Explicit $a b c$-conjecture and its applications

Kwok Chi Chim, Saranya G. Nair and T. N Shorey

Dedicated to the memory of Professor S. Srinivasan.

Abstract

We state well-known $a b c$-conjecture of Masser-Oesterlé and its explicit version, popularly known as the explicit $a b c$ conjecture, due to Baker. Laishram and Shorey derived from the explicit abc-conjecture that (1.1) implies that $c<N^{1.75}$. We give a survey on improvements of this result and its consequences. Finally we prove that $c<N^{1.7}$ and apply this estimate on an equation related to a conjecture of Hickerson that a factorial is not a product of factorials non-trivially.

Keywords. Primes, factorials, $a b c$-conjecture, explicit conjecture, Diophantine equations.
2010 Mathematics Subject Classification. 11A41, 11B25, 11N13, 11D41, 11 Z 05.

1. Introduction

For a positive integer ν, we define the radical $N(\nu)$ of ν by the product of primes dividing ν and $\omega(\nu)$ for the number of distinct prime divisors of ν. The letter p always denote a prime number in this paper. We denote the radical of $a b c$ by

$$
N=N(a b c)=\prod_{p \mid a b c} p
$$

unless otherwise specified. Further we write $\omega=\omega(N)$ for the number of distinct prime divisors of N.

The well known abc-conjecture was formulated by Joseph Oesterlé [Oe88-89] and David Masser [Ma90] in 1988. It states that for any given $\epsilon>0$ there exists a computable constant κ_{ϵ} depending only on ϵ such that if

$$
\begin{equation*}
a+b=c \tag{1.1}
\end{equation*}
$$

where a, b and c are coprime positive integers, then

$$
c \leq \kappa_{\epsilon} N^{1+\epsilon} .
$$

We see when $\omega \in\{0,1\}$ or N is odd then (1.1) does not hold. Therefore we always have N even and $\omega \geq 2$ unless $(a, b, c)=(1,1,2)$. We understand that $\log _{2} x=\log \log x$ for $x \geq 2$ and $\log _{3} x=\log \log \log x$ for $x \geq 3$. The number κ_{ϵ} need not be explicit which is not desirable if, for example, we wish to solve an equation completely using $a b c$-conjecture. We state the following explicit version of $a b c$-conjecture due to Baker [Ba04].

The explicit $a b c$-conjecture: The explicit $a b c$-conjecture states that (1.1) implies that

$$
\begin{equation*}
c<\frac{6}{5} \frac{N(\log N)^{\omega}}{\omega!} \text { for } N>2 . \tag{1.2}
\end{equation*}
$$

[^0]It is convenient for applications to derive from (1.2) that

$$
c<K N^{1+\theta}
$$

for some $\theta>0$ and $K=K(\theta)$, a computable constant. We observe that $N>\frac{(\log N)^{\omega}}{\omega!}+\frac{(\log N)^{\omega+1}}{(\omega+1)!}>$ $\frac{6(\log N)^{\omega}}{5 \omega!}$ since $\log N \geq \frac{\omega+1}{5}$ and thus (1.2) implies that

$$
\begin{equation*}
c<N^{2} \text { for } N \geq 1 \tag{1.3}
\end{equation*}
$$

which was conjectured in Granville and Tucker [GrTu02]. Replacing the exponent 2 by a smaller exponent is always good for applications. We give a survey on improvements in the exponent of N in (1.3) in Section 2 and in Section 3 we give a short survey on consequences of explicit $a b c$-conjecture. In Section 4, we give our improvement on (1.3) and in Section 5, we consider an equation on product of consecutive positive odd integers and improve the bounds for the solution of the equation under the explicit $a b c$-conjecture using our improved estimate on (1.3).

2. Survey on improvements in (1.3)

We begin this section with a result of Laishram and Shorey [LaSh12].
Theorem 2.1. Assume the explicit abc-conjecture and (1.1) holds. Then

$$
c<N^{\frac{7}{4}} \text { for } N \geq 1
$$

Further for every $\epsilon>0$, there exists ω_{ϵ} depending only on ϵ such that when $N=N(a b c) \geq N_{\epsilon}=\prod_{p \leq p_{\omega}} p$, we have

$$
c<\kappa_{\epsilon} N^{1+\epsilon}
$$

where $\kappa_{\epsilon} \leq \frac{6}{5 \sqrt{2 \pi \omega_{\epsilon}}}$. Here are some values of $\epsilon, \omega_{\epsilon}$ and $N_{\epsilon} .{ }^{1}$

ϵ	$\frac{3}{4}$	$\frac{7}{12}$	$\frac{6}{11}$	$\frac{1}{2}$	$\frac{34}{71}$	$\frac{5}{12}$	$\frac{1}{3}$
ω_{ϵ}	14	49	72	128	175	548	6016
N_{ϵ}	$e^{37.1101}$	$e^{204.75}$	$e^{335.71}$	$e^{686.163}$	$e^{1004.763}$	$e^{3894.57}$	$e^{59365.671}$

Further Chim, Shorey and Sinha [ChShSi] proved the following result.
Theorem 2.2. Assume the explicit abc-conjecture. Then (1.1) implies that for $N \geq 1$,

$$
\begin{equation*}
c<N^{1.72} \tag{2.4}
\end{equation*}
$$

Further

$$
c<10 N^{1.62991}
$$

and

$$
c<32 N^{1.6}
$$

[^1]The bound $c<10 N^{1.62991}$ compares with the following example given by E. Reyssat [Rey18]. Consider $a=2, b=3^{10} \times 109$ and $c=23^{5}$. Then $a+b=c$ with $N=N(a b c)=15042$ and $c>N^{1.62991}$. The exponents in the above inequalities of Theorem 2.2 can be sharpened if N is sufficiently large. For this, we introduce functions $G(N)$ and $G_{1}(N)$ as follows:

For integer $N>2$, let

$$
A(N)=\log _{2} N-\log _{3} N, A_{1}(N)=A(N)+\log A(N)-1.076869
$$

and

$$
G(N)=\frac{1+\log A(N)}{A(N)}
$$

Further for integer $N \geq 40$, let

$$
G_{1}(N)=\frac{1+\log A_{1}(N)}{A_{1}(N)}
$$

We observe the following for $G(N)$ and $G_{1}(N)$.
(i) $G(N)$ is decreasing for $N \geq 16$
(ii) $G_{1}(N)$ is decreasing whenever $N \geq 297856$
(iii) $G(N)$ is positive valued function that tends to zero as N tends to infinity
(iv) $G_{1}(N)$ tends to zero as N tends to infinity
(v) $G(N) \geq G_{1}(N)$ for $N \geq 1.5 \times 10^{36}$
(vi) $G(N) \leq G_{1}(N)$ for $297856 \leq N \leq 10^{36}$.

Further Chim, Shorey and Sinha [ChShSi] proved that
Theorem 2.3. Assume the explicit abc-conjecture. Then (1.1) implies that

$$
c<\frac{6}{5} N^{1+G(N)} \text { for } N>2
$$

and

$$
c<\frac{6}{5} N^{1+G_{1}(N)} \text { for } N \geq 297856
$$

On the other hand, Stewart and Tijdeman [StTi86] showed that $G(N)$ and $G_{1}(N)$ cannot be replaced by a function $F(N)$ such that $\lim _{N \longrightarrow \infty} \frac{F(N)}{\frac{1}{\sqrt{(\log N)} \log _{2}(N)}}=0$.

3. Some Consequences of explicit abc-conjecture

We give a short survey on applications on explicit $a b c$-conjecture in Section 2.

3.A. A conjecture of Hickerson and Erdős

We consider

$$
\begin{equation*}
a_{1}!a_{2}!\cdots a_{t}!=n!\text { in integers } n>a_{1} \geq a_{2} \cdots \geq a_{t}>1, t>1 \tag{3.5}
\end{equation*}
$$

We always assume that $n \geq a_{1}+2$ otherwise (3.5) is satisfied for any positive integers $a_{2}, a_{3}, \ldots, a_{t}, a_{1}=$ $a_{2}!\ldots a_{t}!-1$ and $n=a_{1}+1$. This equation, which we call the equation of Hickerson and Erdős, has solutions given by

$$
7!3!^{2} 2!=9!, 7!6!=10!, 7!5!3!=10!, 14!5!2!=16!
$$

Hickerson (see [ErGr80]) conjectured that the largest solution of (3.5) is given by $n=16$. This is a difficult problem and even the case $a_{1}=n-2$ and $t=2$ remains open. Luca [Lu07] proved that (3.5) has only finitely many solutions whenever $a b c$-conjecture holds. The proof depends on the theory of linear forms in logarithms and it does not allow to determine all the solutions of (3.5). Nair and Shorey [NaSh16] confirmed the conjecture for $n \leq e^{80}$. Further, under Baker's explicit abc-conjecture, they confirmed the conjecture of Hickerson completely. We delete a_{1} ! on both sides of (3.5) and let $y=a_{1}+1, m=n-a_{1} \geq 2$. Then (3.5) can be re-written as

$$
a_{2}!\cdots a_{t}!=y(y+1) \cdots(y+m-1) .
$$

Since $y>a_{1} \geq a_{2}$, we see that all the terms $y, y+1, \ldots, y+m-1$ are composite. The proof also uses the following sharpening of a theorem of Sylvester due to Nair and Shorey [NaSh16].
Theorem 3.1. Assume that $x>100$ and $x, x+1, \cdots, x+k-1$ are all composite integers. Then

$$
P(x(x+1) \cdots(x+k-1))>4.42 k
$$

unless $x=125,224,2400,4374$ if $k=2$ and $x=350$ if $k=3$.
The first result in this direction is due to Sylvester [Sy1912] that a product of k consecutive positive integers each exceeding k is divisible by a prime greater than k.

3.B. Triples of consecutive powerful integers

An integer ν is called powerful if $\nu>0$ and $p^{2} \mid \nu$ whenever $p \mid \nu$ for every prime p. Golomb [Go70] proved in 1970 that there are infinitely many pairs of consecutive powerful integers and there exists no four (or more) consecutive powerful integers. Erdős conjectured that there is no three consecutive powerful integers. Trudgian [Tr16] proved, under explicit abc-conjecture, that $t<10^{20000}$ whenever $(t-1, t, t+1)$ is a triple of consecutive powerful integers. ${ }^{2}$ We recall the result of Mollin and Walsh [MoWa86]. Assume $t-1, t, t+1$ are powerful. Put

$$
P=t, \quad Q=(t-1)(t+1)=m y^{2}
$$

where m is squarefree. Then $t \equiv 0(\bmod 4)$ which implies that $m \equiv 7(\bmod 8)$ and (t, y) is a solution of $x^{2}-m y^{2}=1$. Let $m=7$. Then Mollin and Walsh [MoWa86] proved that

$$
\begin{equation*}
t>10^{10^{8}} . \tag{3.6}
\end{equation*}
$$

Hence, together with the result by Trudgian [Tr16], under explicit abc-conjecture, there is no triple $(t-1, t, t+1)$ of consecutive powerful integers such that $t^{2}-7 y^{2}=1$. In [ChShSi], Chim, Shorey and Sinha checked that when $m \in\{15,23,31,39,47,55,87\}$, then (3.6) can be replaced by

$$
t>10^{3 \times 10^{13}}
$$

Therefore, combining with the result by Trudgian [Tr16] and explicit abc-conjecture, there is no triple $(t-1, t, t+1)$ of consecutive powerful integers such that $t^{2}-m y^{2}=1$ with $m \in\{7,15,23,31,39,47,55,87\}$. If $(t-1, t, t+1)$ is a triple of powerful integers, then $N\left(t\left(t^{2}-1\right)\right)<t^{3 / 2}$. It was also proved in [ChShSi], that the above inequality does not hold for all sufficiently large t whenever explicit $a b c$-conjecture holds. More precisely, they proved
Theorem 3.2. If $t>10^{51075}$, then explicit abc-conjecture implies that

$$
N\left(t\left(t^{2}-1\right)\right)>t^{1.52}
$$

where N is the square free part of $t\left(t^{2}-1\right)$.
This is obtained by using $c<32 N^{1.6}$ from Theorem 2.2 and $c<N^{1+G_{1}(N)}$ from Theorem 2.3 with $N=10^{77544}$ and $N=10^{77785}$.

[^2]
3.C. Generalised Fermat's equation

Let p, q, r be positive integers ≥ 2 with $(p, q, r) \neq(2,2,2)$. The equation

$$
\begin{equation*}
x^{p}+y^{q}=z^{r}, \quad(x, y, z)=1 \text { with integers } x>0, y>0, z>0 \tag{3.7}
\end{equation*}
$$

is called the generalized Fermat equation. We consider (3.7) with $p \geq 3, q \geq 3, r \geq 3$. For solving (3.7), there is no loss of generality in assuming $x>1, y>1$ and $z>1$ since otherwise (3.7) is completely solved by Mihăilescu [Mi04].

Let $[p, q, r]$ denote all permutations of the ordered triple (p, q, r). Let

$$
Q=\{[3,5, p]: 7 \leq p \leq 23, p \text { prime }\} \cup\{[3,4, p]: p \text { prime }\}
$$

Then Laishram and Shorey [LaSh12] proved that (3.7) with $x>1, y>1, z>1, p \geq 3, q \geq 3, r \geq 3$ implies that $[p, q, r] \in Q$ such that

$$
\max \left(x^{p}, y^{q}, z^{r}\right)<e^{1758.3353}
$$

whenever explicit $a b c$-conjecture holds. Chim, Shorey and Sinha [ChShSi] sharpen the above result using Theorem 2.2 as follows.

Theorem 3.3. Assume explicit abc-conjecture. Let

$$
Q_{1}=\{[3,5, p]: 7 \leq p \leq 19\} \cup\{[3,4, p]: p \geq 11\}
$$

where p is a prime number. Then (3.7) with $x>1, y>1, z>1, p \geq 3, q \geq 3$ and $r \geq 3$ implies that $[p, q, r] \in Q_{1}$.

Further for each $[p, q, r] \in Q_{1}$, they gave the following upper bound for $\max \left(x^{p}, y^{q}, z^{r}\right)$.

$[p, q, r]$	$\max \left(x^{p}, y^{q}, z^{r}\right)<$
$[3,4, p], p \geq 37$	8.1×10^{75}
$[3,4,31]$	1.3×10^{123}
$[3,4,29]$	4.3×10^{130}
$[3,4,23]$	1.2×10^{167}
$[3,4,19]$	9.8×10^{217}
$[3,4,17]$	1.2×10^{263}
$[3,4,13]$	1.5×10^{481}
$[3,4,11]$	2.2×10^{599}

$[p, q, r]$	$\max \left(x^{p}, y^{q}, z^{r}\right)<$
$[3,5,19]$	1.6×10^{61}
$[3,5,17]$	6.7×10^{69}
$[3,5,13]$	3.9×10^{107}
$[3,5,11]$	3.9×10^{155}
$[3,5,7]$	6.6×10^{645}

3.D. Conjecture of Erdős and Woods

Under explicit abc-conjecture, Shorey and Tijdeman [ShTi16] proved the conjecture of Erdős and Woods [Er80] which states that there are no positive integers $m<n$ such that for $i=0,1,2$ the numbers $m+i$ and $n+i$ have the same prime factors. On the other hand, there are infinitely many pairs (m, n) with $m \neq n$ such that m, n and $m+1, n+1$ have the same prime factors. For example, for $h \geq 2$, if we take $(m, n)=\left(2^{h}-2,2^{h}\left(2^{h}-2\right)\right.$, then $(m+1, n+1)=\left(2^{h}-1,\left(2^{h}-1\right)^{2}\right)$. Thus m, n and $m+1, n+1$ have the same prime factors. We are not aware of any other infinite family contradicting the above conjecture of Erdős and Woods. But there is an isolated example given by $(m, n)=(75,1215)$. Then $(m, n)=\left(3 \cdot 5^{2}, 3^{5} \cdot 5\right)$ and $(m+1, n+1)=\left(2^{2} \cdot 19,2^{6} \cdot 19\right)$. It is proved in [BLSW96, Proposition 1 with $d=d^{\prime}=1$] that there are only finitely many possibilities of pairs (m, n) of positive integers with $m<n$ such that $N(m+i)=N(n+i)$ for $i=0,1,2$.

We give a short description on how explicit $a b c$-conjecture is used in the proof of [ShTi16]. Assume that for $i=0,1,2$ the numbers $m+i$ and $n+i$ have the same prime factors. We have

$$
(n+1)^{2}=n(n+2)+1
$$

Using Theorem 2.1 with $a=n(n+2), b=1$ and $c=(n+1)^{2}$, we get

$$
n^{2}<c<\left(\prod_{p \mid(n-m)} p\right)^{\frac{7}{4}} \leq(n-m)^{\frac{7}{4}}<n^{\frac{7}{4}},
$$

which is a contradiction.

3.E. Equation of Nagell and Ljunggren

Nagell-Ljunggren equation is the equation

$$
\begin{equation*}
y^{q}=\frac{x^{n}-1}{x-1} \tag{3.8}
\end{equation*}
$$

in integers $x>1, y>1, n>2, q>1$. This equation has solutions given by

$$
\frac{3^{5}-1}{3-1}=11^{2}, \frac{7^{4}-1}{7-1}=20^{2}, \frac{18^{3}-1}{18-1}=7^{3} .
$$

These are called exceptional solutions and any other solution is termed as non-exceptional solution. For an account of results on (3.8), see Shorey [Sh99] and Bugeaud and Mignotte [BuMi02]. It is conjectured that there are no non-exceptional solution and Laishram and Shorey [LaSh12] confirmed this under explicit $a b c$-conjecture.

3.F. Ideal Waring's Conjecture

For each integer $k \geq 2$, denote by $g(k)$ the smallest integer g such that any positive integer is the sum of at most g integers of the form x^{k}. A result of J. A. Euler implies that a lower bound for $g(k)$ is $2^{k}+\left\lfloor\left(\frac{3}{2}\right)^{k}\right\rfloor-2$. The Ideal Waring's conjecture, dating back to 1853 states that, for any $k \geq 2$, the equality $g(k)=2^{k}+\left\lfloor\left(\frac{3}{2}\right)^{k}\right\rfloor-2$ holds. Dickson and Pillai proved independently in 1936 that the Ideal Waring's conjecture holds if $k>6$ and if $\left(3^{k}+1\right) /\left(2^{k}-1\right) \leq\left\lfloor\left(\frac{3}{2}\right)^{k}\right\rfloor+1$. (See [HaWr54], end of Chapter XXI.) In 1957, Mahler [Ma57] used the Ridout's extension of the Thue-Siegel-Roth theorem to show that $g(k)=2 k+\left\lfloor\left(\frac{3}{2}\right)^{k}\right\rfloor-2$ except possibly for a finite number of values of k. It has been verified by several mathematicians that Ideal Waring's conjecture holds for $3 \leq k \leq 471600000$. Laishram [La15] proved in 2015 that under explicit abc-conjecture, Ideal Waring's conjecture is true.

4. New improvement on (1.3)

Now we give a sharpening to (2.4) as follows.
Theorem 4.1. Assume the explicit abc-conjecture. Then (1.1) implies that for $N \geq 1$,

$$
\begin{equation*}
c<N^{1.7} . \tag{4.9}
\end{equation*}
$$

The improvement depends crucially on the records of ABC-triples in [Rey18], and on the recent work of Matschke and von Känel [MaKä18a, MaKä18b, MaKä18c] for solving S-unit equations via Shimura-Taniyama conjecture which is confirmed in [BCDT01].

4.A. Lemmas

For any real number $x>0$, let $\Theta(x)=\prod_{p \leq x} p$ and $\theta(x)=\log (\Theta(x))$. In 1983, G. Robin [Ro83] proved the following lemma for $\theta(x)$.

Lemma 4.2. Let p_{n} be the nth prime. Then

$$
\theta\left(p_{n}\right) \geq n\left(\log n+\log _{2} n-1.076869\right) \text { for } n>1
$$

For given $0<\theta<1, m \geq 2$ and $K>0$, let

$$
f(x)=\frac{(\log x)^{m}}{m!}-K x^{\theta} .
$$

Then

$$
g(x)=x^{1-\theta}(m-1)!f^{\prime}(x)=\frac{(\log x)^{m-1}}{x^{\theta}}-K \theta(m-1)!
$$

and

$$
g^{\prime}(x)=\frac{(\log x)^{m-2}}{x^{1+\theta}}(m-1-\theta \log x) .
$$

Then we have the following Lemma.
Lemma 4.3. Assume that there exist positive numbers x_{0} and x_{1} with $1<x_{1} \leq x_{0}$ such that

$$
\begin{equation*}
f\left(x_{0}\right)<0, g\left(x_{0}\right)<0 \text { and } g^{\prime}\left(x_{1}\right)<0 . \tag{4.10}
\end{equation*}
$$

Then $f(x)<0$ for $x \geq x_{0}$.
Proof. The proof is in [ChShSi, Lemma 2.8].

4.B. Proof of Theorem 4.1

First, by following the same proof as in [LaSh12, Theorem 1], we have $\omega_{1}=20$ and $\omega_{\epsilon}=19$ for $\epsilon=0.7$ such that

$$
\epsilon \geq \frac{1+\log X_{0}(i)}{X_{0}(i)} \text { for } i \geq \omega_{1} \text { and } \frac{i!\Theta\left(p_{i}\right)^{\epsilon}}{\theta\left(p_{i}\right)^{i}}>\sqrt{2 \pi i} \text { for } i \geq \omega_{\epsilon}
$$

holds. Here we have $X_{0}(i)=\log i+\log _{2} i-1.076869$, then $\theta\left(p_{i}\right) \geq i X_{0}(i)$ by Lemma 4.2 and $\frac{i!N^{\epsilon}}{(\log N)^{i}}>\frac{i!\Theta\left(p_{i}\right)^{\epsilon}}{\theta\left(p_{i}\right)^{2}}$. Therefore, we have (4.9) for $\omega \geq 19$.

Next, we check that for $13 \leq \omega<19$, we have

$$
\frac{\omega!\Theta\left(p_{\omega}\right)^{\epsilon}}{\theta\left(p_{\omega}\right)^{\omega}}>\frac{6}{5} .
$$

Thus we get

$$
\frac{(\log N)^{\omega}}{\omega!}<\frac{5}{6} N^{0.7} \text { for } N>2,13 \leq \omega<19 .
$$

Therefore, for $13 \leq \omega<19$, we also have (4.9).
Now we consider $\omega \leq 12$. We apply Lemma 4.3 with $x_{1}=x_{0}, K=5 / 6$ and $\theta=0.7$. Then N 's lies in the range $\left[\prod_{p \leq p_{\omega}} p, x_{0}\right)$.
(i). We observe that for $2 \leq \omega \leq 3$, we may choose $x_{1}=x_{0}=\prod_{p \leq p_{\omega}} p$ so that (4.10) is satisfied.

Table 1:

ω	$L=\prod_{p \leq p_{\omega}} p$	$U=x_{0}$	No. of N with $N \in[L, U)$
4	210	270	0
5	2310	13500	39
6	30030	278000	148
7	510510	5250000	331
8	9699690	96800000	480
9	223092870	1773000000	456
10	6469693230	32600000000	270
11	200560490130	600000000000	81
12	7420738134810	11050000000000	9

Then (4.9) follows by Lemma 4.3 with $K=5 / 6$.
(ii). For $4 \leq \omega \leq 12$, we choose $x_{1}=x_{0}$ as given in Table 1 so that (4.10) is satisfied and we perform SAGE computation to extract all square free N with $\omega(N)=\omega$ that lie in the range $\left[\prod_{p \leq p_{\omega}} p, x_{0}\right)$. Hence we obtain Table 1.

By (1.2), for each $N=Q_{1} Q_{2} \cdots Q_{\omega}$ where $Q_{1}, Q_{2}, \ldots, Q_{\omega}$ are distinct primes and $4 \leq \omega \leq 12$, it suffices to restrict $c \in\left[N^{1.7}, \frac{6}{5} N \frac{(\log N)^{\omega}}{\omega!}\right)$ otherwise (4.9) holds. We observe that $c<10^{20}$ in order to have $c \in\left[N^{1.7}, \frac{6}{5} N \frac{(\log N)^{\omega}}{\omega!}\right)$ for those $N \in[L, U)$ for $4 \leq \omega \leq 10$ in Table 1 . We refer to the website [Rey18] maintained by de Smit in which a complete list of (a, b, c) with $q=\frac{\log c}{\log N}>1.4$ and $c<10^{20}$ extracted by various mathematicians are recorded. It is found that all have $q<1.7$ and hence satisfy $c<N^{1.7}$. Therefore, (4.9) holds for $4 \leq \omega \leq 10$.

Besides referring to the results from [Rey18], we adopt the results from the work of Matschke and von Känel [MaKä18a], in connection to their work [MaKä18b], to tackle the cases in Table 1 with $11 \leq \omega \leq 12$. They have a record of

$$
\begin{gather*}
a+b=c, \quad 0<a \leq b<c, \quad \operatorname{gcd}(a, b, c)=1, \\
\operatorname{rad}(a b c) \mid 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 47 \cdot 53 . \tag{4.11}
\end{gather*}
$$

For all the (a, b, c) recorded in [MaKä18a], all satisfy $c<N^{1.7}$. For the case when $\omega=12$, the 9 values of $N \in[L, U)$ extracted are 7420738134810, 8222980095330, 8624101075590, 9426343036110, $9814524629910,10293281928930,10491388397490,10629705976890$ and 11003163441270 . It is observed that they all have prime factors not exceeding 53 . Therefore according to the results from [MaKä18a], (4.9) is fulfilled.

For the case when $\omega=11$, it is checked that among all the 81 values of $N \in[L, U)$ extracted, 55 of them have all prime factors not exceeding 53 so that (4.9) is fulfilled by the results from [MaKä18a] again. The list of 26 remaining N 's and their prime factorization is shown in Section 6. (Appendix) for readers' reference. For these 26 values of $N, 23$ of them yield $c<10^{20}$ when only those c 's in $\left[N^{1.7}, \frac{6}{5} N \frac{(\log N)^{\omega}}{\omega!}\right)$ are considered. Therefore (4.9) is fulfilled according to the results from [Rey18]. The remaining three N 's for consideration are listed in Table 2.

Finally, we make use of the SAGE program supplied by Matschke and von Känel [MaKä18a] in [MaKä18c] to obtain all coprime (a, b, c) satisfying $a+b=c$ and $0<a \leq b<c$ for the three remaining cases of N in Table 2. They all give $q=\frac{\log c}{\log N}<1.7$. Therefore, (4.9) is fulfilled for $\omega=11$ as well and hence (4.9) holds. The SAGE Program of [MaKä18c] depends on new algorithms so that the running time is reduced greatly compared to that of the algorithm applied in the proof of (2.4) in [ChShSi, Section 4]. The executing time for each case of N in Table 2 is less than 2 hours.

Table 2:

N	Prime factors	$N^{1.7}>$	$\frac{6}{5} N \frac{(\log N)^{\omega}}{\omega!}<$
584241427770	$2,3,5,7,11,13,17,19,23,37,71$	1.0074×10^{20}	1.0143×10^{20}
585172598010	$2,3,5,7,11,13,17,19,23,43,61$	1.01×10^{20}	1.0166×10^{20}
586064969490	$2,3,5,7,11,13,17,19,29,31,67$	1.012×10^{20}	1.188×10^{20}

5. Application of Theorem 4.1

We consider the following analogue of the equation of Hickerson and Erdős given in Section 3.1. For each non negative integer j, define u_{j} as the product of the odd numbers $\leq j$. Thus if j is odd,

$$
u_{j}=1 \cdot 3 \cdot 5 \cdots j=\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdots(j-1) \cdot j}{2 \cdot 4 \cdot 6 \cdots(j-1)}=\frac{j!}{2^{\frac{j-1}{2}}\left(\frac{j-1}{2}\right)!}
$$

We consider the following equation

$$
\begin{equation*}
u_{a_{1}} u_{a_{2}} \cdots u_{a_{t}}=u_{n} \text { in odd integers } n>a_{1} \geq a_{2} \geq \cdots \geq a_{t} \geq 3, t>1 . \tag{5.12}
\end{equation*}
$$

If $n-a_{1}=2$, (5.12) has infinitely many solutions by choosing $a_{2}, a_{3}, \ldots, a_{t}$ arbitrary and $a_{1}=$ $u_{a_{2}} \cdot u_{a_{3}} \cdots u_{a_{t}}-2$. Therefore we always assume that $n-a_{1} \geq 4$ since $n-a_{1}$ is even. We observe that

$$
u_{23} \cdot u_{5}^{2} \cdot u_{3}=u_{27}
$$

and this may be the only solution of (5.12) when $n-a_{1} \geq 4$. We write x and k for integers satisfying $x>0$ and $k \geq 2$,

$$
\Delta(x, 2, k)=x(x+2) \cdots(x+2(k-1))
$$

and

$$
\begin{equation*}
x=a_{1}+2, k=\frac{n-a_{1}}{2} \geq 2 . \tag{5.13}
\end{equation*}
$$

We re-write (5.12) as $u_{a_{2}} u_{a_{3}} \cdots u_{a_{t}}=\Delta(x, 2, k)$. We observe that $x>2$ is odd since $a_{1}>0$ is odd. Further $P\left(u_{a_{2}} u_{a_{3}} \cdots u_{a_{t}}\right)=P(\Delta(x, 2, k)) \leq a_{2}$. Since $x=a_{1}+2>a_{2}$, we have $x, x+2, \ldots, x+2(k-1)$ are all composite. Since x is odd, $x+1, x+3, \ldots, x+2 k-3, x+2 k-1$ are all even and therefore the interval $[x, x+2 k)$ contains no prime. Therefore we consider equation

$$
\begin{equation*}
u_{a_{2}} u_{a_{3}} \cdots u_{a_{t}}=\Delta(x, 2, k) \tag{5.14}
\end{equation*}
$$

where x is odd and there is no prime in $\{x, x+2, \ldots, x+2(k-1)\}$. We observe that $(x, k)=(25,2)$ is a solution of (5.14). In [NaSh18], Nair and Shorey proved that (5.14) implies $k \leq 23$ under the assumptions of explicit abc-conjecture. Further, they gave the following upper bounds for x when $2 \leq k \leq 23$ where x and k are given by (5.13).

Table 3:

k	$\log x<$						
2	4042	8	2739	14	1150	20	143
3	594	9	2168	15	1051	21	115
4	2766	10	1987	16	443	22	98
5	587	11	1683	17	362	23	86
6	1350	12	1458	18	360		
7	3661	13	1286	19	199		

In this Section, we considerably improve the bounds for $\log x$ for $13 \leq k \leq 23$ given in Table 3 as follows. The new bounds are given in Table 4. We recall the inequalities from [NaSh18] which we

Table 4:

k	$\log x<$	k	$\log x<$	k	$\log x<$
13	574	17	110	21	68
14	351	18	91	22	60
15	220	19	85	23	57
16	143	20	71		

shall use. For more details, we refer to [NaSh18, Section 2]. We count the power of 3 on both sides of (5.14). The power of 3 on the left hand side is at least the power of 3 in $u_{a_{2}}$. In the product on the right hand side of (5.14), we delete a term in which 3 appears to the highest power. The power of 3 in this term cannot exceed $\frac{\log (x+2(k-1))}{\log 3}$. Moreover, the power of 3 in the remaining terms does not exceed the power of 3 in $(k-1)!$ which is at most $\frac{k-1}{2}$. Thus,

$$
\frac{a_{2}+1}{4}-\frac{\log \left(a_{2}+1\right)}{\log 3}<\frac{k-1}{2}+\frac{\log (2 x)}{\log 3} .
$$

which implies

$$
\begin{equation*}
a_{2}\left(\frac{1}{4}-\frac{\log \left(a_{2}+1\right)}{a_{2} \log 3}\right)<\frac{k}{2}+\frac{\log x}{\log 3}-0.119 . \tag{5.15}
\end{equation*}
$$

Choose distinct $x+2 j_{1}$ and $x+2 j_{2}$ such that $N\left(x+2 j_{1}\right) \leq N\left(x+2 j_{2}\right)$ are the smallest among $N(x+2 i)$ for $0 \leq i<k$. Then

$$
\begin{aligned}
N\left(x+2 j_{2}\right) \leq & \left(\prod_{i=0, i \neq j_{1}}^{k-1} N(x+2 i)\right)^{\frac{1}{k-1}} \leq\left(\prod_{i=0}^{k-1} N(x+2 i)\right)^{\frac{1}{k-1}} \\
& \leq \frac{1}{2} \exp \left(\frac{1.00008 a_{2}}{k-1}+\frac{k \log k}{k-1}-\frac{\log 2}{2}\right) .
\end{aligned}
$$

Consider

$$
\begin{equation*}
\frac{x+2 j_{1}}{d}-\frac{x+2 j_{2}}{d}=\frac{2\left(j_{1}-j_{2}\right)}{d}, \text { where } d=\operatorname{gcd}\left(x+2 j_{1},\left(j_{1}-j_{2}\right)\right) . \tag{5.16}
\end{equation*}
$$

We take $c=\frac{x+2 j_{1}}{d}, a=\frac{x+2 j_{2}}{d}, b=\frac{2\left(j_{1}-j_{2}\right)}{d}$ if $j_{1}>j_{2}$ and $c=\frac{x+2 j_{2}}{d}, a=\frac{x+2 j_{1}}{d}, b=\frac{2\left(j_{2}-j_{1}\right)}{d}$ if $j_{2}>j_{1}$ so that (1.1) is satisfied such that a, b, c are relatively prime positive integers. Applying (4.9), we get

$$
\frac{x}{d}<\left(N\left(x+2 j_{1}\right) N\left(x+2 j_{2}\right)\left(\left|\frac{2\left(j_{1}-j_{2}\right)}{d}\right|\right)\right)^{1.7}
$$

Hence

$$
\begin{equation*}
\log x<1.7\left(\frac{2.00016 a_{2}}{k-1}+\frac{2 k \log k}{k-1}+\log k-2 \log 2\right) . \tag{5.17}
\end{equation*}
$$

The bounds for $\log x$ in [NaSh18] were obtained using $P=P(\Delta(x, 2, k))>4.7 k$ whenever $x>4.5 k$ and $(x, k) \notin\{(25,2),(243,2)\}$. We consider the cases when $P(\Delta(x, 2, k))>C k$ and $P(\Delta(x, 2, k)) \leq C k$ where C is a constant. This is the crucial step and we choose the values for C appropriately depending on k.

Let $k=23$. Consider the case when $P=P(\Delta(x, 2, k))>12 k$. Then $a_{2} \geq P>12 k$ implies $a_{2} \geq 277$. Consider the function

$$
F\left(a_{2}\right)=\frac{\log \left(a_{2}+1\right)}{a_{2} \log 3}
$$

This is a decreasing function and thus $F\left(a_{2}\right) \leq F(277) \leq 0.0185$ which we use in (5.15), to get

$$
\begin{equation*}
a_{2}(0.25-0.0185)<\frac{k}{2}+\frac{\log x}{\log 3}-0.119 . \tag{5.18}
\end{equation*}
$$

We use the bound for a_{2} given by (5.18) in (5.17) to get $\log x<56$. Now we have to consider the case when $P \leq 12 k$. This will imply either $a_{2} \leq 12 k$ or $a_{2}>12 k$. If $a_{2}>12 k$, this will reduce to the earlier case. Therefore, we can always assume that $a_{2} \leq 12 k$. We apply this bound for a_{2} in (5.17) to get $\log x<57$. Thus combining both the cases, we have $\log x<57$ when $k=23$. Similarly for $15 \leq k \leq 22$, we get the following bounds for $\log x$ with a suitable choice for C which determines the cases according as $P>C k$ and $P \leq C k$.

k	C	$\log x<$	k	C	$\log x<$
22	12	60	18	20	91
21	15	68	17	25	110
20	15	71	16	35	143
19	20	85	15	55	220

Let $k=14$. Here we need to consider first when $N(a b c)<e^{204.75}$. Applying (4.9) in (5.16), we get

$$
\log x<1.7 \times 204.75+\log k<351
$$

Therefore we may assume that $N(a b c) \geq e^{204.75}$. Applying Theorem 2.1 with $\epsilon=\frac{7}{12}$ in (5.16), we get

$$
\frac{x}{d}<\frac{6}{5 \sqrt{98 \pi}}\left(N\left(x+2 j_{1}\right) N\left(x+2 j_{2}\right)\left(\left|\frac{2\left(j_{1}-j_{2}\right)}{d}\right|\right)\right)^{\frac{19}{12}} .
$$

This implies as in (5.17) that

$$
\begin{equation*}
\log x<\frac{19}{12}\left(\frac{2 \cdot 00016 a_{2}}{k-1}+\frac{2 k \log k}{k-1}+\log k-2 \log 2\right)+\log \left(\frac{6}{5 \sqrt{98 \pi}}\right) . \tag{5.19}
\end{equation*}
$$

As in the earlier cases of $15 \leq k \leq 23$, now we consider the cases according as $P>50 k$ and $P \leq 50 k$ along with (5.19) and (5.15) to get $\log x<187$ and 179 respectively. Thus combining all the cases, we get $\log x<351$ when $k=14$.

Let $k=13$. Assume that $N(a b c)<e^{335.71}$. Applying (4.9) in (5.16), we get

$$
\log x<1.7 \times 335.71+\log k<574
$$

Therefore we may assume that $N(a b c) \geq e^{335.71}$. Applying Theorem 2.1 with $\epsilon=\frac{6}{11}$ in (5.16), we get

$$
\begin{equation*}
\log x<\frac{17}{11}\left(\frac{2.00016 a_{2}}{k-1}+\frac{2 k \log k}{k-1}+\log k-2 \log 2\right)+\log \left(\frac{6}{5 \sqrt{254 \pi}}\right) . \tag{5.20}
\end{equation*}
$$

Now we consider the cases according as $P>100 k$ and $P \leq 100 k$ along with (5.20) and (5.15) to get $\log x<326$ and 343, respectively. Thus combining all the cases, we get $\log x<574$ when $k=13$.

6. Appendix

The following provides supplementary information to the proof of Theorem 4.1 in Section 4.B. for readers' reference. For $\omega=11$, the list of 26 cases of N with prime factors exceeding 53 and their prime factorization is as follows:

$$
\begin{aligned}
& 381711900570=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 59 \text {, } \\
& 394651287030=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 61 \text {, } \\
& 408036859230=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 59 \text {, } \\
& 421868617170=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 61 \text {, } \\
& 433469446410=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 67 \text {, } \\
& 459348219330=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 71 \text {, } \\
& 463363890990=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 67 \text {, } \\
& 472287605790=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 73 \text {, } \\
& 487011735210=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 37 \times 59 \text {, } \\
& 491027406870=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 71 \text {, } \\
& 503520607590=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 37 \times 61 \text {, } \\
& 504859164810=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 73 \text {, } \\
& 511105765170=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 79 \text {, } \\
& 514481257290=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 59 \text {, } \\
& 531921299910=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 61 \text {, } \\
& 536984538090=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 83 \text {, } \\
& 539661652530=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 41 \times 59 \text {, } \\
& 546354438630=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 79 \text {, } \\
& 553047224730=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 37 \times 67 \text {, } \\
& 557955267870=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 41 \times 61 \text {, } \\
& 565986611190=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 43 \times 59 \text {, } \\
& 574017954510=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 83 \text {, } \\
& 575802697470=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 89 \text {, } \\
& 584241427770=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 29 \times 31 \times 67 \text {, } \\
& 585172598010=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 43 \times 61 \text {, } \\
& 586064969490=2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 37 \times 71 \text {. }
\end{aligned}
$$

Acknowledgements. The first author is supported by the Austrian Science Fund (FWF) under the project P26114. The second author is supported by NBHM and the third author by INSA Senior Scientist award. The authors would like to thank B. Matschke and R. von Känel for referring the authors to their work of solving S-unit equations in [MaKä18b] and for making the SAGE program [MaKä18c] and the solutions of (4.11) (see [MaKä18a]) available.

References

[Ba04] A. Baker, Experiments on the abc-conjecture, Publ. Math. Debrecen 65 (2004), 253-260.
[BLSW96] R. Balasubramanian, M. Langevin, T. N. Shorey and M. Waldschmidt, On the maximal length of two sequences of integers in arithmetic progressions with the same prime divisors, Monatshefte für Mathematik 121 (1996), 295-307.
[BCDT01] C. Breuil, B. Conrad, F. Diamond and R. Taylor. On the modularity of elliptic curves over \mathbb{Q} : wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843-939.
[BuMi02] Y. Bugeaud and and M. Mignotte, L'equation de Nagell-Ljunggren $\frac{x^{n}-1}{x-1}=y^{q}$, Enseign. Math. 48 (2002), 147-168.
[ChShSi] K. C. Chim, T. N. Shorey and S. B. Sinha, On Baker's explicit abc-conjecture, (submitted, 18 pages.)
[Er80] P. Erdős, How many pairs of products of consecutive integers have the same prime factors, Amer. Math. Monthly $\mathbf{8 7}$ (1980), 391-392.
[ErGr80] P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographie No.28, L'Enseignement Math. Geneve (1980).
[Go70] S. W. Golomb, Powerful numbers, Amer. Math. Monthly 77 (1970), 848-855.
[GrTu02] A. Granville and T. J. Tucker, It's as easy as abc, Notices of the AMS, 49 (2002), 1224-31.
[HaWr54] G. H. Hardy and W. M. Wright, An introduction to the theory of numbers, Oxford Univ. Press, third ed., 1954.
[La15] S. Laishram, Baker's Explicit abc-Conjecture and Waring's problem, Hardy Ramanujan Journal, 38, 2015.
[LaSh12] S. Laishram and T. N. Shorey, Baker's explicit abc-conjecture and applications, Acta Arithm., 155 (2012), 419-429.
[Lu07] F.Luca, On factorials which are products of factorials, Math. Proc. Camb. Phil. Soc. 143 (2007), 533-542.
[Ma57] K. Mahler, On the fractional parts of the powers of a rational number. II, Mathematika 4 (1957), 122-124.
[Ma90] D. W. Masser, Note on a conjecture of Szpiro, Les pinceaux de courbes elliptiques, Semin., Paris/Fr. 1988, Astérisque 183 (1990), 19-23.
[MaKä18a] B. Matschke and R. von Känel (2018). Data for S-unit equations. Retrieved in 3rd July 2018. https://bmatschke.github.io/solving-classical-diophantine-equations/
[MaKä18b] B. Matschke and R. von Känel, Solving S-unit, Mordell, Thue, Thue-Mahler and generalized Ramanujan-Nagell equations via Shimura-Taniyama conjecture, Arxiv (2018) in https://arxiv.org/abs/1605.06079
[MaKä18c] B. Matschke and R. von Känel (2018). Source code for the datas for S-unit equations. Retrieved 8th August 2018. https://github.com/bmatschke/solving-classical-diophantine-equations/blob/master/s-unit.sage
[Mi04] P. Mihăilescu, Primary Cyclotomic Units and a proof of Catalan Conjecture, J. Reine Angew Math., 572 (2004), 167-195.
[MoWa86] R. A. Mollin and P. G. Walsh, A note on powerful numbers, quadratic fields and the Pellian, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 109-114.
[NaSh16] S. G. Nair and T. N. Shorey, Lower bounds for the greatest prime factor of product of consecutive positive integers, J. Number Theory 159 (2016), 307-328.
[NaSh18] S. G. Nair and T. N. Shorey, On products from blocks of consecutive odd integers, Publ. Math. Debrecen 92 (2018), 1-15.
[Oe88-89] J. Oesterlé, Nouvelles approches du "théorème" de Fermat. (New approaches to Fermat's "theorem"), Séminaire Bourbaki, Vol. 1987/88. Astérisque No. 161-162 (1988),4, 165-186 (1989).
[Rey18] E. Reyssat, Mathematical Institute, Universiteit Leiden. (2018). Bart de Smit - ABC triples - by quality. Retrieved 5th July 2018. http://www.math.leidenuniv.nl/~desmit/abc/index.php?set=2
[Ro83] G. Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de n, Acta Arith. 42 (1983), 367-389.
[Sh99] T. N. Shorey, Exponential diophantine equations involving products of consecutive integers and related equations, Number Theory ed. R. P. Bambah, V. C. Dumir and R. J. Hans-Gill, Hindustan Book Agency (1999), 463-495.
[ShTi16] T.N.Shorey and R. Tijdeman, Arithmetic properties of blocks of consecutive integers, From arithmetic to zeta functions, Springer (2016), 455-471.
[StTi86] C.L.Stewart and R. Tijdeman, On the Oesterlé-Masser Conjecture, Monatshefte Für Mathematik 102 (1986), 251257.
[Sy1912] J. J. Sylvester, On arithmetical series, Messenger of Mathematics, XXI (1892), 1-19, 87-120 and Mathematical Papers, 4 (1912), 687-731.
[Tr16] T. Trudgian, Baker's explicit ABC conjecture implies there is no hat-trick of powerful numbers, American Mathematical Monthly, 121 (2016).

Kwok Chi Chim

Institute of Analysis and Number Theory
Graz University of Technology
Kopernikusgasse 24/II
A-8010 Graz, Austria. e-mail: chim@math.tugraz.at

Saranya G. Nair

Stat-Math Unit
Indian Statistical Institute
8th Mile Mysore Road
Bangalore - 560059
e-mail: saranya_vs@isibang.ac.in

T. N. Shorey

National Institute of Advanced Studies
IISc Campus
Bangalore - 560012 e-mail: shorey@math.iitb.ac.in

[^0]: We thank episciences.org for providing open access hosting of the electronic journal Hardy-Ramanujan Journal

[^1]: ${ }^{1}$ The values of ω_{ϵ} and N_{ϵ} for $\epsilon=\frac{1}{2}$ and $\frac{1}{3}$ given in [LaSh12] have been amended.

[^2]: ${ }^{2}$ It should be noted that the bound $t<10^{200} 00$ can be strengthened to $t<10^{14000}$ if the same deduction as in [Tr16] with $\epsilon=\frac{1}{3}$ and $\omega_{\epsilon}=6016$ from Theorem 2.1 are applied.

