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On some Lambert-like series
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Dedicated to the memory of Alan Baker

Abstract. In this note, we study radial limits of power and Laurent series which are related to the Lerch zeta-function or
polylogarithm function. As has been pointed out in [CKK18], there have appeared many instances in which the imaginary part

of the Lerch zeta-function was considered by eliminating the real part by considering the odd part only. Mordell studied the

properties of the power series resembling Lambert series, and in particular considered whether the limit function is a rational
function or not. Our main result is the elucidation of the threshold case of bn = 1

n
studied by Mordell [Mor63], revealing that his

result is the odd part of Theorem 1.1 in view of the identities (1.9), (1.5).

We also refer to Lambert series considered by Titchmarsh [Tit38] in connection with Estermann’s zeta-functions.
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1. Introduction

As has been noticed in [CKK18], there are many instances in which the odd part, the first periodic
Bernoulli polynomial, of the polylogarithm function of order 1 appears as a result of eliminating the
real part, the log sine function. As has been developed, this kind of boundary behavior is essential
in scientific as well as mathematical research [LiKa19], [LLK19], [WMK20]. As a typical example of
a boundary function we consider the power series expansion of the monologarithm function

− log(1− z) =

∞∑
n=1

zn

n
(1.1)

which is absolutely convergent for |z| < 1 and is uniformly convergent for |z| = 1, z 6= 1. Hence it has
the boundary function denoted l1(z) with z 6= 1 on the unit circle: Writing z = e2πix, x ∈ R \ Z, we
have

l1(x) =
∞∑
n=1

e2πinx

n
= − log

(
1− e2πix

)
(1.2)

often referred to as the Lerch zeta-function ls(x) at s = 1. We shall make a full use of the identities

∞∑
n=1

cos(2πnx)

n
+ i

∞∑
n=1

sin(2πnx)

n
= l1(x) =

∞∑
n=1

e2πinx

n
= A1(x)− πiB̄1(x), (1.3)

0 < x < 1, where

A1(x) = − log 2| sinπx| =
∞∑
n=1

cos(2πnx)

n
, (1.4)

is its real part, the Clausen function and the imaginary part is

l1(x)− l1(−x) = −2πiB̄1(x), 0 < x < 1, (1.5)
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where

B̄1(x) = x− [x]− 1

2
= {x} − 1

2
(1.6)

is the first periodic Bernoulli polynomial, and where [x] indicates the greatest integer function and
{x} = x− [x] the fractional part of x. Since

B̄1(x) = −1

2

∞∑
n=1

sin(2πnx)

n
(1.7)

for x /∈ Z, we often denote the saw-tooth Fourier series by ψ(x), i.e.

ψ(x) =

{
− 1
π

∑∞
m=1

sin 2πmx
m , x /∈ Z

0, x ∈ Z
. (1.8)

Hence (1.8) and (1.6) differ at x ∈ Z by 1
2 , which affects Mordell’s formula in his presentation (1.15).

It was Walfisz [Walf25], [Walf23] who first pointed out that the Fourier series (1.7) is a consequence
of the functional equation for the Riemann zeta-function, the earliest occurrence of the modular
relation, [Kats14].

It follows that

l1(x) =

∞∑
n=1

e2πinx

n
= − log 2| sinπx| − πiB̄1(x). (1.9)

We are naturally led to introduce the Lerch zeta-function which is the boundary function of the
Hurwitz-Lerch transcendent:

ls(x) =
∞∑
n=1

e2πinx

ns
(1.10)

for σ = Re s > 1, x ∈ R, say, cf. [LaGa02].

Our aim is to consider the Lambert-like series (with bn = 1
n)

f(x) =

∞∑
n=1

bn
e2πinβ

1− xe2πinα
(1.11)

and its associate

F (x) =
∞∑

n=−∞
bn

e2πinβ

1− xe2πinα
(1.12)

for |x| < 1 in regard to the properties of the coefficients {bn} and the parameters α, β ∈ R. In the
case

∑∞
n=−∞ |bn| <∞, F (x) has an equivalent and more familiar expression

F (x) =

∞∑
n=0

g(αn+ β)xn, g(t) =

∞∑
n=−∞

bne
2πint. (1.13)

A lot of investigations on the series (1.13) are concerned with the irrationality of the limit of
the series, i.e. whether the limit is a rational function or not. Newman [New60], [Mor61], [Mor65a],
[Mor65b], [New60] and [Hen67] are all devoted to the irraionality of the limit function and some are
stated as Theorems 2.2 ∼ 2.4, [KuiNi74, pp. 10-13]. Other references can be found on [KuiNi74, p.
22] save for the paper of Henniger.

Mordell [Mor63] studied the convergence and the radial limit as x → 1 of the imaginary part of
the Lambert-like series (1.12) for α /∈ Q, |x| < 1 in the case

∑∞
n=−∞ |bn| <∞.



102 1. Introduction102 1. Introduction

He introduced the auxiliary function (with an = 1
n)

h(m, t) =

∞∑′

n=−∞
ane

2πimαt|n|, |t| < 1, (1.14)

the prime on the summation sign indicating the omission of the term with n = 1. For the special
sequence an = e2πinβ, bn = e2πinβ

n Mordell [Mor63] established

H(x) =

∞∑′

n=−∞

e2πinβ

n

1

1− xe2πinα
= 2πi

(
1

2(1− x)
−
∞∑
m=0

{αm+ β}xm
)

(1.15)

for mα + β /∈ Z and if mα + β is an integer, letting the value of m be k, we must −πxk to the
right-hand side of (1.15).

Davenport [Dav66] established a more general result in the case where
∑∞

n=−∞ bn is convergent.
Our main result is Theorem 1.1 below which gives the hidden whole entiity [Mor63] and implies

that the left-hand side of (1.12) is the imaginary part of the Lambert-like series

g̃(t, x) =
∞∑
m=0

h̃(m, t)xm =
∞∑
n=1

an

( ∞∑
m=0

e2πimαxm

)
tn, (1.16)

where correspondingly to (1.14)

h̃(m, t) =

∞∑
n=1

ane
2πimαtn, (1.17)

for |x| < 1, α /∈ Q.
This is one of seeing the invisible project [CKK18] and is quite similar to the radial limit of a

generalized Lambert series in the spirit of Riemann [Rie38b], cf. [Wan11, Theorem 3], [Wan18]. Cf.
§2. for Lambert series.

Theorem 1.1. Let α /∈ Q, β real, |x| < 1. Then

∞∑
n=1

e2πiβn

n

( ∞∑
m=0

e2πimnαxm

)
=

∞∑
n=1

e2πinβ

n

1

1− xe2πinα
=

∞∑
m=0

h̃(m, 1)xm, (1.18)

where
h̃(m, 1) = − log 2 sin θ(m)− πiB̄1 (θ(m)) (1.19)

and where
θ(m) = π(mα+ β) /∈ Z. (1.20)

By (1.9), (1.19) reads
h̃(m, 1) = l1 (θ(m)) . (1.21)

The key hinges on the threshold factor 1
n which is the gain obtained in Wintner’s procedure of

integration in §2..

In order to remove singularities, it is customary to use, as Riemann did, a well-known device of
taking the odd part or an alternate sum described respectively by∑

2-n

an =
∑
n

an −
∑
2|n

an (1.22)
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or ∑
n

(−1)nan =
∑
2|n

an −
∑
2-n

an = 2
∑
2|n

an −
∑
n

an, (1.23)

by (1.22), where n runs over a finite range or the series are absolutely convergent.
As an example, incorporating the Bernoulli formula

ψ(2x)− ψ(x) = ψ

(
x+

1

2

)
(1.24)

whose right-hand side is the Fourier series

− 1

π

∞∑
n=1

1

n
sin 2πn

(
x+

1

2

)
,

we arrive at the trigonometric series of Riemann (cf. [Rie1854])

∞∑
n=1

ψ
(
nx+ 1

2

)
n

=
∞∑
n=1

−∑
d|n

(−1)d

 sin 2πnx

nπ
(1.25)

for all point x.

2. Lambert series

In this section we extract some basics of Lambert series from
[LLWK17, pp. 131-136] and state the corrected version of the Dirichlet-Abel theorem, Theorem 2.1.
Lambert series have been studied extensively since their introduction by Lambert [Lam1771]. Cf.
[Win41], [KTY02], [Kats14, 73-80], [LLWK17, 131-136], [LiKa19] etc. Let {bn} ⊂ C be such that

lim sup |bn|1/n ≤ 1, (2.26)

i.e. such that the power series
∑∞

n=1 bnz
n is absolutely convergent in |z| < 1. Then the Lambert

series

f(z) =
∞∑
n=1

bn
zn

1− zn
(2.27)

is absolutely convergent in |z| < 1 and represents an analytic function and moreover the power series
of this function can be obtained by formal rearrangement of (2.27), i.e.

f(z) =
∞∑
n=1

anz
n (|z| < 1), (2.28)

the Liouville formula, where

an =
∑
d|n

bd. (2.29)

Along with (2.27), one may also consider a lá Wintner [Win41]

f+(z) :=

∞∑
n=1

βn
zn

1 + zn
. (2.30)

One of the most prominent occurrence of Lambert series is the celebrated formula of Ramanujan
which provides an expression of zeta-values in terms of rapidly converging Lamber series, which is
elucidated as a modular relation [KTY02], [Kats14].
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Another instance is eleuciadation of Riemann’s posthumous Fragment II all the results of which
deal with the asymptotic behavior of those modular functions from Jacobi’s Fundamenta Nova [Jac],
for which the variable tends to rational points on the unit circle. Those formulas were simply noted
for record by Riemann. Dedekind [Ded1892] was the first who analyzed Fragment II and introduced
the most famous Dedekind eta-function (and the Dedekind sum). Several authors including Smith
[Smi1881], Hardy [Har03], Rademacher [Rad31] Bayad [Bay01] made some more incorporations of
Fragment II. More recently in 2004, Arias-de-Reyna [dR04] spent 67 pages to analyze all the formulas
in Fragment II by ad hoc method.

Wang [Wan11], [Wan18] chose a suitable R-function in taking the radial limits and applied a form
of Dirichlet-Abel Theorem, Theorem 2.1, whereby he almost immediately got the expression in terms
of the (differences of) polylogarithm function of order 1, condensing 67 to 17 pages. This has been
further simplified [WAK20]. This is precisely what Riemann intended to do, i.e. to eliminate the
singular part, which turns out to be the Clausen function, by taking the odd part. Riemann must
have felt the truth of this type of Dirichlet-Abel theorem. The following is the corrected version of
the theorem in [Wan11]:

Theorem 2.1. (Dirichlet-Abel) Let q be a fixed modulus > 1. Let Rn(x) denote a complex-valued
function defined on I = [0, 1] such that Rn(x) = Rk(x) for n ≡ k (mod q), and a fortiori, there are q
different functions. Assume that each Rk(x) is of Lipschitz α, α ≥ 1, [in symbol Rk(x) ∈ Lipα] and
the vanishingness condition

q∑
k=1

Rk(x) = 0 (2.31)

for each x ∈ I. Then the Dirichlet series

F (s, x) =

∞∑
n=1

Rn(xn)

ns
(2.32)

is uniformly convergent in Re s = σ > 0 and x ∈ I.
If, further, Rk are all continuous on I, then F (s) is also continuous on I and

F (1, 1) =

∞∑
n=1

Rn(1)

n
= −1

q

q∑
k=1

Rk(1)ψ

(
k

q

)
=

q∑
k=1

R̂k(1)l1

(
k

q

)
, (2.33)

where l1(x) is (1.2) and ψ is the Euler digamma function

ψ(x) =
Γ′

Γ
(x). (2.34)

For a Dirichlet series G(s) =
∞∑
n=1

an
ns with periodic coefficients {an} of period q, (2.33) reads

lim
s→1

G(s)−
âq√
q

s− 1

 = −1

q

q∑
k=1

akψ

(
k

q

)
=

q−1∑
k=1

âk`1

(
k

q

)
+
âq√
q
γ, (2.35)

where

ân =
1
√
q

q∑
k=1

e
−2πik n

q ak, âq =
1
√
q

q∑
k=1

ak. (2.36)
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For the moment we shall dwell on Wintner’s elucidating of Riemann’s procedure in Fragment I,
[Win41]. Riemann divides the Lambert series (2.28) by z and integrate the result from 0 to z = reiθ,
r = |z| < 1, and then puts r = 1 to obtain his results, i.e. “Fourier expansions”, in a formal way.
Wintner’s legitimation reads as follows. Slightly modifying Riemann’s procedure by the trivial factor
eiθ, which makes the function F = F (r, θ) a function in z, one obtains

F (z) =

∫ r

0

f(reiθ)

r
dr =

∞∑
n=0

cnz
n, (2.37)

with

cn =
1

n
bn =

1

n

∑
d|n

an. (2.38)

In the case of (2.27), we should have

cn =
1

n

∑
d|n

(−1)nan. (2.39)

Then Wintner asks if F (z) tends to a measurable boundary function F (eiθ) as r → 1 (within the
Stolz path) and if so, then whether or not the boundary function is of class Lp, so that Riemann’s
formal trigonometric series actually is the Fourier series of the boundary function. This approacb to
bundary functions is to be compared with the inner function concept in [Beu49]. They form basis of
study of boundary behavior [LLK19].

The Lp-condition
∞∑

n=−∞
|cn|p/(p−1) <∞ (p ≥ 2) (2.40)

may be used for an f to be of class Lp for some p ≥ 2.

Theorem 2.2. (Wintner) Suppose
an = O(nλ−δ) (2.41)

for some δ > 0 and a fixed 0 < λ ≤ 1
2 . Then the boundary function F (eiθ) exists and is measurable

such that
F (reiθ)→ F (eiθ) a.e., as r → 1 (2.42)

along the Stoltz path. If λ < 1
2 , then F (eiθ) is of class L1/λ and if in (2.41), the exponent can be taken

arbitrarily small, then it is of class L∞.

Example 2.3. The case an = 1 is the Lambert series considered by Lambert himself ([Lam1771]),
(2.28) resp. (2.37) reads

f(z) =

∞∑
n=1

zn

1− zn
=

∞∑
n=1

d(n)zn, |z| < 1, (2.43)

resp.

F (z) =

∞∑
n=1

d(n)

n
zn, |z| < 1, (2.44)

where d(n) indicates the number of all positive divisors of n. It is well-known that

d(n) = O (nε) , ∀ε > 0. (2.45)

Hence by Theorem 2.2, the boundary function F (eiθ) exists and

F (eiθ) =

∞∑
n=0

d(n)

n
einθ a.e. (2.46)
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Remark 2.4. We note that the imaginary part of (2.46) gives the expansion treated in [Win37],
which in turn gives rise to the series considered by Riemann [Rie38b]. Indeed, this was proved by
Chowla and Walfisz [ChWa34]. Cf. [Kats14, p. 198].

Furthermore, by employing a method in [LMZ10] we may prove the trigonometric identity

∞∑
n=1

1

nz
B̄l

(
nx+

1

2

)
= − l!

2πi

∞∑
n=−∞
n6=0

σ∗l−z(n)

nl
e2πinx,

where B̄l(x) is the l-th periodic Bernoulli polynomial whose special case reduces to Riemann’s formula
(1.25).

3. Elucidation of Mordell’s identity

We shall reveal that Mordell’s formula may be treated exactly as in the case of the limit values of
elliptic modular functions in Riemann’s fragment II evaluated by the differences of monologarithm
function l1(x) whose right-hand side is the Fourier series

− 1

π

∞∑
n=1

1

n
sin 2πn

(
x+

1

2

)
,

which is B̄1

(
x+ 1

2

)
for x 6∈ Z and is 0 for x ∈ Z + 1

2 .

Theorem 3.1. (Tauberian theorem) Suppose g̃(t, x) is convergent uniformly in t, 0 ≤ t ≤ 1. Then
if an = O

(
1
n

)
, then for |x| < 1 the series

∞∑
m=0

∞∑
n=1

ane
2πimnαxm =

∞∑
n=1

an
1

1− xe2πinα
(3.47)

converges to g̃(1, x) =
∑∞

m=0 h̃(m, 1)xm.

This follows from Littlewood’s Tauberian theory [Har, Theorem 90, p. 154], [Kor04, p. 14] as in
[Mor63].

In view of (1.5), we may consider the imaginary part of h̃(m, t), which is the function h(m, t) =
2i Im h̃(m, t), where h(m, t) resp. h̃(m, t) are defined by (1.14) resp. (1.16).

This proves Theorem 1.1 and Mordell’s equality [Mor63, (14)] is to read

H(x) =
∞∑

n=−∞

e2πinβ

n

1

1− xe2πinα
=

∞∑
n=−∞

e2πiβn

n

( ∞∑
m=0

e2πimnαxm

)
(3.48)

= 2πi

∞∑
m=0

B̄1 (mα+ β)xm.

Indeed, if αm + β ∈ Z, then {αm + β} = 0 and since on the right-hand side the corresponding
term is to be −π({αm+β}− 1

2)xk = π
2x

k, we must add this. This clumsiness is removed by adopting
the periodic first Bernoulli polynomial as in (3.48).

However, to deduce (1.15), we are to appeal to (1.6). The asymptotic behavior of H(x) can be
obtained from the following lemma with g(m) = B̄(αm+ β).
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Lemma 3.2. Let

M(g) = lim
N→∞

1

N + 1

N∑
m=0

g(m),

which is equivalent to

G(N) :=
N∑
m=0

g(m) = M(g)(N + 1) + o(N). (3.49)

Then for |x| < 1, we have as x→ 1− 0,

∞∑
m=0

g(m)xm = M(g)
1

1− x
+ o

(
1

1− x

)
. (3.50)

Proof. By partial summation

∞∑
m=0

g(m)xm = lim
N→∞

(
G(0) +

N∑
m=1

(G(m)−G(m− 1))xm

)

= lim
N→∞

(
N−1∑
m=0

G(m)(xm − xm+1) +G(N)xN

)

= (1− x)M(g)
∞∑
m=0

(m+ 1)xm + o

(
(1− x)

∞∑
m=0

m|x|m
)

on substituting from (3.49). Rcalling the differentiated geometric series

∞∑
m=1

mxm−1 =
1

(1− x)2 ,

whence (3.50) follows.

Mordell deduces that as xe2πilβ → 1,

H(x) =
e2πilβ

l

1

1− xe2πilα
+ o

(
1

|1− xe2πilα|

)
. (3.51)

This gives a solution to [KuiNi74, Exercise 2.20] that H(x) has the unit circel as its natural boundary
when α /∈ Q.

As a radial limit in §2. we are to consider

Hr(x) =

∞∑′

n=−∞

rne2πinβ

n

1

1− xe2πinα
(3.52)

as r → 1− 0.

Concluding remarks: Lehmer [Leh75] made use of both real and imaginary parts of the monologue-
function (1.3) in connection with his study on generalized Euler constants, cf. [WAK20]. There we
state a general principle to the effect that Laurent coefficients is that which governs the situation
including Kronecker limit type formulas.
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In contrast to these, Titchmarsh [Tit38, p. 253] treats the case of the Clausen function:

Fν(z) =
∞∑
n=1

dν(n)e2πinz (3.53)

as z approaches a rational point of the unit circle. This can be studied in the context of the product
of Hurwitz and Lerch zeta-functions considered by Estermann [Est29a], [Est29b], [Est30] as has been
done by Chowla and Walfisz [ChWa34]. More general study on these zeta-functions that satisfy the
ramified functional equaitions will be conducted elsewhere.

The Liouville formula (2.30) is

f+(z) =

∞∑
m=1

∞∑
n=1

(−1)m−1βn(zm)n =

∞∑
`=1

α`z
`, (3.54)

where

αn = −
∑
d|n

(−1)dβn/d. (3.55)

Hence the generating Dirichlet series for A = {αn}

ϕ+(s) = ϕA,+(s) =
∞∑
n=1

αn
ns

(3.56)

has the expression

ϕ+(s) = ls

(
1

2

)
ϕB(s), (3.57)

where

ϕB(s) =

∞∑
n=1

bn
ns
. (3.58)

We shall conduct the study of these zeta-functions elsewhere.

Acknowledgment. The authors would like to thank the referee for careful reading of the earlier
draft.
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