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The Barban-Vehov Theorem in Arithmetic Progressions
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To the memory of S. Srinivasan

Abstract. A result of Barban-Vehov (and independently Motohashi) gives an estimate for the mean square of a sequence related

to Selberg’s sieve. This upper bound was refined to an asymptotic formula by S. Graham in 1978. In 1992, I made the observation

that Graham’s method can be used to obtain an asymptotic formula when the sum is restricted to an arithmetic progression. This
formula immediately gives a version of the Brun-Titchmarsh theorem. I am taking the occasion of a volume in honour of my friend

S. Srinivasan to revisit and publish this observation in the hope that it might still be of interest.
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1. Introduction

Let 1 ≤ z1 ≤ z2 and define for i = 1, 2,

Λi(n) =

{
µ(n) log zi

n if n ≤ zi
0 if n > zi

Also, set

λn =
Λ2(n)− Λ1(n)

log z2/z1

and
a(n) =

∑
d|n

λd.

The λn are weights that are related to Selberg’s sieve. Notice that we have

a(1) = 1

and a(n) = 0 for 1 < n ≤ z1. Moreover, for primes p, we have

a(p) =

{
log p/z1
log z2/z1

if z1 < p < z2

0 otherwise.

It was shown by Barban and Vehov [BaVe68] and Motohashi [Mo74] that∑
n≤N
|a(n)|2 � N

log z2/z1
.

Soon afterwards, S. Graham [Gr78] was able to prove the following asymptotic formulae: if N ≥ z2,
then ∑

n≤N
|a(n)|2 =

N

log z2/z1
+ O

(
N

(log z2/z1)2

)
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and if z1 ≤ N ≤ z2, we have∑
n≤N
|a(n)|2 =

N logN/z1

(log z2/z1)2
+ O

(
N

(log z2/z1)2

)
.

This result has found significant applications to zero density theorems and to the estimation of Linnik’s
constant (see [Ju77] and [Gr81] for example).

The purpose of this note is to study the size of the sum when n is constrained to range through
a fixed arithmetic progression. In my joint work with R. Balasubramanian [BaMu92], we observed
(Proposition 1.2) that for N ≥ r and (b, r) = 1, we have∑

n≤N
n≡b (mod r)

|a(n)| � N

φ(r)
1
2 (log z2/z1)

1
2

.

This follows immediately from Graham’s result by the Cauchy-Schwarz inequality.

Soon after [BaMu92] was written, I worked out an asymptotic formula for the sum on the left by
adapting Graham’s methods. The result is that for (b, r) = 1 and N ≥ rz2

2 , we have∑
n≤N

n≡b mod r

|a(n)|2 =
N

φ(r) log z2/z1
+ O

(
Nσ(r)

φ(r)2(log z2/z1)2

)
.

If rz1z2 ≤ N ≤ rz2
2 , then we show that∑

n≤N
n≡b mod r

|a(n)|2 =
N

φ(r) log z2/z1
+ O

(
N(log rz2

2/N)5

r(log z2/z1)2

)
+ O

(
N(log r)2

r(log z2/z1)2

)
+ O

(
rz2

(log z2/z1)2

)
.

The last two terms on the right are not present if we have the additional condition z1 > r. Also, It
will be clear from the arguments that the same methods will actually allow us to get estimates for
N < rz1z2 as well but we do not pursue that here.

An immediate consequence of the first formula is a version of the Brun-Titchmarsh theorem in
the following form. Denote by π(N, r, b) the number of primes ≤ N which are ≡ b mod r. Then we
have

π(N, r, b) ≤ 2N

φ(r) logN/r
+ O

(
Nσ(r)

φ(r)2(logN/r)2

)
.

We could try to use the second formula in a similar manner.

Our method of proof for both formulae is elementary and uses only the usual prime number
theorem. The proof of the first formula is a direct generalization of the work of Graham ([Gr78], §3)
and represents the easy case.

Though these calculations were completed some years ago, I had not published them. However,
the occasion of a volume honouring the memory of my friend S. Srinivasan caused me to look at
them again. In particular, the consequence for the Brun-Titchmarsh theorem may still be of interest.
When I was a Visiting Fellow at the Tata Institute for Fundamental Research in 1983-1984, Srinivasan
was my office-mate and we shared many hours of mathematical conversation. We also enjoyed many
social occasions together when we had a chance to discuss philosophical and even spiritual questions.
Srinivasan was always a thorough and thoughtful individual and I look back on those occasions with
many pleasant memories. Given that his main interest was in analytic number theory, I thought the
topic of this article might have been of interest to him.

The note is organized as follows. In §2, we prove the first formula. In §3, we begin the proof of
the second formula. In §4 and §5, we estimate certain error terms and in §6, we study the main term.
Finally in §7, we complete the proof of the second formula.

I would like to thank the referees for helpful comments that helped to streamline the presentation.
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2. The First Formula

The purpose of this section is to prove the following.

Theorem 2.1. Suppose that rz2
2 ≤ N and (b, r) = 1. Then,∑

n≤N
n≡b (mod r)

|a(n)|2 =
N

φ(r) log z2/z1
+ O

(
Nσ(r)

φ(r)2(log z2/z1)2

)
.

The proof follows closely the method of [Gr78], §3 but we give the details in order to orient the reader.
First, we note an immediate consequence. Denote by ψ(N, z2, r, b) the number of integers n ≤ N with
n ≡ b (mod r) all of whose prime factors are ≥ z2. Denote also by π(N, r, b) the number of primes
p ≤ N with p ≡ b (mod r).

Corollary 2.2. If rz2
2 ≤ N , then

ψ(N, z2, r, b) ≤
N

φ(r) log z2
+ O

(
Nσ(r)

φ(r)2(log z2)2

)
.

Proof. If n ≤ N , and n ≡ b (mod r) and it has all its prime divisors ≥ z2, then a(n) = 1.

Corollary 2.3. We have

π(N, r, b) ≤ 2N

φ(r) logN/r
+ O

(
Nσ(r)

φ(r)2(logN/r)2

)
.

Proof. This follows on noting that

π(N, r, b) ≤ π(z2, r, b) + ψ(N, z2, r, b),

and the trivial bound π(z2, r, b) ≤ z2/r + 1 and choosing z2 = (N/r)
1
2 .

To prove the theorem, we notice that

(log z2/z1)2
∑
n≤N

n≡b (mod r)

|a(n)|2 =
∑
n≤N

n≡b (mod r)

∑
d|n

Λ1(d)−
∑
e|n

Λ2(e)

2

.

The right hand side is a sum of terms of the form

Si,j =
∑
n≤N

n≡b (mod r)

∑
d,e|n

Λi(d)Λj(e).

where i, j ∈ {1, 2}. The theorem will follow from the following.

Proposition 2.4. We have

Si,j =
N

φ(r)
log min(zi, zj) + O(zizj) + O(Nσ(r)/φ(r)2).

In particular, if rzizj ≤ N , the first error term is O(N/r).
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Proof. By definition

Si,j =
∑

Λi(d)Λj(e){
N

r[d, e]
+ O(1)}.

The error term is

�

∑
d≤zi

|Λi(d)|

∑
e≤zj

|Λj(e)|

 � zizj .

The main term is
N

r

∑
d≤zi
e≤zj

(d,r)=(e,r)=1

Λi(d)Λj(e)

[d, e]
.

Without loss of generality, we may suppose that zi ≤ zj . We have

∑
d≤zi
e≤zj

(d,r)=(e,r)=1

Λi(d)Λj(e)

[d, e]
=
∑ Λi(d)Λj(e)

de

∑
m|(d,e)

φ(m)

and inserting the definition of Λi and Λj , the right hand side is seen to be

∑
m≤zi

(m,r)=1

µ(m)2φ(m)

m2

 ∑
d0≤zi/m
(d0,mr)=1

µ(d0)

d0
log

zi
md0


 ∑

e0≤zj/m
(e0,mr)=1

µ(e0)

e0
log

zj
me0

 .

We quote the following from [Gr78], §2:

Lemma 2.5. For any integer a and any c > 0, we have∑
n≤Q

(n,a)=1

µ(n)

n
log

Q

n
=

a

φ(a)
+ Oc(σ− 1

2
(a)(log 2Q)−c).

Using this on the terms in parentheses, we find that the above is

∑
m≤zi

(m,r)=1

µ(m)2φ(m)

m2

{
mr

φ(mr)
+ O(σ− 1

2
(mr)(log 2zi/m)−2

}2

The error terms are O(1) just as in [Gr78], pp. 89-90. The main term is

r2

φ(r)2

∑
m≤zi

(m,r)=1

µ(m)2

φ(m)
.

This is seen to be
r

φ(r)
log zi + O(

rσ(r)

φ(r)2
).
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3. The second formula

The aim of the remaining sections is to prove the following asymptotic formula which will suffice to
deduce the second formula.

Theorem 3.1. Suppose that rz1z2 ≤ N ≤ rz2
2 . Then for (b, r) = 1, we have

∑
n≤N

n≡b mod r

∑
d|n

Λ2(d)

2

=
N

φ(r)
log z2 + O

(
N

r
(log rz2

2/N)5

)
+ O

(
N

r
(log r)2

)
+ O(rz2).

Expanding the sum on the left, we have

∑
n≤N

n≡b mod r

∑
d|n

Λ2(d)

∑
e|n

Λ2(e)


and we begin the proof by splitting this sum into three components

SA + SB + O(SC)

where in SA we restrict the sum to d, e satisfying [d, e] > N/r. The remaining terms may be rearranged
to give ∑

[d,e]≤N/r

Λ2(d)Λ2(e)
∑
n≤N

n≡b mod r
n≡0 mod [d,e]

1

which is

=
N

r

∑
[d,e]≤N/r

(d,r)=(e,r)=1

Λ2(d)Λ2(e)

[d, e]
+ O

 ∑
[d,e]≤N/r

|Λ2(d)Λ2(e)|


which we write as

SB + O(SC).

In §4., we shall show that

SA �
N

r

(
log rz2

2/N
)5

+
N

r
(log r)2 + rz2.

In §5., we shall show that

SC �
N

r

(
log rz2

2/N
)4
.

Finally, in §6., we shall deal with the main term SB, and in §7. we collect together the various pieces
to complete the proof of Theorem 3.1.

We state explicitly the consequence of Theorem 3.1 for the a(n).

Theorem 3.2. Suppose that rz2
2 ≥ N ≥ rz1z2. Then

∑
n≤N

n≡b (mod r)

|a(n)|2 =
N

φ(r) log z2/z1
+ O

(
N(log rz2

2/N)5

r(log z2/z1)2

)
+O

(
N(log r)2

r(log z2/z1)2

)
+O

(
rz2

(log z2/z1)2

)
.
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4. Estimation of SA

Proposition 4.1. Suppose that rz2
2 ≥ N > r. Then∑

n≤N
n≡b (mod r)

∑
[d,e]|n

[d,e]>N/r

|Λ2(d)Λ2(e)| � N

r

(
log rz2

2/N
)5

+
N

r
(log r)2 + rz2.

Remark 4.2. Our argument will show that in certain ranges of r, zi, zj and N , this estimate can be
refined.

.

Proof. Write ρ = (d, e). Then, each n can be written as n = ρe0d0n0 with d = ρd0, e = ρe0 and
[d, e] = ρd0e0 > N/r. This last condition implies that n0 < r. The sum over e0 then ranges over the
interval

N

rρd0
< e0 ≤

z2

ρ
.

In order for this to be nonempty, we need

d0 > N/rz2.

But d0 ≤ z2/ρ and so ρ < rz2
2/N . Thus, our sum is∑

ρ<rz22/N

(ρ,r)=1

∑
n0<r

(n0,r)=1

∑
N
rρ<d0e0≤

N
ρn0

d0e0≡ρn0b (mod r)
d0<z2/ρ,e0<z2/ρ

|Λ2(d0ρ)Λ2(e0ρ)|.

Here, for any residue class β (mod r) (with (β, r) = 1), we are writing β (mod r) for the inverse
class. The inner sum is ∑

N
rρ<d0e0≤

N
ρn0

d0e0≡ρn0b (mod r)

|µ(d0ρ) (log z2/d0ρ)µ(e0ρ) (log z2/e0ρ) |.

Separating the d0 and the e0 sums, we find that this is∑
d0

|µ(d0ρ) log
z2

d0ρ
|
∑
e0

|µ(e0ρ) log
z2

e0ρ
|

where the sum over d0 is in the range

N

rz2
< d0 < min

(
z2

ρ
,
N

n0ρ

)
and the sum over e0 is in the range

N

rd0ρ
< e0 < min

(
z2

ρ
,

N

n0d0ρ

)
with the additional condition

e0 ≡ b · d0ρn0 (mod r).

First, consider the contribution of the e0 which satisfy e0 > r. Writing e0 = ∗+ e1r, we see that
the inner sum is

≤
∑

1≤e1≤min
(

N
n0ρd0r

,
z2
rρ

) log
z2

e1rρ
. (4.1)
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4.A. Case 1

If N/n0d0 ≤ z2, then this is

� N

n0ρd0r

(
log

z2n0d0

N
+ 1

)
.

Inserting this into the sum over d0, we find that it is

� N

n0ρr

∑
N

z2n0
<d0≤ z2ρ

1

d0

(
log

z2

d0ρ

)(
log

z2n0d0

N
+ 1

)
.

For this sum to be nonempty, we require

ρ < z2
2n0/N.

Using the following consequence of the arithmetic mean - geometric mean inequality,

(logA)(logB) ≤ (logAB)2 (4.2)

for A,B ≥ 1, the above sum is

� N

n0ρr

∑ 1

d0

(
log

z2
2n0

Nρ

)2

.

The sum over d0 is

� log
z2

2n0

Nρ

and so, we have to estimate ∑
n0<r

∑
ρ<n0z22/N

N

rn0ρ

(
log

z2
2n0

Nρ

)3

and this is

� N

r

∑
N/z22≤n0<r

1

n0

(
log

z2
2n0

N

)4

which in turn is

� N

r

(
log

rz2
2

N

)5

. (4.3)

4.B. Case 2

If N/n0d0 ≥ z2, the sum in (4.1) is

�
∑

e1≤z2/rρ

log
z2

e1rρ
� z2

rρ
.

Notice that in order for such terms to exist, we need ρ ≤ z2/r and in particular, r ≤ z2. Inserting
this estimate into the sum over d0, we get

z2

rρ

∑
d0<min(N/n0z2,z2/ρ)

log
z2

d0ρ
.

We distinguish two sub cases.
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4.C. Case 2(a)

Suppose that
z2/ρ < N/n0z2.

Then, the sum over d0 is O(z2/ρ) and so the overall contribution is

�
∑

ρ<rz22/N

∑
n0<Nρ/z

2
2

n0<r

z2
2

rρ2
.

This simplifies to
z2

2

r

∑
ρ<rz22/N

1

ρ2

Nρ

z2
2

and this is

� N

r
log

rz2
2

N
.

4.D. Case 2(b)

Consider the remaining case
z2/ρ ≥ N/n0z2.

Then, the sum over d0 is

� N

n0z2
log

(
n0z

2
2

ρN

)
and so the overall contribution is

�
∑
n0<r

∑
ρ<min(n0z22/N,z2/r)

z2

ρr

N

n0z2

(
log

n0z
2
2

ρN

)

which is

=
N

r

∑
n0<r

1

n0

∑
ρ

1

ρ

(
log

n0z
2
2

ρN

)
.

This sum can be split into two subsums, the first of which is

N

r

∑
n0<min(r,N/rz2)

1

n0

∑
ρ<n0z22/N

1

ρ

(
log

n0z
2
2

ρN

)

and this is

� N

r

∑
N/z22<n0<r

1

n0

(
log

n0z
2
2

N

)2

which is

� N

r

(
log

rz2
2

N

)3

.

The second is
N

r

∑
ρ<z2/r

1

ρ

∑
N/rz2<n0<r

ρN/z22<n0

1

n0

(
log

n0z
2
2

ρN

)
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which is seen to be

� N

r

∑
ρ<rz22/N

1

ρ

(
log

rz2
2

N

)2

and this is

� N

r

(
log

rz2
2

N

)3

.

Note that this term is present only if r2z2 > N .

To summarize, Case (2) occurs only if r < z2 and in this case, it contributes

N

r

(
log

rz2
2

N

)3

.

4.E. The contribution of terms with e0 < r

By interchanging the roles of e0 and d0, we may also suppose that d0 < r. We see that as n0 < r, the
congruence condition

e0d0ρn0 ≡ b (mod r)

implies that e0, d0, ρ uniquely determine n0. Thus, our sum is

≤
∑
d0,e0

∑
ρ

(
log

z2

d0ρ

)(
log

z2

e0ρ

)
.

Here, the outer sum ranges over d0, e0 < r satisfying N/rz2 < d0 < z2 and e0 < z2 and the inner sum
ranges over ρ satisfying

N

rd0e0
≤ ρ ≤ min

(
z2

d0
,
z2

e0
,
rz2

2

N

)
.

Since
N

rz2
< d0

we see that
z2

d0
≤ rz2

2

N
.

Also,

e0 ≥
N

rρd0
>

N

rz2

and so
z2

e0
≤ rz2

2

N
.

Let us set
w = min(

z2

d0
,
z2

e0
).

We will consider the case w = z2/d0, the other case being similar. In this case we must have

rz2 ≤ N.

It forces the condition
N

rz2
≤ e0 ≤ d0.
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Using the identity (4.2), the sum over ρ is

� N

rd0e0
log

(
N2

r2z2
2d0e0

)
+

z2

d0
log

d0

e0
.

Now we insert this into the sum over d0 and e0. For the e0 sum to be nonempty, we must also
have r2z2 ≥ N (since r2z2 ≥ rz2d0 ≥ N). In this case, the e0 sum is

� N

rd0
log

N

rz2
+ z2.

Summing this over d0, we get an estimate of

� N

r

(
log

N

rz2

)
(log r) + rz2

and this is

≤ N

r
(log r)2 + rz2.

5. Estimation of SC

Proposition 5.1. Suppose that rzizj ≥ N > r. Then, we have∑
[d,e]≤N/r

|Λi(d)Λj(e)| �
N

r

(
log

rzizj
N

)4
.

Proof. Set ρ = (d, e). Thus, the sum is∑
de≤Nρ/r

|Λi(d)Λj(e)| =
∑
d

|Λi(d)|
∑
ρ|d

∑
e≤Nρ/rd

ρ|e
(e/ρ,d/ρ)=1

|Λj(e)|.

Write d = d0ρ and e = e0ρ. Then the above is∑
ρ≤zi

∑
d0≤zi/ρ

|Λi(d0ρ)|
∑

e0≤N/rd
(e0,d0)=1

|Λj(e0ρ)|.

In the inner sum, we need in fact that

e0 ≤ min(
N

rd
,
zj
ρ

).

Consider the contribution of terms with

zj ≤ N/rd0.

We have to estimate ∑
ρ≤zi

∑
d0≤min(zi/ρ,N/rzj)

(
log

zi
d0ρ

) ∑
e0≤zj/ρ
(e0,d0)=1

(
log

zj
e0ρ

)
.
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We see that
zi
ρ

<
N

rzj
(5.4)

holds if and only if

ρ >
rzizj
N

.

In this case, the sum is ∑
ρ>rzizj/N

∑
d0≤zi/ρ

(
log

zi
d0ρ

) ∑
e0≤zj/ρ

(
log

zj
e0ρ

)
and this is

�
∑

ρ>rzizj/N

zizj
ρ2

� zizj
N

rzizj
=

N

r
.

The contribution of the remaining terms (the one that do not satisfy (5.4)) is∑
ρ≤rzizj/N

∑
d0≤N/rzj

(
log

zi
d0ρ

) ∑
e0≤zj/ρ

(
log

zj
e0ρ

)
.

This is seen to be

�
∑

ρ≤rzizj/N

zj
ρ

(
N

rzj

(
log

zi
ρ

rzj
N

)
+ O

(
N

rzj

))
.

Simplifying, this is

� N

r

∑
ρ<rzizj/N

1

ρ

(
log

rzizj
Nρ

)
+ O

N
r

∑
ρ<rzizj/N

1

ρ


which is

� N

r

(
log

rzizj
N

)2
.

Consider now the case that
zj > N/rd0.

Note that
zi
ρ
≥ d0 >

N

rzj
.

Thus, ρ < rzizj/N . We have

∑
ρ≤min(zi,rzizj/N)

∑
N
rzj

<d0≤zi/ρ

(
log

zi
d0ρ

) ∑
e0≤N/rd0ρ

(
log

zj
e0ρ

)
.

The sum over e0 is
N

rd0ρ

(
log

(
zj
ρ

rd0ρ

N

)
+ O(1)

)
.

Inserting this, we get that our sum is

� N

r

∑
ρ≤min(zi,rzizj/N)

1

ρ

∑
N
rzj

<d0≤zi/ρ

1

d0

(
log

zi
d0ρ

)(
log

rd0zj
N

)
.
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The sum over d0 is easily seen to be

∼ 1

6

(
log

rzizj
Nρ

)3

.

Inserting this, we find that our sum is

� N

r

∑
ρ≤min(zi,rzizj/N)

1

ρ

(
log

rzizj
Nρ

)3

� N

r

(
log

rzizj
N

)4
.

6. The main term

Finally, we deal with the main term. We need the following technical result.

Proposition 6.1. Suppose that rzizj ≥ N > r. Then, we have

∑
[a1,a2]≤M

(a1,r1)=(a2,r2)=1

Λi(d1a1)Λj(d2a2)

a1a2
= µ(d1)µ(d2)

d1r1

φ(d1r1)

d2r2

φ(d2r2)

∑
γ

µ(γ)2

φ(γ)2
+

+O

((
log

zizj
d1d2M

)4
)

+ E

where γ ranges over

γ ≤ min(
zi
d1
,
zj
d2

)

and
(γ, r1r2d1d2) = 1.

Here,

E � d1r1

φ(d1r1)
σ− 1

2
(d2r2)(log 2zj/d2)−4

+
d2r2

φ(d2r2)
σ− 1

2
(d1r1)(log 2zi/d1)−4

+σ− 1
2
(d1r1)σ− 1

2
(d2r2)(log 2zi/d1)−4(log 2zj/d2)−4.

Proof. Write γ = (a1, a2). The condition [a1, a2] ≤M is then a1a2 ≤Mγ. Write

a1 = γa′1, a2 = γa′2.

Then, our sum is ∑
(γ,r1r2)=1

∑
(a′1,r1)=1

Λi(d1γa
′
1)

γa′1

∑
(a′2,r2)=1

a′2≤M/γa
′
1

Λj(d2γa
′
2)

γa′2

since a1a2 ≤Mγ means that γa′1a
′
2 ≤M . Moreover, we may as well assume that

(a1, d1) = (a2, d2) = 1.

Thus, we can rewrite our sum as∑
(γ,r1r2d1d2)=1

µ(d1γ)µ(d2γ)

γ2

∑
(a′1,d1γr1)=1

a′1≤min(M/γ,zi/d1γ)

µ(a′1) log zi/d1γa
′
1

a′1
×

∑
(a′2,d2γr2)=1

a′2≤min(M/γa′1,zj/d2γ)

µ(a′2) log zj/d2γa
′
2

a′2
.
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Suppose that a′1 ≥Md2/zj . Then, the innermost sum is (using Lemma 2.5 quoted in §2)

d2γr2

φ(d2γr2)
+ O(σ− 1

2
(d2γr2)(log 2zj/d2γ)−4) + O

((
log

zja
′
1

d2M

)2
)

where the last term is present only if
M

a′1
<

zj
d2
.

The contribution of the last term above, when inserted into the a′1 sum is

�
∑
a′1

1

a′1

(
log

zi
d1γa′1

)(
log

zja
′
1

d2M

)2

where the range of the sum is
Md2

zj
≤ a′1 ≤

zi
d1γ

.

We see that it is

�
(

log
zi/d1γ

d2M/zj

)4

=

(
log

zizj
d1d2γM

)4

.

Inserting this into the γ sum yields an error term of

�
∑
γ

1

γ2

(
log

zizj
d1d2γM

)4

�
(

log
zizj

d1d2M

)4

.

We are left with the problem of estimating

∑
(γ,r1r2)=1

µ(d1γ)µ(d2γ)

γ2

 ∑
(a′1,d1γr1)=1

µ(a′1) log zi/d1γa
′
1

a′1

(
d2γr2

φ(d2γr2)
+ O(σ− 1

2
(d2γr2)(log 2zj/d2γ)−4)

) .

The sum over a′1 can also be estimated using the Lemma 2.5. It is equal to

d1γr1

φ(d1γr1)
+ O(σ− 1

2
(d1γr1)(log 2zi/d1γ)−4).

Inserting this, we find that the main terms give∑
(γ,r1r2d1d2)=1

µ(d1γ)µ(d2γ)

γ2

d1d2r1r2γ
2

φ(d1γr1)φ(d2γr2)

which is equal to

µ(d1)µ(d2)
d1r1

φ(d1r1)

d2r2

φ(d2r2)

∑
(γ,r1r2d1d2)=1

µ(γ)2

φ(γ)2
.

The sum over γ extends to

γ ≤ min(
zi
d1
,
zj
d2

).

Now we consider the cross terms. There are three of them. The first is

�
∑

(γ,r1r2d1d2)=1

1

γ2

d1γr1

φ(d1γr1)
σ− 1

2
(d2γr2)(log 2zj/d2γ)−4
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which is

� d1r1

φ(d1r1)
σ− 1

2
(d2r2)(log 2zj/d2)−4.

Similarly, the second is

� d2r2

φ(d2r2)
σ− 1

2
(d1r1)(log 2zi/d1)−4

and the third is
� σ− 1

2
(d1r1)σ− 1

2
(d2r2)(log 2zi/d1)−4(log 2zj/d2)−4.

This proves the result.

We only need to apply this result in the following case.

Proposition 6.2. Suppose that rz2
2 ≥ N > r. Then, we have

∑
[d,e]≤N/r

(d,r)=(e,r)=1

Λ2(d)Λ2(e)

[d, e]
=

r

φ(r)
log z2 + O

((
log

rz2
2

N

)5
)

+ O

(
r

φ(r)
σ− 1

2
(r)(log 2z2)−4

)
.

Proof. Let us set ρ = (d, e). Then the sum in question may be written as∑
[d,e]≤N/r

(d,r)=(e,r)=1

Λ2(d)Λ2(e)

de

∑
u|ρ

φ(u) =
∑
u≤z2

(u,r)=1

φ(u)

u2

∑
[d1,e1]≤N/ru

(d1,r)=(e1,r)=1

Λ2(ud1)Λ2(ue1)

d1e1
.

Applying Proposition 5.1 to the inner sum, we find that the above is

∑
u≤z2

(u,r)=1

φ(u)

u2

µ(u)2

(
ur

φ(ur)

)2 ∑
(γ1,ur)=1
γ1≤z2/u

µ(γ1)2

φ(γ1)2
+ E


where

E = O

((
ur

φ(ur)

)2 (log log z2)2

z2

)
+ O

(
ur

φ(ur)
σ− 1

2
(ur)(log 2z2/u)−4

)

+ O(σ− 1
2
(ur)2(log 2z2/u)−8) + O

((
log

rz2
2

uN

)4
)
.

This is

∑
u≤z2

(u,r)=1

µ(u)2

φ(u)

r2

φ(r)2

∑
(γ1,ur)=1
γ1≤z2/u

µ(γ1)2

φ(γ1)2
+ O

(
r

φ(r)
σ− 1

2
(r)(log 2z2)−4

)
+ O

((
log

rz2
2

N

)5
)
.

The main term is

r2

φ(r)2

 ∞∑
γ=1

µ(γ)2

φ(γ)2

 ∑
u≤z2

(u,r)=1

µ(u)2

φ(u)

∏
p|ur

(
1 +

1

(p− 1)2

)−1

+ O

(
r2

φ(r)2
log log z2

)
.
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7. Proof of Theorems 3.1 and 3.2

As described in §3, we have written

∑
n≤N

n≡b (mod r)

∑
d|n

Λ2(d)

∑
e|n

Λ2(e)

 = SA + SB + O(SC),

where in SA, we require that [d, e] > N/r.

By Proposition 4.1, we deduce that

SA �
N

r

(
log

rz2
2

N

)5

+
N

r
(log r)2 + rz2.

As for SC , we have by Proposition 5.1 that

SC �
N

r

(
log

rz2
2

N

)4

.

By Proposition 6.2, we have

SB =
N

r

(
r

φ(r)
log z2 + O(

r

φ(r)
σ− 1

2
(r)(log 2z2)−4) + O((log rz2

2/N)5)

)
.

This proves Theorem 3.1.

For Theorem 3.2, as in §2, we have to estimate three sums of the form

Si,j =
∑
n≤N

n≡b (mod r)

∑
d|n

Λi(d)

∑
e|n

Λj(e)

 .

For the cases i = j = 1 and i = 1, j = 2, the condition N ≥ rzizj is satisfied and so we get the
desired estimate from Proposition 1. The only remaining case is i = j = 2 where this condition is not
satisfied. This case follows from Theorem 3.1.
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