−m+ rM

PQ2

)
.
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6.B. Voronoi summation

We apply Voronoi summation to Sf1,f2(X,Y ) in the m-sum, then in the n-sum. Since we are dealing
with forms of prime level P , we break the q-sum above as Sf1,f2(X,Y ) = S + T , where S is the sum
over (q, P ) = 1 and T is the sum over P | q.

6.B.a. (q, P ) = 1 case

We assume that (q, P ) = 1. We proceed with the argument by considering two cases according to
the divisibility of γ by P . To this end, we write S as S = S1 + S2, where the γ-sum in S1 runs over
(P, γ) = 1 and the γ-sum in S2 is taken over P | γ. When (P, γ) = 1, we get the sum

S1 :=
cQ
PQ2

Q∑
q=1

(q,P )=1

∑?

γ mod qP

e

(
rMγ

qP

)∑
n

λf1(n)√
n

e

(
nγ

qP

)

×
∑
m

λf2(m)√
m

e

(
−mγ
qP

)
F
( n
X
,
m

Y

)
g

(
q

Q
,
n−m+ rM

PQ2

)
.

For each q, applying lemma 4.2 first in the n-sum and then in the m-sum results in

1

P 2q2

∑
n

λf∗1 (n)e

(
−nγ
Pq

)∑
m

λf∗2 (m)e

(
mγ

Pq

)
J

(√
n

Pq
,

√
m

Pq
; 1

)
,

where J is again the function given in lemma 4.3. This produces a Kloosterman sum modulo Pq:

1

Q2P 3

Q∑
q=1

(q,P )=1

1

q2

∑
n

λf∗1 (n)
∑
m

λf∗2 (m) J

(√
n

Pq
,

√
m

Pq
; 1

)
S(rM,m− n;Pq). (6.9)

Using the first bound of the J-function in lemma 4.3 allows us to truncate the n- and m-sums to the
ranges

n ≤ T1 :=
P 2q2

X

(
Zx +

X

qQP

)2

, m ≤ T2 :=
P 2q2

Y

(
Zy +

Y

qQP

)2

.

Applying the Weil bound and the second bound in lemma 4.3, we see that

S1 �
Qε

Q2P 3

Q∑
q=1

(q,P )=1

1

q2

∑
n≤T1

∑
m≤T2

Z
√
n

Pq

√
m
Pq

(
1 +

√
nX
Pq

) 1
2
(

1 +
√
mY
Pq

) 1
2

× Q

q
min

{
Zx

√
mY

Pq
, Zy

√
nX

Pq

}
(rM,m− n, Pq)

1
2 (Pq)

1
2 .

We bound the minimum by taking the geometric mean and simplify to

S1 � QεZ(ZxZy)
1
2

1

QP
1
2

Q∑
q=1

(q,P )=1

1

q
1
2

∑
n≤T1

∑
m≤T2

1

(nm)
1
2

(rM,m− n, Pq)
1
2

� QεZ(ZxZy)
1
2

1

QP
1
2

Q∑
q=1

(q,P )=1

1

q
1
2

(T1T2)
1
2 (rM,m− n, Pq)

1
2

� QεZ(ZxZy)
1
2

1

(XY )
1
2

P
3
2

Q

Q∑
q=1

(q,P )=1

q
3
2

(
Zx +

X

qQP

)(
Zy +

Y

qQP

)
(rM,m− n, Pq)

1
2 .
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Notice that (rM,m−n, Pq) ≤ (rM,Pq) ≤ (rM, q), since r and P are coprime, and P does not divide
M . Rewriting q as qd with d = (rM, q) gives

S1 � QεZ(ZxZy)
1
2

1

(XY )
1
2

P
3
2

Q

∑
d|rM

d
1
2

∑
q≤Q/d

(qd)
3
2

(
Zx +

X

qdQP

)(
Zy +

Y

qdQP

)

� QεZ(ZxZy)
1
2

1

(XY )
1
2

P
3
2Q

3
2

∑
d|rM

1

d
1
2

(
Zx +

X

Q2P

)(
Zy +

Y

Q2P

)

� QεrεZ(ZxZy)
1
2

1

(XY )
1
2

P
3
2Q

3
2

(
Zx +

X

Q2P

)(
Zy +

Y

Q2P

)
� QεrεZ(ZxZy)

1
2

1

(XY )
1
2

P
3
2Q

3
2

(
max {Zx, Zy}+

max {X,Y }
Q2P

)2

.

With Q2 = 8max{X,Y }
P , we obtain

S1 � QεrεZ(ZxZy)
1
2 max{Zx, Zy}2P

3
4

max{X,Y }
3
4

(XY )
1
2

.

This matches the bound in the statement of theorem 2.2.
Next we deal with the sum where P | γ.

S2 :=
cQ
PQ2

Q∑
q=1

(q,P )=1

∑
γ mod qP

(γ,q)=1
P |γ

e

(
rMγ

qP

)∑
n

λf1(n)√
n

e

(
nγ

qP

)

×
∑
m

λf2(m)√
m

e

(
−mγ
qP

)
F
( n
X
,
m

Y

)
g

(
q

Q
,
n−m+ rM

PQ2

)

=
cQ
PQ2

Q∑
q=1

(q,P )=1

∑?

γ mod q

e

(
rMγ

q

)∑
n

λf1(n)√
n

e

(
nγ

q

)

×
∑
m

λf2(m)√
m

e

(
−mγ

q

)
F
( n
X
,
m

Y

)
g

(
q

Q
,
n−m+ rM

PQ2

)
.

Applying Voronoi summation in the m- and n-sums gives

1

P 2Q2

Q∑
q=1

1

q2

∑
n

λf∗1 (n)
∑
m

λf∗2 (m)J

( √
n

q
√
P
,

√
m

q
√
P

; 1

)
S(rM, (m− n)P̄ ; q). (6.10)

The n- and m-sums can be truncated to

n ≤ T1 :=
Pq2

X

(
Zx +

X

qQP

)2

, m ≤ T2 :=
Pq2

Y

(
Zy +

Y

qQP

)2

.

Repeating the estimation process used for S1 with these parameters, one is led to

S2 � QεrεZ(ZxZy)
1
2 max{Zx, Zy}2

1

P
3
4

max{X,Y }
3
4

(XY )
1
2

.

This is better than the bound of theorem 2.2. We note that we get Kloosterman sums attached to
cups 0 and ∞ in (6.10), but the contribution of the case when P | γ comes with a smaller weight.
However we obtain Kloosterman sums attached to cups 0 and 0 in (6.9) as it is stated in section 3.
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6.B.b. P | q case

Finally, observing that γ is coprime with Pq, the remaining sum over q, when P | q is

T :=
cQ
PQ2

Q∑
q=1

P |q

∑?

γ mod Pq

e

(
rMγ

Pq

)∑
n

λf1(n)√
n

e

(
nγ

Pq

)

×
∑
m

λf2(m)√
m

e

(
−mγ
Pq

)
F
( n
X
,
m

Y

)
g

(
q

Q
,
n−m+ rM

PQ2

)
.

After we rewrite q as qP , Voronoi summation in the m-sum then the n-sum gives

1

Q2P 5

∑
q≤Q/P

1

q2

∑
n

∑
m

λf∗1 (n)λf∗2 (m)J

(√
n

P 2q
,

√
m

P 2q
;P

)
S(rM,m− n;P 2q).

Lemma 4.3 implies that we can truncate the n- and m-sums to the ranges

n ≤ T1 :=
P 4q2

X

(
Zx +

X

qQP 2

)2

, m ≤ T2 :=
P 4q2

Y

(
Zy +

Y

qQP 2

)2

.

Using the Weil bound for Kloosterman sums as in the previous case, we see that

T � QεrεZ(ZxZy)
1
2 max{Zx, Zy}2

1

P
1
4

max{X,Y }
3
4

(XY )
1
2

.

This bound on T is better than the bound on S1. This completes the proof of theorem 2.2.
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