The Barban-Vehov Theorem in Arithmetic Progressions

V. Kumar Murty

To the memory of S. Srinivasan

Abstract

A result of Barban-Vehov (and independently Motohashi) gives an estimate for the mean square of a sequence related to Selberg's sieve. This upper bound was refined to an asymptotic formula by S. Graham in 1978. In 1992, I made the observation that Graham's method can be used to obtain an asymptotic formula when the sum is restricted to an arithmetic progression. This formula immediately gives a version of the Brun-Titchmarsh theorem. I am taking the occasion of a volume in honour of my friend S. Srinivasan to revisit and publish this observation in the hope that it might still be of interest.

Keywords. Selberg's sieve, Brun-Titchmarsh theorem, arithmetic progressions
2010 Mathematics Subject Classification. Primary 11N37, 11N13 ; Secondary 11B25, 11N35, 11N69

1. Introduction

Let $1 \leq z_{1} \leq z_{2}$ and define for $i=1,2$,

$$
\Lambda_{i}(n)= \begin{cases}\mu(n) \log \frac{z_{i}}{n} & \text { if } n \leq z_{i} \\ 0 & \text { if } n>z_{i}\end{cases}
$$

Also, set

$$
\lambda_{n}=\frac{\Lambda_{2}(n)-\Lambda_{1}(n)}{\log z_{2} / z_{1}}
$$

and

$$
a(n)=\sum_{d \mid n} \lambda_{d} .
$$

The λ_{n} are weights that are related to Selberg's sieve. Notice that we have

$$
a(1)=1
$$

and $a(n)=0$ for $1<n \leq z_{1}$. Moreover, for primes p, we have

$$
a(p)= \begin{cases}\frac{\log p / z_{1}}{\log z_{2} z_{1}} & \text { if } z_{1}<p<z_{2} \\ 0 & \text { otherwise } .\end{cases}
$$

It was shown by Barban and Vehov [BaVe68] and Motohashi [Mo74] that

$$
\sum_{n \leq N}|a(n)|^{2} \ll \frac{N}{\log z_{2} / z_{1}} .
$$

Soon afterwards, S. Graham [Gr78] was able to prove the following asymptotic formulae: if $N \geq z_{2}$, then

$$
\sum_{n \leq N}|a(n)|^{2}=\frac{N}{\log z_{2} / z_{1}}+\mathbf{O}\left(\frac{N}{\left(\log z_{2} / z_{1}\right)^{2}}\right)
$$

[^0]and if $z_{1} \leq N \leq z_{2}$, we have
$$
\sum_{n \leq N}|a(n)|^{2}=\frac{N \log N / z_{1}}{\left(\log z_{2} / z_{1}\right)^{2}}+\mathbf{O}\left(\frac{N}{\left(\log z_{2} / z_{1}\right)^{2}}\right)
$$

This result has found significant applications to zero density theorems and to the estimation of Linnik's constant (see [Ju77] and [Gr81] for example).

The purpose of this note is to study the size of the sum when n is constrained to range through a fixed arithmetic progression. In my joint work with R. Balasubramanian [BaMu92], we observed (Proposition 1.2) that for $N \geq r$ and $(b, r)=1$, we have

$$
\sum_{\substack{n \leq N \\ n \equiv b \\(\bmod r)}}|a(n)| \ll \frac{N}{\phi(r)^{\frac{1}{2}}\left(\log z_{2} / z_{1}\right)^{\frac{1}{2}}}
$$

This follows immediately from Graham's result by the Cauchy-Schwarz inequality.
Soon after [BaMu92] was written, I worked out an asymptotic formula for the sum on the left by adapting Graham's methods. The result is that for $(b, r)=1$ and $N \geq r z_{2}^{2}$, we have

$$
\sum_{\substack{n \leq N \\ n \equiv b \bmod r}}|a(n)|^{2}=\frac{N}{\phi(r) \log z_{2} / z_{1}}+\mathbf{O}\left(\frac{N \sigma(r)}{\phi(r)^{2}\left(\log z_{2} / z_{1}\right)^{2}}\right)
$$

If $r z_{1} z_{2} \leq N \leq r z_{2}^{2}$, then we show that

$$
\sum_{\substack{n \leq N \\ n \equiv b \bmod r}}|a(n)|^{2}=\frac{N}{\phi(r) \log z_{2} / z_{1}}+\mathbf{O}\left(\frac{N\left(\log r z_{2}^{2} / N\right)^{5}}{r\left(\log z_{2} / z_{1}\right)^{2}}\right)+\mathbf{O}\left(\frac{N(\log r)^{2}}{r\left(\log z_{2} / z_{1}\right)^{2}}\right)+\mathbf{O}\left(\frac{r z_{2}}{\left(\log z_{2} / z_{1}\right)^{2}}\right) .
$$

The last two terms on the right are not present if we have the additional condition $z_{1}>r$. Also, It will be clear from the arguments that the same methods will actually allow us to get estimates for $N<r z_{1} z_{2}$ as well but we do not pursue that here.

An immediate consequence of the first formula is a version of the Brun-Titchmarsh theorem in the following form. Denote by $\pi(N, r, b)$ the number of primes $\leq N$ which are $\equiv b \bmod r$. Then we have

$$
\pi(N, r, b) \leq \frac{2 N}{\phi(r) \log N / r}+\mathbf{O}\left(\frac{N \sigma(r)}{\phi(r)^{2}(\log N / r)^{2}}\right)
$$

We could try to use the second formula in a similar manner.
Our method of proof for both formulae is elementary and uses only the usual prime number theorem. The proof of the first formula is a direct generalization of the work of Graham ([Gr78], §3) and represents the easy case.

Though these calculations were completed some years ago, I had not published them. However, the occasion of a volume honouring the memory of my friend S. Srinivasan caused me to look at them again. In particular, the consequence for the Brun-Titchmarsh theorem may still be of interest. When I was a Visiting Fellow at the Tata Institute for Fundamental Research in 1983-1984, Srinivasan was my office-mate and we shared many hours of mathematical conversation. We also enjoyed many social occasions together when we had a chance to discuss philosophical and even spiritual questions. Srinivasan was always a thorough and thoughtful individual and I look back on those occasions with many pleasant memories. Given that his main interest was in analytic number theory, I thought the topic of this article might have been of interest to him.

The note is organized as follows. In $\S 2$, we prove the first formula. In $\S 3$, we begin the proof of the second formula. In $\S 4$ and $\S 5$, we estimate certain error terms and in $\S 6$, we study the main term. Finally in $\S 7$, we complete the proof of the second formula.

I would like to thank the referees for helpful comments that helped to streamline the presentation.

2. The First Formula

The purpose of this section is to prove the following.
Theorem 2.1. Suppose that $r z_{2}^{2} \leq N$ and $(b, r)=1$. Then,

$$
\sum_{\substack{n \leq N \\ n \equiv b \\(\bmod r)}}|a(n)|^{2}=\frac{N}{\phi(r) \log z_{2} / z_{1}}+\mathbf{O}\left(\frac{N \sigma(r)}{\phi(r)^{2}\left(\log z_{2} / z_{1}\right)^{2}}\right)
$$

The proof follows closely the method of [Gr78], $\S 3$ but we give the details in order to orient the reader. First, we note an immediate consequence. Denote by $\psi\left(N, z_{2}, r, b\right)$ the number of integers $n \leq N$ with $n \equiv b(\bmod r)$ all of whose prime factors are $\geq z_{2}$. Denote also by $\pi(N, r, b)$ the number of primes $p \leq N$ with $p \equiv b(\bmod r)$.

Corollary 2.2. If $r z_{2}^{2} \leq N$, then

$$
\psi\left(N, z_{2}, r, b\right) \leq \frac{N}{\phi(r) \log z_{2}}+\mathbf{O}\left(\frac{N \sigma(r)}{\phi(r)^{2}\left(\log z_{2}\right)^{2}}\right)
$$

Proof. If $n \leq N$, and $n \equiv b(\bmod r)$ and it has all its prime divisors $\geq z_{2}$, then $a(n)=1$.
Corollary 2.3. We have

$$
\pi(N, r, b) \leq \frac{2 N}{\phi(r) \log N / r}+\mathbf{O}\left(\frac{N \sigma(r)}{\phi(r)^{2}(\log N / r)^{2}}\right)
$$

Proof. This follows on noting that

$$
\pi(N, r, b) \leq \pi\left(z_{2}, r, b\right)+\psi\left(N, z_{2}, r, b\right)
$$

and the trivial bound $\pi\left(z_{2}, r, b\right) \leq z_{2} / r+1$ and choosing $z_{2}=(N / r)^{\frac{1}{2}}$.
To prove the theorem, we notice that

$$
\left(\log z_{2} / z_{1}\right)^{2} \sum_{\substack { n \leq N \\
n \equiv b \leq \begin{subarray}{c}{\bmod r){ n \leq N \\
n \equiv b \leq \begin{subarray} { c } { \operatorname { m o d } r) } }\end{subarray}}|a(n)|^{2}=\sum_{\substack{n \leq N \\
n \equiv b}}\left(\sum_{d \mid n} \Lambda_{1}(d)-\sum_{e \mid n} \Lambda_{2}(e)\right)^{2}
$$

The right hand side is a sum of terms of the form

$$
S_{i, j}=\sum_{\substack{n \leq N \\ n \equiv b}} \sum_{d, e \mid n} \Lambda_{i}(d) \Lambda_{j}(e)
$$

where $i, j \in\{1,2\}$. The theorem will follow from the following.
Proposition 2.4. We have

$$
S_{i, j}=\frac{N}{\phi(r)} \log \min \left(z_{i}, z_{j}\right)+\mathbf{O}\left(z_{i} z_{j}\right)+\mathbf{O}\left(N \sigma(r) / \phi(r)^{2}\right)
$$

In particular, if $r z_{i} z_{j} \leq N$, the first error term is $\mathbf{O}(N / r)$.

Proof. By definition

$$
S_{i, j}=\sum \Lambda_{i}(d) \Lambda_{j}(e)\left\{\frac{N}{r[d, e]}+\mathbf{O}(1)\right\}
$$

The error term is

$$
\ll\left(\sum_{d \leq z_{i}}\left|\Lambda_{i}(d)\right|\right)\left(\sum_{e \leq z_{j}}\left|\Lambda_{j}(e)\right|\right) \ll z_{i} z_{j}
$$

The main term is

$$
\frac{N}{r} \sum_{\substack{d \leq z_{i} \\ e \leq z_{j} \\(d, r)=(e, r)=1}} \frac{\Lambda_{i}(d) \Lambda_{j}(e)}{[d, e]} .
$$

Without loss of generality, we may suppose that $z_{i} \leq z_{j}$. We have

$$
\sum_{\substack{d \leq z_{i} \\ e \leq z_{j} \\(d, r)=(e, r)=1}} \frac{\Lambda_{i}(d) \Lambda_{j}(e)}{[d, e]}=\sum \frac{\Lambda_{i}(d) \Lambda_{j}(e)}{d e} \sum_{m \mid(d, e)} \phi(m)
$$

and inserting the definition of Λ_{i} and Λ_{j}, the right hand side is seen to be

$$
\sum_{\substack{m \leq z_{i} \\(m, r)=1}} \frac{\mu(m)^{2} \phi(m)}{m^{2}}\left(\sum_{\substack{d_{0} \leq z_{i} / m \\\left(d_{0}, m r\right)=1}} \frac{\mu\left(d_{0}\right)}{d_{0}} \log \frac{z_{i}}{m d_{0}}\right)\left(\sum_{\substack{e_{0} \leq z_{j} / m \\\left(e_{0}, m r\right)=1}} \frac{\mu\left(e_{0}\right)}{e_{0}} \log \frac{z_{j}}{m e_{0}}\right) .
$$

We quote the following from [Gr78], §2:
Lemma 2.5. For any integer a and any $c>0$, we have

$$
\sum_{\substack{n \leq Q \\(n, a)=1}} \frac{\mu(n)}{n} \log \frac{Q}{n}=\frac{a}{\phi(a)}+\mathbf{O}_{c}\left(\sigma_{-\frac{1}{2}}(a)(\log 2 Q)^{-c}\right)
$$

Using this on the terms in parentheses, we find that the above is

$$
\sum_{\substack{m \leq z_{i} \\(m, r)=1}} \frac{\mu(m)^{2} \phi(m)}{m^{2}}\left\{\frac{m r}{\phi(m r)}+\mathbf{O}\left(\sigma_{-\frac{1}{2}}(m r)\left(\log 2 z_{i} / m\right)^{-2}\right\}^{2}\right.
$$

The error terms are $\mathbf{O}(1)$ just as in [Gr78], pp. 89-90. The main term is

$$
\frac{r^{2}}{\phi(r)^{2}} \sum_{\substack{m \leq z_{i} \\(m, r)=1}} \frac{\mu(m)^{2}}{\phi(m)}
$$

This is seen to be

$$
\frac{r}{\phi(r)} \log z_{i}+\mathbf{O}\left(\frac{r \sigma(r)}{\phi(r)^{2}}\right)
$$

3. The second formula

The aim of the remaining sections is to prove the following asymptotic formula which will suffice to deduce the second formula.

Theorem 3.1. Suppose that $r z_{1} z_{2} \leq N \leq r z_{2}^{2}$. Then for $(b, r)=1$, we have

$$
\sum_{\substack{n \leq N \\ n \equiv b \bmod r}}\left(\sum_{d \mid n} \Lambda_{2}(d)\right)^{2}=\frac{N}{\phi(r)} \log z_{2}+\mathbf{O}\left(\frac{N}{r}\left(\log r z_{2}^{2} / N\right)^{5}\right)+\mathbf{O}\left(\frac{N}{r}(\log r)^{2}\right)+\mathbf{O}\left(r z_{2}\right) .
$$

Expanding the sum on the left, we have

$$
\sum_{\substack{n \leq N \\ n \equiv b \bmod r}}\left(\sum_{d \mid n} \Lambda_{2}(d)\right)\left(\sum_{e \mid n} \Lambda_{2}(e)\right)
$$

and we begin the proof by splitting this sum into three components

$$
S_{A}+S_{B}+\mathbf{O}\left(S_{C}\right)
$$

where in S_{A} we restrict the sum to d, e satisfying $[d, e]>N / r$. The remaining terms may be rearranged to give

$$
\sum_{[d, e] \leq N / r} \Lambda_{2}(d) \Lambda_{2}(e) \sum_{\substack{n \leq N \\ n=b=1 \\ n \equiv 0 \text { mod } \bmod [d, e]}} 1
$$

which is

$$
=\frac{N}{r} \sum_{\substack{[d, e] \leq N / r \\(d, r)=(e, r)=1}} \frac{\Lambda_{2}(d) \Lambda_{2}(e)}{[d, e]}+\mathbf{O}\left(\sum_{[d, e] \leq N / r}\left|\Lambda_{2}(d) \Lambda_{2}(e)\right|\right)
$$

which we write as

$$
S_{B}+\mathbf{O}\left(S_{C}\right)
$$

In §4., we shall show that

$$
S_{A} \ll \frac{N}{r}\left(\log r z_{2}^{2} / N\right)^{5}+\frac{N}{r}(\log r)^{2}+r z_{2} .
$$

In $\S 5$., we shall show that

$$
S_{C} \ll \frac{N}{r}\left(\log r z_{2}^{2} / N\right)^{4} .
$$

Finally, in $\S 6$., we shall deal with the main term S_{B}, and in $\S 7$. we collect together the various pieces to complete the proof of Theorem 3.1.

We state explicitly the consequence of Theorem 3.1 for the $a(n)$.
Theorem 3.2. Suppose that $r z_{2}^{2} \geq N \geq r z_{1} z_{2}$. Then
$\sum_{\substack{n \leq N \\ n \equiv b=b \\(\bmod r)}}|a(n)|^{2}=\frac{N}{\phi(r) \log z_{2} / z_{1}}+\mathbf{O}\left(\frac{N\left(\log r z_{2}^{2} / N\right)^{5}}{r\left(\log z_{2} / z_{1}\right)^{2}}\right)+\mathbf{O}\left(\frac{N(\log r)^{2}}{r\left(\log z_{2} / z_{1}\right)^{2}}\right)+\mathbf{O}\left(\frac{r z_{2}}{\left(\log z_{2} / z_{1}\right)^{2}}\right)$.

4. Estimation of S_{A}

Proposition 4.1. Suppose that $r z_{2}^{2} \geq N>r$. Then

$$
\sum_{\substack{n \leq N \\ n \equiv b \\\lfloor\bmod r)}} \sum_{\substack{[d, e \in] n \\[d, e] \gg N / r}}\left|\Lambda_{2}(d) \Lambda_{2}(e)\right| \ll \frac{N}{r}\left(\log r z_{2}^{2} / N\right)^{5}+\frac{N}{r}(\log r)^{2}+r z_{2} .
$$

Remark 4.2. Our argument will show that in certain ranges of r, z_{i}, z_{j} and N, this estimate can be refined.

Proof. Write $\rho=(d, e)$. Then, each n can be written as $n=\rho e_{0} d_{0} n_{0}$ with $d=\rho d_{0}, e=\rho e_{0}$ and $[d, e]=\rho d_{0} e_{0}>N / r$. This last condition implies that $n_{0}<r$. The sum over e_{0} then ranges over the interval

$$
\frac{N}{r \rho d_{0}}<e_{0} \leq \frac{z_{2}}{\rho}
$$

In order for this to be nonempty, we need

$$
d_{0}>N / r z_{2} .
$$

But $d_{0} \leq z_{2} / \rho$ and so $\rho<r z_{2}^{2} / N$. Thus, our sum is

Here, for any residue class $\beta(\bmod r)($ with $(\beta, r)=1)$, we are writing $\bar{\beta}(\bmod r)$ for the inverse class. The inner sum is

$$
\sum_{\substack{\frac{N}{N}<d_{0} e_{0} \leq \frac{N}{\rho n_{0}} \\ d_{0} e_{0}=\overline{\rho n_{0} b}(\bmod r)}}\left|\mu\left(d_{0} \rho\right)\left(\log z_{2} / d_{0} \rho\right) \mu\left(e_{0} \rho\right)\left(\log z_{2} / e_{0} \rho\right)\right| .
$$

Separating the d_{0} and the e_{0} sums, we find that this is

$$
\sum_{d_{0}}\left|\mu\left(d_{0} \rho\right) \log \frac{z_{2}}{d_{0} \rho}\right| \sum_{e_{0}}\left|\mu\left(e_{0} \rho\right) \log \frac{z_{2}}{e_{0} \rho}\right|
$$

where the sum over d_{0} is in the range

$$
\frac{N}{r z_{2}}<d_{0}<\min \left(\frac{z_{2}}{\rho}, \frac{N}{n_{0} \rho}\right)
$$

and the sum over e_{0} is in the range

$$
\frac{N}{r d_{0} \rho}<e_{0}<\min \left(\frac{z_{2}}{\rho}, \frac{N}{n_{0} d_{0} \rho}\right)
$$

with the additional condition

$$
e_{0} \equiv b \cdot \overline{d_{0} \rho n_{0}} \quad(\bmod r) .
$$

First, consider the contribution of the e_{0} which satisfy $e_{0}>r$. Writing $e_{0}=*+e_{1} r$, we see that the inner sum is

$$
\begin{equation*}
\leq \sum_{1 \leq e_{1} \leq \min \left(\frac{N}{n_{0} \rho d_{0} r}, \frac{z_{2}}{r_{\rho}}\right)} \log \frac{z_{2}}{e_{1} r \rho} . \tag{4.1}
\end{equation*}
$$

4.A. Case 1

If $N / n_{0} d_{0} \leq z_{2}$, then this is

$$
\ll \frac{N}{n_{0} \rho d_{0} r}\left(\log \frac{z_{2} n_{0} d_{0}}{N}+1\right) .
$$

Inserting this into the sum over d_{0}, we find that it is

$$
\ll \frac{N}{n_{0} \rho r} \sum_{\frac{N}{z_{2} n_{0}}<d_{0} \leq \frac{z_{2}}{\rho}} \frac{1}{d_{0}}\left(\log \frac{z_{2}}{d_{0} \rho}\right)\left(\log \frac{z_{2} n_{0} d_{0}}{N}+1\right) .
$$

For this sum to be nonempty, we require

$$
\rho<z_{2}^{2} n_{0} / N .
$$

Using the following consequence of the arithmetic mean - geometric mean inequality,

$$
\begin{equation*}
(\log A)(\log B) \leq(\log A B)^{2} \tag{4.2}
\end{equation*}
$$

for $A, B \geq 1$, the above sum is

$$
\ll \frac{N}{n_{0} \rho r} \sum \frac{1}{d_{0}}\left(\log \frac{z_{2}^{2} n_{0}}{N \rho}\right)^{2} .
$$

The sum over d_{0} is

$$
\ll \log \frac{z_{2}^{2} n_{0}}{N \rho}
$$

and so, we have to estimate

$$
\sum_{n_{0}<r} \sum_{\rho<n_{0} z_{2}^{2} / N} \frac{N}{r n_{0} \rho}\left(\log \frac{z_{2}^{2} n_{0}}{N \rho}\right)^{3}
$$

and this is

$$
\ll \frac{N}{r} \sum_{N / z_{2}^{2} \leq n_{0}<r} \frac{1}{n_{0}}\left(\log \frac{z_{2}^{2} n_{0}}{N}\right)^{4}
$$

which in turn is

$$
\begin{equation*}
\ll \frac{N}{r}\left(\log \frac{r z_{2}^{2}}{N}\right)^{5} . \tag{4.3}
\end{equation*}
$$

4.B. Case 2

If $N / n_{0} d_{0} \geq z_{2}$, the sum in (4.1) is

$$
\ll \sum_{e_{1} \leq z_{2} / r \rho} \log \frac{z_{2}}{e_{1} r \rho} \ll \frac{z_{2}}{r \rho} .
$$

Notice that in order for such terms to exist, we need $\rho \leq z_{2} / r$ and in particular, $r \leq z_{2}$. Inserting this estimate into the sum over d_{0}, we get

$$
\frac{z_{2}}{r \rho} \sum_{d_{0}<\min \left(N / n_{0} z_{2}, z_{2} / \rho\right)} \log \frac{z_{2}}{d_{0} \rho} .
$$

We distinguish two sub cases.

4.C. Case 2(a)

Suppose that

$$
z_{2} / \rho<N / n_{0} z_{2} .
$$

Then, the sum over d_{0} is $\mathbf{O}\left(z_{2} / \rho\right)$ and so the overall contribution is

$$
\ll \sum_{\rho<r z_{2}^{2} / N} \sum_{\substack{n_{0}<N \rho / z_{2}^{2} \\ n_{0}<r}} \frac{z_{2}^{2}}{r \rho^{2}} .
$$

This simplifies to

$$
\frac{z_{2}^{2}}{r} \sum_{\rho<r z_{2}^{2} / N} \frac{1}{\rho^{2}} \frac{N \rho}{z_{2}^{2}}
$$

and this is

$$
\ll \frac{N}{r} \log \frac{r z_{2}^{2}}{N}
$$

4.D. Case 2(b)

Consider the remaining case

$$
z_{2} / \rho \geq N / n_{0} z_{2}
$$

Then, the sum over d_{0} is

$$
\ll \frac{N}{n_{0} z_{2}} \log \left(\frac{n_{0} z_{2}^{2}}{\rho N}\right)
$$

and so the overall contribution is

$$
\ll \sum_{n_{0}<r} \sum_{\rho<\min \left(n_{0} z_{2}^{2} / N, z_{2} / r\right)} \frac{z_{2}}{\rho r} \frac{N}{n_{0} z_{2}}\left(\log \frac{n_{0} z_{2}^{2}}{\rho N}\right)
$$

which is

$$
=\frac{N}{r} \sum_{n_{0}<r} \frac{1}{n_{0}} \sum_{\rho} \frac{1}{\rho}\left(\log \frac{n_{0} z_{2}^{2}}{\rho N}\right) .
$$

This sum can be split into two subsums, the first of which is

$$
\frac{N}{r} \sum_{n_{0}<\min \left(r, N / r z_{2}\right)} \frac{1}{n_{0}} \sum_{\rho<n_{0} z_{2}^{2} / N} \frac{1}{\rho}\left(\log \frac{n_{0} z_{2}^{2}}{\rho N}\right)
$$

and this is

$$
\ll \frac{N}{r} \sum_{N / z_{2}^{2}<n_{0}<r} \frac{1}{n_{0}}\left(\log \frac{n_{0} z_{2}^{2}}{N}\right)^{2}
$$

which is

$$
\ll \frac{N}{r}\left(\log \frac{r z_{2}^{2}}{N}\right)^{3}
$$

The second is

$$
\frac{N}{r} \sum_{\rho<z_{2} / r} \frac{1}{\rho} \sum_{\substack{N / r z_{2}<n_{0}<r \\ \rho N / z_{2}^{2}<n_{0}}} \frac{1}{n_{0}}\left(\log \frac{n_{0} z_{2}^{2}}{\rho N}\right)
$$

which is seen to be

$$
\ll \frac{N}{r} \sum_{\rho<r z_{2}^{2} / N} \frac{1}{\rho}\left(\log \frac{r z_{2}^{2}}{N}\right)^{2}
$$

and this is

$$
\ll \frac{N}{r}\left(\log \frac{r z_{2}^{2}}{N}\right)^{3}
$$

Note that this term is present only if $r^{2} z_{2}>N$.
To summarize, Case (2) occurs only if $r<z_{2}$ and in this case, it contributes

$$
\frac{N}{r}\left(\log \frac{r z_{2}^{2}}{N}\right)^{3}
$$

4.E. The contribution of terms with $e_{0}<r$

By interchanging the roles of e_{0} and d_{0}, we may also suppose that $d_{0}<r$. We see that as $n_{0}<r$, the congruence condition

$$
e_{0} d_{0} \rho n_{0} \equiv b \quad(\bmod r)
$$

implies that e_{0}, d_{0}, ρ uniquely determine n_{0}. Thus, our sum is

$$
\leq \sum_{d_{0}, e_{0}} \sum_{\rho}\left(\log \frac{z_{2}}{d_{0} \rho}\right)\left(\log \frac{z_{2}}{e_{0} \rho}\right)
$$

Here, the outer sum ranges over $d_{0}, e_{0}<r$ satisfying $N / r z_{2}<d_{0}<z_{2}$ and $e_{0}<z_{2}$ and the inner sum ranges over ρ satisfying

$$
\frac{N}{r d_{0} e_{0}} \leq \rho \leq \min \left(\frac{z_{2}}{d_{0}}, \frac{z_{2}}{e_{0}}, \frac{r z_{2}^{2}}{N}\right)
$$

Since

$$
\frac{N}{r z_{2}}<d_{0}
$$

we see that

$$
\frac{z_{2}}{d_{0}} \leq \frac{r z_{2}^{2}}{N}
$$

Also,

$$
e_{0} \geq \frac{N}{r \rho d_{0}}>\frac{N}{r z_{2}}
$$

and so

$$
\frac{z_{2}}{e_{0}} \leq \frac{r z_{2}^{2}}{N}
$$

Let us set

$$
w=\min \left(\frac{z_{2}}{d_{0}}, \frac{z_{2}}{e_{0}}\right)
$$

We will consider the case $w=z_{2} / d_{0}$, the other case being similar. In this case we must have

$$
r z_{2} \leq N
$$

It forces the condition

$$
\frac{N}{r z_{2}} \leq e_{0} \leq d_{0}
$$

Using the identity (4.2), the sum over ρ is

$$
\ll \frac{N}{r d_{0} e_{0}} \log \left(\frac{N^{2}}{r^{2} z_{2}^{2} d_{0} e_{0}}\right)+\frac{z_{2}}{d_{0}} \log \frac{d_{0}}{e_{0}} .
$$

Now we insert this into the sum over d_{0} and e_{0}. For the e_{0} sum to be nonempty, we must also have $r^{2} z_{2} \geq N$ (since $\left.r^{2} z_{2} \geq r z_{2} d_{0} \geq N\right)$. In this case, the e_{0} sum is

$$
\ll \frac{N}{r d_{0}} \log \frac{N}{r z_{2}}+z_{2} .
$$

Summing this over d_{0}, we get an estimate of

$$
\ll \frac{N}{r}\left(\log \frac{N}{r z_{2}}\right)(\log r)+r z_{2}
$$

and this is

$$
\leq \frac{N}{r}(\log r)^{2}+r z_{2} .
$$

5. Estimation of S_{C}

Proposition 5.1. Suppose that $r z_{i} z_{j} \geq N>r$. Then, we have

$$
\sum_{[d, e] \leq N / r}\left|\Lambda_{i}(d) \Lambda_{j}(e)\right| \ll \frac{N}{r}\left(\log \frac{r z_{i} z_{j}}{N}\right)^{4} .
$$

Proof. Set $\rho=(d, e)$. Thus, the sum is

$$
\sum_{d e \leq N \rho / r}\left|\Lambda_{i}(d) \Lambda_{j}(e)\right|=\sum_{d}\left|\Lambda_{i}(d)\right| \sum_{\substack { \rho \mid d \\
\begin{subarray}{c}{e \leq N \rho / r d \\
\rho \\
(e / \rho, d / p)=1{ \rho | d \\
\begin{subarray} { c } { e \leq N \rho / r d \\
\rho \\
(e / \rho , d / p) = 1 } }\end{subarray}}\left|\Lambda_{j}(e)\right| .
$$

Write $d=d_{0} \rho$ and $e=e_{0} \rho$. Then the above is

$$
\sum_{\rho \leq z_{i}} \sum_{d_{0} \leq z_{i} / \rho}\left|\Lambda_{i}\left(d_{0} \rho\right)\right| \sum_{\substack{e_{0} \leq N / r d \\\left(e_{0}, d_{0}\right)=1}}\left|\Lambda_{j}\left(e_{0} \rho\right)\right| .
$$

In the inner sum, we need in fact that

$$
e_{0} \leq \min \left(\frac{N}{r d}, \frac{z_{j}}{\rho}\right)
$$

Consider the contribution of terms with

$$
z_{j} \leq N / r d_{0}
$$

We have to estimate

$$
\sum_{\rho \leq z_{i}} \sum_{d_{0} \leq \min \left(z_{i} / \rho, N / r z_{j}\right)}\left(\log \frac{z_{i}}{d_{0} \rho}\right) \sum_{\substack{e_{0} \leq z_{j} / \rho \\\left(e_{0}, d_{0}\right)=1}}\left(\log \frac{z_{j}}{e_{0} \rho}\right) .
$$

We see that

$$
\begin{equation*}
\frac{z_{i}}{\rho}<\frac{N}{r z_{j}} \tag{5.4}
\end{equation*}
$$

holds if and only if

$$
\rho>\frac{r z_{i} z_{j}}{N}
$$

In this case, the sum is

$$
\sum_{\rho>r z_{i} z_{j} / N} \sum_{d_{0} \leq z_{i} / \rho}\left(\log \frac{z_{i}}{d_{0} \rho}\right) \sum_{e_{0} \leq z_{j} / \rho}\left(\log \frac{z_{j}}{e_{0} \rho}\right)
$$

and this is

$$
\ll \sum_{\rho>r z_{i} z_{j} / N} \frac{z_{i} z_{j}}{\rho^{2}} \ll z_{i} z_{j} \frac{N}{r z_{i} z_{j}}=\frac{N}{r} .
$$

The contribution of the remaining terms (the one that do not satisfy (5.4)) is

$$
\sum_{\rho \leq r z_{i} z_{j} / N} \sum_{d_{0} \leq N / r z_{j}}\left(\log \frac{z_{i}}{d_{0} \rho}\right) \sum_{e_{0} \leq z_{j} / \rho}\left(\log \frac{z_{j}}{e_{0} \rho}\right) .
$$

This is seen to be

$$
\ll \sum_{\rho \leq r z_{i} z_{j} / N} \frac{z_{j}}{\rho}\left(\frac{N}{r z_{j}}\left(\log \frac{z_{i}}{\rho} \frac{r z_{j}}{N}\right)+\mathbf{O}\left(\frac{N}{r z_{j}}\right)\right) .
$$

Simplifying, this is

$$
\ll \frac{N}{r} \sum_{\rho<r z_{i} z_{j} / N} \frac{1}{\rho}\left(\log \frac{r z_{i} z_{j}}{N \rho}\right)+\mathbf{O}\left(\frac{N}{r} \sum_{\rho<r z_{i} z_{j} / N} \frac{1}{\rho}\right)
$$

which is

$$
\ll \frac{N}{r}\left(\log \frac{r z_{i} z_{j}}{N}\right)^{2} .
$$

Consider now the case that

$$
z_{j}>N / r d_{0}
$$

Note that

$$
\frac{z_{i}}{\rho} \geq d_{0}>\frac{N}{r z_{j}}
$$

Thus, $\rho<r z_{i} z_{j} / N$. We have

$$
\sum_{\rho \leq \min \left(z_{i}, r z_{i} z_{j} / N\right)} \sum_{\frac{N}{r z_{j}}<d_{0} \leq z_{i} / \rho}\left(\log \frac{z_{i}}{d_{0} \rho}\right) \sum_{e_{0} \leq N / r d_{0} \rho}\left(\log \frac{z_{j}}{e_{0} \rho}\right) .
$$

The sum over e_{0} is

$$
\frac{N}{r d_{0} \rho}\left(\log \left(\frac{z_{j}}{\rho} \frac{r d_{0} \rho}{N}\right)+\mathbf{O}(1)\right) .
$$

Inserting this, we get that our sum is

$$
\ll \frac{N}{r} \sum_{\rho \leq \min \left(z_{i}, r z_{i} z_{j} / N\right)} \frac{1}{\rho} \sum_{\frac{N}{r z_{j}}<d_{0} \leq z_{i} / \rho} \frac{1}{d_{0}}\left(\log \frac{z_{i}}{d_{0} \rho}\right)\left(\log \frac{r d_{0} z_{j}}{N}\right) .
$$

The sum over d_{0} is easily seen to be

$$
\sim \frac{1}{6}\left(\log \frac{r z_{i} z_{j}}{N \rho}\right)^{3}
$$

Inserting this, we find that our sum is

$$
\ll \frac{N}{r} \sum_{\rho \leq \min \left(z_{i}, r z_{i} z_{j} / N\right)} \frac{1}{\rho}\left(\log \frac{r z_{i} z_{j}}{N \rho}\right)^{3} \ll \frac{N}{r}\left(\log \frac{r z_{i} z_{j}}{N}\right)^{4}
$$

6. The main term

Finally, we deal with the main term. We need the following technical result.
Proposition 6.1. Suppose that $r z_{i} z_{j} \geq N>r$. Then, we have

$$
\begin{gathered}
\sum_{\substack{\left.\mid a_{1}, a_{2}\right] \leq M \\
\left(a_{1}, r_{1}\right)=\left(a_{2}, r_{2}\right)=1}} \frac{\Lambda_{i}\left(d_{1} a_{1}\right) \Lambda_{j}\left(d_{2} a_{2}\right)}{a_{1} a_{2}}=\mu\left(d_{1}\right) \mu\left(d_{2}\right) \frac{d_{1} r_{1}}{\phi\left(d_{1} r_{1}\right)} \frac{d_{2} r_{2}}{\phi\left(d_{2} r_{2}\right)} \sum_{\gamma} \frac{\mu(\gamma)^{2}}{\phi(\gamma)^{2}}+ \\
+\mathbf{O}\left(\left(\log \frac{z_{i} z_{j}}{d_{1} d_{2} M}\right)^{4}\right)+E
\end{gathered}
$$

where γ ranges over

$$
\gamma \leq \min \left(\frac{z_{i}}{d_{1}}, \frac{z_{j}}{d_{2}}\right)
$$

and

$$
\left(\gamma, r_{1} r_{2} d_{1} d_{2}\right)=1
$$

Here,

$$
\begin{gathered}
E \ll \frac{d_{1} r_{1}}{\phi\left(d_{1} r_{1}\right)} \sigma_{-\frac{1}{2}}\left(d_{2} r_{2}\right)\left(\log 2 z_{j} / d_{2}\right)^{-4} \\
+\frac{d_{2} r_{2}}{\phi\left(d_{2} r_{2}\right)} \sigma_{-\frac{1}{2}}\left(d_{1} r_{1}\right)\left(\log 2 z_{i} / d_{1}\right)^{-4} \\
+\sigma_{-\frac{1}{2}}\left(d_{1} r_{1}\right) \sigma_{-\frac{1}{2}}\left(d_{2} r_{2}\right)\left(\log 2 z_{i} / d_{1}\right)^{-4}\left(\log 2 z_{j} / d_{2}\right)^{-4}
\end{gathered}
$$

Proof. Write $\gamma=\left(a_{1}, a_{2}\right)$. The condition $\left[a_{1}, a_{2}\right] \leq M$ is then $a_{1} a_{2} \leq M \gamma$. Write

$$
a_{1}=\gamma a_{1}^{\prime}, \quad a_{2}=\gamma a_{2}^{\prime}
$$

Then, our sum is

$$
\sum_{\left(\gamma, r_{1} r_{2}\right)=1} \sum_{\left(a_{1}^{\prime}, r_{1}\right)=1} \frac{\Lambda_{i}\left(d_{1} \gamma a_{1}^{\prime}\right)}{\gamma a_{1}^{\prime}} \sum_{\substack{\left(a_{2}^{\prime}, r_{2}\right)=1 \\ a_{2}^{\prime} \leq M / \gamma a_{1}^{\prime}}} \frac{\Lambda_{j}\left(d_{2} \gamma a_{2}^{\prime}\right)}{\gamma a_{2}^{\prime}}
$$

since $a_{1} a_{2} \leq M \gamma$ means that $\gamma a_{1}^{\prime} a_{2}^{\prime} \leq M$. Moreover, we may as well assume that

$$
\left(a_{1}, d_{1}\right)=\left(a_{2}, d_{2}\right)=1
$$

Thus, we can rewrite our sum as

$$
\sum_{\substack{\left(\gamma, r_{1} r_{2} d_{1} d_{2}\right)=1}} \frac{\mu\left(d_{1} \gamma\right) \mu\left(d_{2} \gamma\right)}{\gamma^{2}} \sum_{\substack{\left(a_{1}^{\prime}, d_{1} \gamma r_{1}\right)=1 \\ a_{1}^{\prime} \leq \min \left(M / \gamma, z_{i} / d_{1} \gamma\right)}} \frac{\mu\left(a_{1}^{\prime}\right) \log z_{i} / d_{1} \gamma a_{1}^{\prime}}{a_{1}^{\prime}} \times \sum_{\substack{\left(a_{2}^{\prime}, d_{2} \gamma r_{2}\right)=1 \\ a_{2}^{\prime} \leq \min \left(M / \gamma a_{1}^{\prime}, z_{j} / d_{2} \gamma\right)}} \frac{\mu\left(a_{2}^{\prime}\right) \log z_{j} / d_{2} \gamma a_{2}^{\prime}}{a_{2}^{\prime}}
$$

Suppose that $a_{1}^{\prime} \geq M d_{2} / z_{j}$. Then, the innermost sum is (using Lemma 2.5 quoted in $\S 2$)

$$
\frac{d_{2} \gamma r_{2}}{\phi\left(d_{2} \gamma r_{2}\right)}+\mathbf{O}\left(\sigma_{-\frac{1}{2}}\left(d_{2} \gamma r_{2}\right)\left(\log 2 z_{j} / d_{2} \gamma\right)^{-4}\right)+\mathbf{O}\left(\left(\log \frac{z_{j} a_{1}^{\prime}}{d_{2} M}\right)^{2}\right)
$$

where the last term is present only if

$$
\frac{M}{a_{1}^{\prime}}<\frac{z_{j}}{d_{2}}
$$

The contribution of the last term above, when inserted into the a_{1}^{\prime} sum is

$$
\ll \sum_{a_{1}^{\prime}} \frac{1}{a_{1}^{\prime}}\left(\log \frac{z_{i}}{d_{1} \gamma a_{1}^{\prime}}\right)\left(\log \frac{z_{j} a_{1}^{\prime}}{d_{2} M}\right)^{2}
$$

where the range of the sum is

$$
\frac{M d_{2}}{z_{j}} \leq a_{1}^{\prime} \leq \frac{z_{i}}{d_{1} \gamma}
$$

We see that it is

$$
\ll\left(\log \frac{z_{i} / d_{1} \gamma}{d_{2} M / z_{j}}\right)^{4}=\left(\log \frac{z_{i} z_{j}}{d_{1} d_{2} \gamma M}\right)^{4}
$$

Inserting this into the γ sum yields an error term of

$$
\ll \sum_{\gamma} \frac{1}{\gamma^{2}}\left(\log \frac{z_{i} z_{j}}{d_{1} d_{2} \gamma M}\right)^{4} \ll\left(\log \frac{z_{i} z_{j}}{d_{1} d_{2} M}\right)^{4}
$$

We are left with the problem of estimating
$\sum_{\left(\gamma, r_{1} r_{2}\right)=1} \frac{\mu\left(d_{1} \gamma\right) \mu\left(d_{2} \gamma\right)}{\gamma^{2}}\left(\sum_{\left(a_{1}^{\prime}, d_{1} \gamma r_{1}\right)=1} \frac{\mu\left(a_{1}^{\prime}\right) \log z_{i} / d_{1} \gamma a_{1}^{\prime}}{a_{1}^{\prime}}\left(\frac{d_{2} \gamma r_{2}}{\phi\left(d_{2} \gamma r_{2}\right)}+\mathbf{O}\left(\sigma_{-\frac{1}{2}}\left(d_{2} \gamma r_{2}\right)\left(\log 2 z_{j} / d_{2} \gamma\right)^{-4}\right)\right)\right)$.
The sum over a_{1}^{\prime} can also be estimated using the Lemma 2.5. It is equal to

$$
\frac{d_{1} \gamma r_{1}}{\phi\left(d_{1} \gamma r_{1}\right)}+\mathbf{O}\left(\sigma_{-\frac{1}{2}}\left(d_{1} \gamma r_{1}\right)\left(\log 2 z_{i} / d_{1} \gamma\right)^{-4}\right)
$$

Inserting this, we find that the main terms give

$$
\sum_{\left(\gamma, r_{1} r_{2} d_{1} d_{2}\right)=1} \frac{\mu\left(d_{1} \gamma\right) \mu\left(d_{2} \gamma\right)}{\gamma^{2}} \frac{d_{1} d_{2} r_{1} r_{2} \gamma^{2}}{\phi\left(d_{1} \gamma r_{1}\right) \phi\left(d_{2} \gamma r_{2}\right)}
$$

which is equal to

$$
\mu\left(d_{1}\right) \mu\left(d_{2}\right) \frac{d_{1} r_{1}}{\phi\left(d_{1} r_{1}\right)} \frac{d_{2} r_{2}}{\phi\left(d_{2} r_{2}\right)} \sum_{\left(\gamma, r_{1} r_{2} d_{1} d_{2}\right)=1} \frac{\mu(\gamma)^{2}}{\phi(\gamma)^{2}}
$$

The sum over γ extends to

$$
\gamma \leq \min \left(\frac{z_{i}}{d_{1}}, \frac{z_{j}}{d_{2}}\right)
$$

Now we consider the cross terms. There are three of them. The first is

$$
\ll \sum_{\left(\gamma, r_{1} r_{2} d_{1} d_{2}\right)=1} \frac{1}{\gamma^{2}} \frac{d_{1} \gamma r_{1}}{\phi\left(d_{1} \gamma r_{1}\right)} \sigma_{-\frac{1}{2}}\left(d_{2} \gamma r_{2}\right)\left(\log 2 z_{j} / d_{2} \gamma\right)^{-4}
$$

which is

$$
\ll \frac{d_{1} r_{1}}{\phi\left(d_{1} r_{1}\right)} \sigma_{-\frac{1}{2}}\left(d_{2} r_{2}\right)\left(\log 2 z_{j} / d_{2}\right)^{-4}
$$

Similarly, the second is

$$
\ll \frac{d_{2} r_{2}}{\phi\left(d_{2} r_{2}\right)} \sigma_{-\frac{1}{2}}\left(d_{1} r_{1}\right)\left(\log 2 z_{i} / d_{1}\right)^{-4}
$$

and the third is

$$
\ll \sigma_{-\frac{1}{2}}\left(d_{1} r_{1}\right) \sigma_{-\frac{1}{2}}\left(d_{2} r_{2}\right)\left(\log 2 z_{i} / d_{1}\right)^{-4}\left(\log 2 z_{j} / d_{2}\right)^{-4} .
$$

This proves the result.
We only need to apply this result in the following case.
Proposition 6.2. Suppose that $r z_{2}^{2} \geq N>r$. Then, we have

$$
\sum_{\substack{d, e] \leq N / r \\(d, r)=(e, r)=1}} \frac{\Lambda_{2}(d) \Lambda_{2}(e)}{[d, e]}=\frac{r}{\phi(r)} \log z_{2}+\mathbf{O}\left(\left(\log \frac{r z_{2}^{2}}{N}\right)^{5}\right)+\mathbf{O}\left(\frac{r}{\phi(r)} \sigma_{-\frac{1}{2}}(r)\left(\log 2 z_{2}\right)^{-4}\right)
$$

Proof. Let us set $\rho=(d, e)$. Then the sum in question may be written as

$$
\sum_{\substack{[d, e] \leq N / r \\(d, r)=(e, r)=1}} \frac{\Lambda_{2}(d) \Lambda_{2}(e)}{d e} \sum_{u \mid \rho} \phi(u)=\sum_{\substack{u \leq z_{2} \\(u, r)=1}} \frac{\phi(u)}{u^{2}} \sum_{\substack{\left[d_{1}, e_{1}\right] \leq N / r u \\\left(d_{1}, r\right)=\left(e_{1}, r\right)=1}} \frac{\Lambda_{2}\left(u d_{1}\right) \Lambda_{2}\left(u e_{1}\right)}{d_{1} e_{1}} .
$$

Applying Proposition 5.1 to the inner sum, we find that the above is

$$
\sum_{\substack{u \leq z_{2} \\(u, r)=1}} \frac{\phi(u)}{u^{2}}\left(\mu(u)^{2}\left(\frac{u r}{\phi(u r)}\right)^{2} \sum_{\substack{\left(\gamma_{1}, u r\right)=1 \\ \gamma_{1} \leq z_{2} / u}} \frac{\mu\left(\gamma_{1}\right)^{2}}{\phi\left(\gamma_{1}\right)^{2}}+E\right)
$$

where

$$
\begin{aligned}
E=\mathbf{O}(& \left.\left(\frac{u r}{\phi(u r)}\right)^{2} \frac{\left(\log \log z_{2}\right)^{2}}{z_{2}}\right)+\mathbf{O}\left(\frac{u r}{\phi(u r)} \sigma_{-\frac{1}{2}}(u r)\left(\log 2 z_{2} / u\right)^{-4}\right) \\
& +\mathbf{O}\left(\sigma_{-\frac{1}{2}}(u r)^{2}\left(\log 2 z_{2} / u\right)^{-8}\right)+\mathbf{O}\left(\left(\log \frac{r z_{2}^{2}}{u N}\right)^{4}\right) .
\end{aligned}
$$

This is

$$
\sum_{\substack{u \leq z_{2} \\(u, r)=1}} \frac{\mu(u)^{2}}{\phi(u)} \frac{r^{2}}{\phi(r)^{2}} \sum_{\substack{\left(\gamma_{1}, u r\right)=1 \\ \gamma_{1} \leq z_{2} / u}} \frac{\mu\left(\gamma_{1}\right)^{2}}{\phi\left(\gamma_{1}\right)^{2}}+\mathbf{O}\left(\frac{r}{\phi(r)} \sigma_{-\frac{1}{2}}(r)\left(\log 2 z_{2}\right)^{-4}\right)+\mathbf{O}\left(\left(\log \frac{r z_{2}^{2}}{N}\right)^{5}\right)
$$

The main term is

$$
\frac{r^{2}}{\phi(r)^{2}}\left(\sum_{\gamma=1}^{\infty} \frac{\mu(\gamma)^{2}}{\phi(\gamma)^{2}}\right) \sum_{\substack{u \leq z_{2} \\(u, r)=1}} \frac{\mu(u)^{2}}{\phi(u)} \prod_{p \mid u r}\left(1+\frac{1}{(p-1)^{2}}\right)^{-1}+\mathbf{O}\left(\frac{r^{2}}{\phi(r)^{2}} \log \log z_{2}\right)
$$

7. Proof of Theorems 3.1 and 3.2

As described in $\S 3$, we have written

$$
\sum_{\substack{n \leq N \\ n \equiv b \\(\bmod r)}}\left(\sum_{d \mid n} \Lambda_{2}(d)\right)\left(\sum_{e \mid n} \Lambda_{2}(e)\right)=S_{A}+S_{B}+\mathbf{O}\left(S_{C}\right),
$$

where in S_{A}, we require that $[d, e]>N / r$.
By Proposition 4.1, we deduce that

$$
S_{A} \ll \frac{N}{r}\left(\log \frac{r z_{2}^{2}}{N}\right)^{5}+\frac{N}{r}(\log r)^{2}+r z_{2}
$$

As for S_{C}, we have by Proposition 5.1 that

$$
S_{C} \ll \frac{N}{r}\left(\log \frac{r z_{2}^{2}}{N}\right)^{4} .
$$

By Proposition 6.2, we have

$$
S_{B}=\frac{N}{r}\left(\frac{r}{\phi(r)} \log z_{2}+\mathbf{O}\left(\frac{r}{\phi(r)} \sigma_{-\frac{1}{2}}(r)\left(\log 2 z_{2}\right)^{-4}\right)+\mathbf{O}\left(\left(\log r z_{2}^{2} / N\right)^{5}\right)\right) .
$$

This proves Theorem 3.1.
For Theorem 3.2, as in $\S 2$, we have to estimate three sums of the form

$$
S_{i, j}=\sum_{\substack{n \leq N \\ n \equiv b \\(\bmod r)}}\left(\sum_{d \mid n} \Lambda_{i}(d)\right)\left(\sum_{e \mid n} \Lambda_{j}(e)\right) .
$$

For the cases $i=j=1$ and $i=1, j=2$, the condition $N \geq r z_{i} z_{j}$ is satisfied and so we get the desired estimate from Proposition 1. The only remaining case is $i=j=2$ where this condition is not satisfied. This case follows from Theorem 3.1.

References

[BaMu92] R. Balasubramanian and V. Kumar Murty, Zeros of Dirichlet L-functions, Ann. Scient. Ecole Norm. Sup., 25 (1992), 567-615.
[BaVe68] M. B. Barban and P. P. Vehov, On an extremal problem, Trans. Moscow Math. Soc., 18 (1968), 91-99.
[Gr78] S. Graham, An asymptotic estimate related to Selberg's sieve, J. Number Theory, 10 (1978), 83-94.
[Gr81] S. Graham, On Linnik's constant, Acta Arith., 39 (1981), 163-179.
[Ju77] M. Jutila, On Linnik's constant, Math. Scand., 41 (1977), 45-62.
[Mo74] Y. Motohashi, On a problem in the theory of sieve methods, Kōky $\bar{u} r o k u$ RIMS, 222 (1974), 9-50 (Japanese).

V. Kumar Murty

Department of Mathematics
University of Toronto, 40 St. George Street
Toronto, CANADA M5S 2E4
e-mail: murty@math.toronto.edu

[^0]: We thank episciences.org for providing open access hosting of the electronic journal Hardy-Ramanujan Journal

