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Set Equidistribution of subsets of (Z/nZ)∗
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Abstract. In 2010, Murty and Thangadurai [MuTh10] provided a criterion for the set equidistribution of residue classes of

subgroups in (Z/nZ)∗. In this article, using similar methods, we study set equidistribution for some class of subsets of (Z/nZ)∗.
In particular, we study the set equidistribution modulo 1 of cosets, complement of subgroups of the cyclic group (Z/nZ)∗ and the

subset of elements of fixed order, whenever the size of the subset is sufficiently large.
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1. Introduction

We say (as defined in [MuSi09]) that a sequence of finite multisets An with An ⊆ [0, 1] and |An| → ∞
is set equidistributed mod 1 with respect to a probability measure µ, if for every continuous function
f on [0, 1], we have

lim
n→∞

1

|An|
∑
t∈An

f(t) =

∫ 1

0
f(x)dµ. (1.1)

In order to verify this condition, it suffices to check that this limit exists on a dense family of functions
f in C[0, 1]. Here, we shall make use of the family of Bernoulli polynomials.

Murty and Thangadurai [MuTh10] proved that the elements of the subgroup Hn of (Z/nZ)∗, are
set equidistributed modulo 1, whenever |Hn|/

√
n→∞ as n→∞.

Motivated from this, one may ask the following natural question: If Sn is a subset of (Z/nZ)∗

such that |Sn| > n
1
2

+ε, are the elements of the subset Sn of (Z/nZ)∗ set equidistributed modulo 1, as
n→∞? In other words, does the result of [MuTh10] apply for subsets and not just subgroups?

In general, the answer is not affirmative. For instance, if S′n = {a1, a2, . . . , am} ⊂ (Z/nZ)∗ where

m = [n
1
2

+ε] + 1 and ai’s are the first m integers ≤ n with (ai, n) = 1, then the elements of Sn := S′n/n
are close to 0 in [0, 1] for all integers n→∞ and hence these sets are not set equidistributed mod 1.
However, for many arithmetical subsets like the set of all quadratic non-residues modulo p (which is
not a subgroup of (Z/pZ)∗), and the set of all generators of (Z/nZ)∗, whenever it is cyclic, the above
question makes sense.

In this article, we give a partial answer to the above question. More precisely, we prove the
following theorems:

Theorem 1.1. Let ε be a given number with 0 < ε < 1/12. Consider an integer n = pk or 2pk for
some odd prime p, some integer k ≥ 1 and a positive divisor f of n satisfying φ(n)/f ≥ n1/2+3ε. Let
Sn,f be a subset of (Z/nZ)∗ which consists precisely of those elements whose index is f in (Z/nZ)∗

and take the representatives Sf,n as integers, say, sn with 1 < sn ≤ n− 1 and (sn, n) = 1. Let
S ′f,n = {s/(n− 1) : s ∈ Sn,f} ⊂ [0, 1]. Then the sets S ′f,n’s are set equdistributed in [0, 1] with respect
to the Lebesgue measure.
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In Theorem 1.1, when we take f = 1, then trivially the hypothesis is true. Hence, when n runs
through numbers of the form n = pk or 2pk for an odd prime p and for some integer k ≥ 1, we find
that the sets of generators of (Z/nZ)∗ are set equidistributed modulo 1.

Theorem 1.2. For an integer n = pk or 2pk for some odd prime p and for some integer k ≥ 1,
let Sn be a subset of (Z/nZ)∗ such that its complement is a subgroup of (Z/nZ)∗ and we take the
representatives Sn as integers, say, sn with 1 < sn ≤ n− 1 and (sn, n) = 1. Let S ′n = {s/(n− 1) : s ∈
Sn} ⊂ [0, 1]. For a given ε > 0, if |Sn|/n

1
2

+2ε →∞ as n→∞, then the S ′ns are set equdistributed in
[0, 1] with respect to the Lebesgue measure.

As an application of Theorem 1.2, we have the following corollary.

Corollary 1.3. Let r ≥ 2 be an integer. For any prime number p such that p ≡ 1 (mod r), let Hp =

{a ∈ (Z/pZ)∗ : a
p−1
r ≡ 1 (mod p)} ⊂ (Z/pZ)∗ and let the representatives of Hp be {h1, . . . , h(p−1)/r}

as a subset of {1, 2, . . . , p− 1}. Let

Sp = {a/p : a ∈ {1, 2, . . . , p− 1} and a 6= hi for any i}.

Then, as p→∞ such that p ≡ 1 (mod r), the sets Sp’s are set equdistributed in [0, 1] with respect to
Lebesgue measure. In particular, when r = 2, we get the set of all quadratic non-residues modulo p,
are set equidistributed in [0, 1].

Theorem 1.4. For any integer n ≥ 2, let H ′n be a subgroup of (Z/nZ)∗ and take the representatives
of H ′n as integers, say, h such that 1 ≤ h < n and (n, h) = 1. Let Hn = {h/n : h ∈ H ′n} be a finite
subset of [0, 1]. If |Hn|/

√
n→∞ as n→∞, then for any given gn ∈ (Z/nZ)∗, the cosets gnHn’s are

set equidistributed in [0, 1] with respect to the Lebesgue measure in [0, 1].

2. Preliminaries

In order to prove the sets Sn are set equidistributed, it suffices to determine the behaviour of sums
of the form

|Sn|∑
k=1

fm(gk),

for any suitable family of polynomials fm of degree m for each integer m ≥ 1, with gk ∈ Sn. It is
convenient to take the Bernoulli polynomials which are defined as

Bm(X) =
m∑
k=0

(
m

k

)
BkX

m−k,

for each integer m ≥ 1 where Bk denotes the kth-Bernoulli number, because the set of all finite
Q-linear combinations of {Bm(X)} is a dense subset of C[0, 1] (see [Apo76]). Therefore, we consider
the sum

|Sn|∑
k=1

Bm

(gk
n

)
and we would like to prove that

lim
n→∞

1

|Sn|

|Sn|∑
k=1

Bm

(gk
n

)
=

∫ 1

0
Bm(t)dt.

A well-known result states that (for instance, see [Mu08], page 19)
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Lemma 2.1. For any integer m ≥ 1, we have∫ 1

0
Bm(t)dt = 0.

Thus, by Lemma 2.1, in order to prove that the sequence of sets {Sn} are set equidistributed mod
1, it is enough to prove that

lim
n→∞

1

|Sn|

|Sn|∑
k=1

Bm

(gk
n

)
= 0.

The way to understand this sum,

|Sn|∑
k=1

Bm

(gk
n

)
, is through the generalized Bernoulli numbers (see for

instance [Wa97]) which are defined as follows. For any Dirichlet character χ : (Z/nZ)∗ → C∗ and for
any integer m ≥ 1, we define the m-th generalized Bernoulli number Bm,χ as

Bm,χ = nm−1
n∑
a=1

χ(a)Bm

(a
n

)
.

Then we get the connection between Bm,χ and the Dirichlet L-function with character χ at s = m
and use the estimates of the special values of L-functions. For more information, we refer to Murty
[Mu08]. Indeed, we need the following Lemma which can be found in [Mu08], pp 122.

Lemma 2.2. We have the following;

1. For any character χ on (Z/nZ)∗ and for any integer m ≥ 1, we have

L(1−m,χ) = −Bm,χ
m

.

2. If χ is any character on (Z/nZ)∗, then, there exists a positive constant C(m), depending only
on m such that

|L(1−m,χ)| ≤ C(m)nm−
1
2

for all integers m ≥ 1 and for all n > e17. (Proof of this fact can be seen in the proof of Theorem
2 in [MuTh10]).

The following lemma is standard and we shall state as follows.

Lemma 2.3. Let σ0(n) denote the number of positive divisors n. Then, we have

σ0(n) ≤ nε for all large enough integers n,

for any given ε > 0. Also, we know that

φ(n)� n1−ε

for any given ε > 0, where φ stands for the Euler’s totient function.

We need the following two crucial lemmas for the proof of Theorems 1.1 and 1.2 (see Lemma 3 in
[Jo73]).
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Lemma 2.4. Let R be a finite ring such that R∗ is the cyclic group of order n for some integer n ≥ 2
and let f be a positive divisor of n. For any a ∈ R, we define

If (a) =

{
1 if a ∈ R∗ and a is of index f in R∗;
0 otherwise,

where the index of an element a ∈ R∗ means the index of the subgroup generated by a in R∗. Then,
for any a ∈ R∗, we have,

If (a) =
1

f

∑
d|(n/f)

µ(d)

d

∑
χfd = χ0

χ(a),

where µ is the Möbius function and the inner summation runs over all the multiplicative characters
χ of R of order at most fd.

The following lemma computes the characteristic function for a given subset S of a cyclic group
G such that its complement is a subgroup.

Lemma 2.5. Let G be a cyclic group of order n for some integer n ≥ 2. Let S be a finite subset of
G such that G\S is a subgroup of G. Let

R = {r ∈ N : r is the index of a ∈ S for some a} = {r1, . . . , r`}

be the finite subset of N. Then

∑̀
i=1

 1

ri

∑
d| n
ri

µ(d)

d

∑
χrid=χ0

χ(a)

 =


1 if a ∈ S;

0 otherwise,

where µ is the Mobius function and the inner sum runs over the multiplicative characters χ of G of
order at most rid.

Proof. Suppose a ∈ S and let rj be the index of a for some integer j ∈ {1, . . . , `}. Then by Lemma
2.4, we get

1

ri

∑
d| n
ri

µ(d)

d

∑
χrid=χ0

χ(a) =

{
1 if i = j
0 otherwise.

Therefore, we have ∑̀
i=1

 1

ri

∑
d|(n/ri)

µ(d)

d

∑
χrid=χ0

χ(a)

 = 1.

Now, let b ∈ G\S and let q be the index of b. Then, we shall show that

1

ri

∑
d| n
ri

µ(d)

d

∑
χrid=χ0

χ(b) = 0

for all 1 ≤ i ≤ `.
To prove this, it suffices to show that q /∈ {r1, r2, . . . , r`}. Since G is a finite cyclic group, there

exists a unique subgroup Hq of index q. Since the index of b is q, we conclude that the subgroup
generated by b is equal to Hq. Also, note that any element in G, which is of index q, is a generator of
Hq. Since b ∈ G\S and by hypothesis G\S is a subgroup, we conclude that b ∈ Hq ⊂ G\S. Since b
is arbitrary, we conclude that any element of index q lies in G\S. Therefore, q /∈ {r1, r2, . . . , r`} and
proves the lemma.
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3. Proof of Theorem 1.1

By Lemma 2.4, we have

1

f

∑
d|φ(n)

f

µ(d)

d

∑
χfd=χ0

χ(a) =

{
1 if a ∈ Sf,n
0 otherwise.

Let Sf,n = {g1, . . . , g|Sf,n|} and m ≥ 1 be a given integer. Then consider

|Sf,n|∑
k=1

Bm

(gk
n

)
=

n∑
k=1

Bm

(
k

n

) 1

f

∑
d|φ(n)

f

µ(d)

d

∑
χfd=χ0

χ(k)


=

1

f

∑
d|φ(n)

f

µ(d)

d

 n∑
k=1

Bm

(
k

n

) ∑
χfd=χ0

χ(k)


=

1

f

∑
d|φ(n)

f

µ(d)

d

 ∑
χfd=χ0

n∑
k=1

χ(k)Bm

(
k

n

)
=

1

f

∑
d|φ(n)

f

µ(d)

d

 1

nm−1

∑
χfd=χ0

Bm,χ

 .

By Lemma 2.1, it is enough to show that for each integer m ≥ 1, we have

1

|Sf,n|

|Sf,n|∑
k=1

Bm

(gk
n

)
→ 0 as n→∞.

Also, by Lemma 2.2 (1), for any character χ, we have L(1−m,χ) = −Bm,χ
m

. Therefore, we get,

1

|Sf,n|

∣∣∣∣∣∣
|Sf,n|∑
k=1

Bm

(gk
n

)∣∣∣∣∣∣ =
1

|Sf,n|

∣∣∣∣∣∣∣
1

f

∑
d|φ(n)

f

µ(d)

d

 1

nm−1

∑
χfd=χ0

(−m)L(1−m,χ)


∣∣∣∣∣∣∣ .

≤ 1

|Sf,n|
1

f

∑
d|φ(n)

f

|µ(d)|
d

 m

nm−1

∑
χfd=χ0

|L(1−m,χ)|


=

m

|Sf,n|nm−1

1

f

∑
d|φ(n)

f

|µ(d)|
d

 ∑
χfd=χ0

|L(1−m,χ)|


≤ C ′(m)

|Sf,n|nm−1

1

f

∑
d|φ(n)

f

1

d

 ∑
χfd=χ0

nm−
1
2

 ,
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for some positive constant C ′(m) that depends only on m by Lemma 2.2 (2). Therefore, we get,∣∣∣∣∣∣ 1

|Sf,n|

|Sf,n|∑
k=1

Bm

(gk
n

)∣∣∣∣∣∣ ≤ C ′(m)
√
n

|Sf,n|
1

f

∑
d|φ(n)

f

1

d

 ∑
χfd=χ0

1



≤ C ′(m)
√
n

|Sf,n|
1

f

∑
d|φ(n)

f

1

d
(fd) =

C ′(m)
√
n

|Sf,n|

 ∑
d|φ(n)

f

1


=

C ′(m)
√
n

|Sf,n|
σ0

(
φ(n)

f

)
.

Since the set Sf,n precisely contains the generators of the cyclic subgroup of order φ(n)
f , the cardinality

of the set Sf,n is φ
(
φ(n)
f

)
. Therefore, we have∣∣∣∣∣∣ 1

|Sf,n|

|Sf,n|∑
k=1

Bm

(gk
n

)∣∣∣∣∣∣ ≤ C ′(m)
√
n

|Sf,n|
σ0

(
φ(n)

f

)

=
C ′(m)

√
n

φ
(
φ(n)
f

) σ0

(
φ(n)

f

)
.

For a given ε > 0, we know that σ0(n) = O(nε) and φ(n) > n1−ε for all sufficiently large integers n.

Hence, since σ0

(
φ(n)
f

)
≤ C

(
φ(n)
f

)ε
for some positive constant C and φ

(
φ(n)
f

)
>
(
φ(n)
f

)1−ε
. Thus,

we get, ∣∣∣∣∣∣ 1

|Sf,n|

|Sf,n|∑
k=1

Bm

(gk
n

)∣∣∣∣∣∣ < C ′(m)C
√
nf1−2ε

φ(n)1−2ε
.

By hypothesis, we know that φ(n)
f ≥ n1/2+3ε, we see that∣∣∣∣∣∣ 1

|Sf,n|

|Sf,n|∑
k=1

Bm

(gk
n

)∣∣∣∣∣∣ < C ′(m)C

n2ε−6ε2

and hence as n→∞, we get the desired result, as the given ε satisfies 0 < ε < 1
12 . �

4. Proof of Theorem 1.2

For each integer n = pk or 2pk, where p is an odd prime and k ≥ 1 is an integer, we let Sn be a given
subset of (Z/nZ)∗ such that its complement is a subgroup of (Z/nZ)∗. Note that for these values of
n, the group of coprime residue classes modulo n is cyclic.

Let n be one such natural number and we consider Sn. Suppose r1, r2, . . . , r` be the indices of the
elements of Sn. By lemma 2.4, we have

∑̀
i=1

 1

ri

∑
d| n
ri

µ(d)

d

∑
χrid=χ0

χ(a)

 =

{
1 if a ∈ Sn
0 otherwise.



124 4. Proof of Theorem 1.2124 4. Proof of Theorem 1.2

Let Sn = {g1, . . . , g|Sn|} and m ≥ 1 be a given integer. Then consider

|Sn|∑
k=1

Bm

(gk
n

)
=

n∑
k=1

Bm

(
k

n

)∑̀
i=1

 1

ri

∑
d|φ(n)

ri

µ(d)

d

∑
χrid=χ0

χ(k)


=

∑̀
i=1

1

ri

∑
d|φ(n)

ri

µ(d)

d

 n∑
k=1

Bm

(
k

n

) ∑
χrid=χ0

χ(k)



=
∑̀
i=1

1

ri

∑
d|φ(n)

ri

µ(d)

d

 ∑
χrid=χ0

n∑
k=1

χ(k)Bm

(
k

n

)

=
∑̀
i=1

1

ri

∑
d|φ(n)

ri

µ(d)

d

 1

nm−1

∑
χrid=χ0

Bm,χ

 .

By Lemma 2.1, it is enough to show that for each integer m ≥ 1, we have

1

|Sn|

|Sn|∑
k=1

Bm

(gk
n

)
→ 0 as n→∞.

Also, by Lemma 2.2 (1), for any character χ, we know that L(1−m,χ) = −Bm,χ
m

. Thus, we need to

estimate the following

1

|Sn|

|Sn|∑
k=1

Bm

(gk
n

)
=

1

|Sn|
∑̀
i=1

1

ri

∑
d|φ(n)

ri

µ(d)

d

 1

nm−1

∑
χrid=χ0

(−m)L(1−m,χ)

 .

Therefore, by Lemma 2.2 (2), we get∣∣∣∣∣∣ 1

|Sn|

|Sn|∑
k=1

Bm

(gk
n

)∣∣∣∣∣∣ ≤ 1

|Sn|
∑̀
i=1

1

ri

∑
d|φ(n)

ri

|µ(d)|
d

 m

nm−1

∑
χrid=χ0

|L(1−m,χ)|



=
m

|Sn|nm−1

∑̀
i=1

1

ri

∑
d|φ(n)

ri

|µ(d)|
d

 ∑
χrid=χ0

|L(1−m,χ)|



≤ C ′(m)

|Sn|nm−1

∑̀
i=1

1

ri

∑
d|φ(n)

ri

1

d

 ∑
χrid=χ0

nm−
1
2



=
C ′(m)

√
n

|Sn|
∑̀
i=1

1

ri

∑
d|φ(n)

ri

1

d

 ∑
χrid=χ0

1



≤ C ′(m)
√
n

|Sn|
∑̀
i=1

1

ri

∑
d|φ(n)

ri

1

d
(rid) =

C ′(m)
√
n

|Sn|
∑̀
i=1

 ∑
d|φ(n)

ri

1


=

C ′(m)
√
n

|Sn|
∑̀
i=1

σ0

(
φ(n)

ri

)
≤ C ′(m)

√
n

|Sn|
`σ0(φ(n)),
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where σ0(n) stands for the number of divisors of n and C ′(m) is a positive constant depending only
on m. By Lemma 2.3, for any given ε > 0, we have σ0(n) = O(nε). Also, since φ(n) ≤ n, we get,
σ0(φ(n)) = O(φ(n)ε) = O(nε).

Also, since r1, r2, . . . , rl are the indices of elements of Sn and each ri divides φ(n), we have

` ≤ σ0(φ(n)) = O(φ(n)ε) = O(nε).

Thus, ∣∣∣∣∣∣ 1

|Sn|

|Sn|∑
k=1

Bm

(gk
n

)∣∣∣∣∣∣ ≤ C ′(m)n
1
2

+2ε

|Sn|
,

which holds for any ε > 0. This proves the theorem. �

5. Proof of Corollary 1.3

Let Hp be the given subgroup of (Z/pZ)∗ of cardinality (p − 1)/r and Sp is the complement of Hp.
Then,

|Sp| = p− 1− p− 1

r
≥ p− 1

2
≥ (p− 1)

1
2

+ε,

for all sufficiently large p and for any ε with 0 < ε < 1
2 . Therefore, by Theorem 1.2, the assertion

follows. �

6. Proof of Theorem 1.4

For any integer n ≥ 2, we are given a subgroup H ′n of the group (Z/nZ)∗ and we take the elements of
H ′n as integers m such that 1 ≤ m ≤ n and (m,n) = 1. Also, it is given that for each integer n ≥ 2,
the element gn ∈ (Z/nZ)∗. Then consider the subset Hn = H ′n/n of [0, 1].

We want to prove that the sets gnHn are set equidistributed mod 1. For each integer n ≥ 2, we
denote Ĥn the group of all Dirichlet characters of (Z/nZ)∗ which are trivial on the subgroup H ′n.
Therefore, we have a canonical isomorphism

Ĥn
∼= (Z/nZ)∗/H ′n

and so,

|Ĥn| =
φ(n)

|H ′n|
=

φ(n)

|gnHn|
.

Then, we see that
1

|Ĥn|

∑
χ∈Ĥn

χ(a)χ(g−1
n ) =

{
1 if a ∈ gnH ′n
0 otherwise.
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By letting H ′n = {a1, . . . , a|Hn|}, for each integer m ≥ 1, we see that

|Hn|∑
k=1

Bm

(akgn
n

)
=

1

|Ĥn|

n∑
k=1

Bm

(
k

n

) ∑
χ∈Ĥn

χ(k)χ(g−1
n )

=
1

|Ĥn|

n∑
k=1

Bm

(
k

n

) ∑
χ∈Ĥn

χ(kg−1
n )

=
1

|Ĥn|

∑
χ∈Ĥn

χ(g−1
n )

(
n∑
k=1

Bm

(
k

n

)
χ(k)

)

=
1

nm−1|Ĥn|

∑
χ∈Ĥn

χ(g−1
n )Bm,χ.

By Lemma 2.1, it is enough to show that for each m ≥ 1

1

|gnHn|

|gnHn|∑
k=1

Bm

(akgn
n

)
→ 0 as n→∞.

Since |gnHn| = |Hn|, the rest of the proof goes along the proof of subgroup Hn proved in [MuTh10].
Hence, we omit the proof here. �
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