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Congruences modulo powers of 5 for the

rank parity function
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Abstract. It is well known that Ramanujan conjectured congruences modulo powers of 5, 7 and 11 for the partition function.

These were subsequently proved by Watson (1938) and Atkin (1967). In 2009 Choi, Kang, and Lovejoy proved congruences modulo

powers of 5 for the crank parity function. The generating function for the rank parity function is f(q), which is the first example
of a mock theta function that Ramanujan mentioned in his last letter to Hardy. We prove congruences modulo powers of 5 for the

rank parity function.
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1. Introduction

Let p(n) be the number of unrestricted partitions of n. Ramanujan discovered and later proved that

p(5n+ 4) ≡ 0 (mod 5), (1.1)

p(7n+ 5) ≡ 0 (mod 7), (1.2)

p(11n+ 6) ≡ 0 (mod 11). (1.3)

In 1944 Dyson [Dy44] defined the rank of a partition as the largest part minus the number of parts
and conjectured that the residue of the rank mod 5 (resp. mod 7) divides the partitions of 5n+4 (resp.
7n+5) into 5 (resp. 7) equal classes thus giving combinatorial explanations of Ramanujan’s partition
congruences mod 5 (resp. 7). Dyson’s rank conjectures were proved by Atkin and Swinnerton-Dyer
[AS-D54]. Dyson also conjectured the existence of another statistic, he called the crank, which would
likewise explain Ramanujan’s partition congruence mod 11. The crank was found by Andrews and
the third author [AnGa88] who defined the crank as the largest part, if the partition has no ones,
and otherwise as the difference between the number of parts larger than the number of ones and the
number of ones.

Let Me(n) (resp. Mo(n)) denote the number of partitions of n with even (resp. odd) crank. Choi,
Kang and Lovejoy [CKL09] proved congruences modulo powers of 5 for the difference, which we call
the crank parity function.

Theorem 1.1. (Choi, Kang and Lovejoy [CKL09, Theorem 1.1]) For all α ≥ 0 we have

Me(n)−Mo(n) ≡ 0 (mod 5α+1), if 24n ≡ 1 (mod 52α+1).

This gives a weak refinement of Ramanujan’s partition congruence modulo powers of 5:

p(n) ≡ 0 (mod 5α), if 24n ≡ 1 (mod 5α).

This was proved by Watson [Wa38].

The first and second authors were supported in part by the National Natural Science Foundation of China (Grant No.
11971173). The third author was supported in part by a grant from the Simon’s Foundation (#318714).

We thank episciences.org for providing open access hosting of the electronic journal Hardy-Ramanujan Journal.

http://episciences.org


D. Chen, R. Chen and F. Garvan, Rank parity function congruences 25D. Chen, R. Chen and F. Garvan, Rank parity function congruences 25

In this paper we prove an analogue of Theorem 1.1 for the rank parity function. Analogous to
Me(n) and Mo(n), we let Ne(n) (resp. No(n)) denote the number of partitions of n with even (resp.
odd) rank. It is well known that the difference is related to Ramanujan’s mock theta function f(q).
This is the first example of a mock theta function that Ramanujan gave in his last letter to Hardy.
Let

f(q) =
∞∑
n=0

af (n)qn = 1 +
∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2

= 1 + q − 2 q2 + 3 q3 − 3 q4 + 3 q5 − 5 q6 + 7 q7 − 6 q8 + 6 q9 − 10 q10 + 12 q11 − 11 q12 + · · · .

This function has been studied by many authors. Ramanujan conjectured an asymptotic formula
for the coefficients af (n). Dragonette [Dr52] improved this result by finding a Rademacher-type
asymptotic expansion for the coefficients. The error term was subsequently improved by Andrews
[An66], Bringmann and Ono [BrOn06], and Ahlgren and Dunn [AhDu19]. We have

af (n) = Ne(n)−No(n),

for n ≥ 0.
Our main theorem is

Theorem 1.2. For all α ≥ 3 and all n ≥ 0 we have

af (5αn+ δα) + af (5α−2n+ δα−2) ≡ 0 (mod 5

⌊
1
2α

⌋
), (1.4)

where δα satisfies 0 < δα < 5α and 24δα ≡ 1 (mod 5α).

Since this paper was first written, we have found that Karl-Heinz Fricke [Fr13, p.9] independently
observed (1.4) but without proof. Fricke [Fr13, p.232] also independently observed analogous con-
gruences modulo powers of 7 and analogous congruences for Ramanujan’s third order mock theta
function

ω(q) =
∞∑
n=0

q2n(n+1)

(1 + q)2(1 + q3)2 · · · (1 + q2n+1)2
.

In a subsequent paper [CCG21] we will extend our methods to prove these other congruences.
Below in Section 3.A. we show that the generating function for

af (5n− 1) + af (n/5)

is a linear combination of two eta-products. See Theorem 3.1. This enables us to use the theory
of modular functions to obtain congruences. Our presentations and methods are similar to those of
Paule and Radu [PaRa12], who solved a difficult conjecture of Sellers [Se94] for congruences modulo
powers of 5 for Andrews’s two-colored generalized Frobenius partitions [An84]. In Section 2. we
include the necessary background and algorithms from the theory of modular functions for proving
identities. In Section 3. we apply the theory of modular functions to prove our main theorem. In
Section 4. we conclude the paper by discussing congruences modulo powers of 7 for both the rank
and crank parity functions.

Some Remarks and Notation

Throughout this paper we use the standard q-notation. For finite products we use

(z; q)n = (z)n =


n−1∏
j=0

(1− zqj), n > 0

1, n = 0.
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For infinite products we use

(z; q)∞ = (z)∞ = lim
n→∞

(z; q)n =

∞∏
n=1

(1− zq(n−1)),

(z1, z2, . . . , zk; q)∞ = (z1; q)∞(z2; q)∞ · · · (zk; q)∞,

[z; q]∞ = (z; q)∞(z−1q; q)∞ =
∞∏
n=1

(1− zq(n−1))(1− z−1qn),

[z1, z2, . . . , zk; q]∞ = [z1; q]∞[z2; q]∞ · · · [zk; q]∞,

for |q| < 1 and z, z1, z2,. . . , zk 6= 0. For θ-products we use

Ja,b = (qa, qb−a, qb; qb)∞, and Jb = (qb; qb)∞,

and the Dedekind eta-function is given by

η(τ) = exp(πiτ/12)

∞∏
n=1

(1− exp(2πinτ)) = q1/24
∞∏
n=1

(1− qn), (1.5)

where Im(τ) > 0.
Throughout this paper we let bxc denote the largest integer less than or equal to x, and let dxe

denote the smallest integer greater than or equal to x.
We need some notation for formal Laurent series. See the remarks at the end of [PaRa12, Section

1, p.823]. Let R be a ring and q be an indeterminant. We let R((q)) denote the formal Laurent series
in q with coefficients in R. These are series of the form

f =
∑
n∈Z

an q
n,

where an 6= 0 for at most finitely many n < 0. For f 6= 0 we define the order of f (with respect to q)
as the smallest integer N such that aN 6= 0 and we write N = ordq(f). We note that if f is a modular
function this coincides with ord(f,∞). See equation (2.6) below for this other notation. Suppose t
and f ∈ R((q)) and the composition f ◦ t is well-defined as a formal Laurent series. This is the case
if ordq(t) > 0. The t-order of

F = f ◦ t =
∑
n∈Z

an t
n,

where t =
∑

n∈Z bn q
n, is defined to be the smallest integer N such that aN 6= 0 and we write

N = ordt(F ). For example, if

f = q−1 + 1 + 2 q + · · · , t = q2 + 3q3 + 5q4 + · · · ,

then
F = f ◦ t = t−1 + 1 + 2 t+ · · · = q−2 − 3q−1 + 5 + · · · ,

so that ordq(f) = −1, ordq(t) = 2, ordt(F ) = −1 and ordq(F ) = −2.

2. Modular Functions

In this section we present the needed theory of modular functions which we use to prove identities.
A general reference is Rankin’s book [Ra77].



D. Chen, R. Chen and F. Garvan, Rank parity function congruences 27D. Chen, R. Chen and F. Garvan, Rank parity function congruences 27

2.A. Background theory

Our presentation is based on [Be91, pp.326-329]. Let H = {τ : Im(τ) > 0} (the complex upper half-

plane). For each M =

(
a b
c d

)
∈M+

2 (Z), the set of integer 2× 2 matrices with positive determinant,

the bilinear transformation M(τ) is defined by

Mτ = M(τ) =
aτ + b

cτ + d
.

The slash operator is defined by
(f |M ) (τ) = f(Mτ),

and satisfies
f |MS = f |M |S ,

for matrices M and S. The modular group Γ(1) is defined by

Γ(1) =

{(
a b
c d

)
∈M+

2 (Z) : ad− bc = 1

}
.

We consider the following subgroups Γ of the modular group with finite index

Γ0(N) =

{(
a b
c d

)
∈ Γ(1) : c ≡ 0 (mod N)

}
,

Γ1(N) =

{(
a b
c d

)
∈ Γ(1) :

(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod N)

}
.

Such a group Γ acts on H ∪Q∪∞ by the transformation V (τ), for V ∈ Γ which induces an equivalence
relation. We call a set F ⊆H ∪Q ∪ {∞} a fundamental set for Γ if it contains one element of each
equivalence class. The finite set F ∩ (Q ∪ {∞}) is called the complete set of inequivalent cusps.

A function f : H −→ C is a modular function on Γ if the following conditions hold:

(i) f is holomorphic on H .

(ii) f |V = f for all V ∈ Γ.

(iii) For every A ∈ Γ(1) the function f
A−1 has an expansion

(f
A−1 )(τ) =

∞∑
m=m0

b(m) exp(2πiτm/κ)

on some half-plane {τ : Im τ > h ≥ 0}, where T =

(
1 1
0 1

)
and

κ = min
{
k > 0 : ±A−1T kA ∈ Γ

}
.

The positive integer κ = κ(Γ; ζ) is called the fan width of Γ at the cusp ζ = A−1∞. If b(m0) 6= 0,
then we write

Ord(f, ζ,Γ) = m0

which is called the order of f at ζ with respect to Γ. We also write

ord(f ; ζ) =
m0

κ
=

m0

κ(Γ, ζ)
, (2.6)
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which is called the invariant order of f at ζ. For each z ∈ H , ord(f ; z) denotes the order of f at z
as an analytic function of z, and the order of f with respect to Γ is defined by

Ord(f, z,Γ) =
1

`
ord(f ; z)

where ` is the order of z as a fixed point of Γ. We note ` = 1, 2 or 3. Our main tool for proving
modular function identities is the valence formula [Ra77, Theorem 4.1.4, p.98]: If f 6= 0 is a modular
function on Γ and F is any fundamental set for Γ then∑

z∈F

Ord(f, z,Γ) = 0. (2.7)

2.B. Eta-product identities

We will consider eta-products of the form

f(τ) =
∏
d|N

η(dτ)md , (2.8)

where N is a positive integer, each d > 0 and md ∈ Z.

Modularity

Newman [Ne59] has found necessary and sufficient conditions under which an eta-product is a modular
function on Γ0(N).

Theorem 2.1. ([Ne59, Theorem 4.7]) The function f(τ) (given in (2.8)) is a modular function
on Γ0(N) if and only if

1.
∑
d|N

md = 0,

2.
∑
d|N

dmd ≡ 0 (mod 24),

3.
∑
d|N

Nmd

d
≡ 0 (mod 24), and

4.
∏
d|N

d|md| is a square.

Orders at cusps

Ligozat [Li75] has computed the invariant order of an eta-product at the cusps of Γ0(N).

Theorem 2.2. ([Li75, Theorem 4.8]) If the eta-product f(τ) (given in (2.8)) is a modular func-
tion on Γ0(N), then its order at the cusp ζ = b

c (assuming (b, c) = 1) is

ord(f(τ); ζ) =
∑
d|N

(d, c)2md

24d
. (2.9)

Chua and Lang [ChLa04] have found a set of inequivalent cusps for Γ0(N).

Theorem 2.3. ([ChLa04, p.354]) Let N be a positive integer and for each positive divisor d of N
let ed = (d,N/d). Then the set

∆ = ∪
d|N

Sd

is a complete set of inequivalent cusps of Γ0(N) where

Sd = {xi/d : (xi, d) = 1, 0 ≤ xi ≤ d− 1, xi 6≡ xj (mod ed)}.
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Biagioli [Bi89] has found the fan width of the cusps of Γ0(N).

Lemma 2.4. ([Bi89, Lemma 4.2]) If (r, s) = 1, then the fan width of Γ0(N) at r
s is

κ
(

Γ0(N);
r

s

)
=

N

(N, s2)
.

An application of the valence formula

Since eta-products have no zeros or poles in H , the following result follows easily from the valence
formula (2.7).

Theorem 2.5. Let f1(τ), f2(τ), . . . , fn(τ) be eta-products that are modular functions on Γ0(N). Let
SN be a set of inequivalent cusps for Γ0(N). Define the constant

B =
∑
ζ∈SN
ζ 6=∞

min({Ord(fj , ζ,Γ0(N)) : 1 ≤ j ≤ n}), (2.10)

and consider
g(τ) := α1f1(τ) + α2f2(τ) + · · ·+ αnfn(τ), (2.11)

where each αj ∈ C. Then
g(τ) ≡ 0

if and only if
Ord(g(τ),∞,Γ0(N)) > −B. (2.12)

An algorithm for proving eta-product identities.

STEP 0. Write the identity in the following form:

α1f1(τ) + α2f2(τ) + · · ·+ αnfn(τ) = 0, (2.13)

where each αi ∈ C and each fi(τ) is an eta-product of level N .

STEP 1. Use Theorem 2.1 to check that fj(τ) is a modular function on Γ0(N) for each 1 ≤ j ≤ n.

STEP 2. Use Theorem 2.3 to find a set SN of inequivalent cusps for Γ0(N) and the fan width of
each cusp.

STEP 3. Use Theorem 2.2 to calculate the order of each eta-product fj(τ) at each cusp of Γ0(N).

STEP 4. Calculate
B =

∑
ζ∈SN
ζ 6=∞

min({Ord(fj , ζ,Γ0(N)) : 1 ≤ j ≤ n}).

STEP 5. Show that
Ord(g(τ),∞,Γ0(N)) > −B

where
g(τ) = α1f1(τ) + α2f2(τ) + · · ·+ αnfn(τ).

Theorem 2.5 then implies that g(τ) ≡ 0 and hence the eta-product identity (2.13).
The third author has written a MAPLE package called ETA which implements this algorithm.

See

http://qseries.org/fgarvan/qmaple/ETA/

http://qseries.org/fgarvan/qmaple/ETA/
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A modular equation

Define

t := t(τ) :=
η(τ)2η(10τ)4

η(2τ)4η(5τ)2
(2.14)

= q − 2 q2 + 3 q3 − 6 q4 + 11 q5 − 16 q6 + 24 q7 − 38 q8 + 57 q9 − 82 q10 + 117 q11 + · · · .

We note that t(τ) is a Hauptmodul for Γ0(10) [Ma09]. As an application of our algorithm we prove
the following theorem which will be needed later.

Theorem 2.6. Let

σ0(τ) = −t, (2.15)

σ1(τ) = −5t2 + 2 · 5t, (2.16)

σ2(τ) = −52t3 + 2 · 52t2 − 7 · 5t, (2.17)

σ3(τ) = −53t4 + 2 · 53t3 − 7 · 52t2 + 12 · 5t, (2.18)

σ4(τ) = −54t5 + 2 · 54t4 − 7 · 53t3 + 12 · 52t2 − 11 · 5t, (2.19)

where t = t(τ) is defined in (2.14). Then

t(τ)5 +
4∑
j=0

σj(5τ) t(τ)j = 0. (2.20)

Proof. From Theorem 2.1 we find that t(τ) is a modular function on Γ0(10) and t(5τ) is a modular
function on Γ0(50). Hence each term on the left side of (2.20) is a modular function on Γ0(50). For
convenience we divide by t(τ)5 and let

g(τ) = 1 +
4∑
j=0

σj(5τ) t(τ)j−5. (2.21)

From Theorem 2.3, Lemma 2.4 and Theorem 2.2 we have the following table of fan widths for the
cusps of Γ0(50), with the orders and invariant orders of both t(τ) and t(5τ).

ζ 0 1/2 1/5 2/5 3/5 4/5 1/10 3/10 7/10 9/10 1/25 1/50

κ(Γ0(50), ζ) 50 25 2 2 2 2 1 1 1 1 2 1

ord(t(τ), ζ) 0 −1/5 0 0 0 0 1 1 1 1 0 1

Ord(t(τ), ζ,Γ0(50)) 0 −5 0 0 0 0 1 1 1 1 0 1

ord(t(5τ), ζ) 0 −1/25 0 0 0 0 −1 −1 −1 −1 0 5

Ord(t(5τ), ζ,Γ0(50)) 0 −1 0 0 0 0 −1 −1 −1 −1 0 5

Expanding the right side of (2.21) gives 16 terms of the form t(5τ)kt(τ)j−5 with 1 ≤ k ≤ j + 1 where
0 ≤ j ≤ 4, together with (k, j) = (0, 5). We calculate the order of each term at each cusp ζ of Γ0(50),
and thus giving lower bounds for Ord(g(τ), ζ,Γ0(50) at each cusp in the following.

ζ 0 1/2 1/5 2/5 3/5 4/5 1/10 3/10 7/10 9/10 1/25 1/50

Ord(g(τ), ζ,Γ0(50)) ≥ 0 0 0 0 0 0 −6 −6 −6 −6 0 0

Thus the constant B in Theorem 2.5 is B = −24. It suffices to show that

Ord(g(τ),∞,Γ0(50)) > 24.

This is easily verified. Thus by Theorem 2.5 we have g(τ) ≡ 0 and the result follows.
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2.C. The Up operator

Let p be prime and

f =
∞∑

m=m0

a(m)qm

be a formal Laurent series. We define Up by

Up(f) :=
∑

pm≥m0

a(pm)qm. (2.22)

If f is a modular function (with q = exp(2πiτ)),

Up(f) =
1

p

p∑
j=0

f

(1/p j/p
0 1

)
=

1

p

p∑
j=0

f

(
τ + j

p

)
. (2.23)

By [AtLe70, Lemma 7, p.138] we have

Theorem 2.7. Let p be prime. If f is a modular function on Γ0(pN) and p | N , then Up(f) is a
modular function on Γ0(N).

Gordon and Hughes [GoHu81, Theorem 4, p.336] have found lower bounds for the invariant orders
of Up(f) at cusps. Let νp(n) denote the p-adic order of an integer n; i.e. the highest power of p that
divides n.

Theorem 2.8. ([GoHu81, Theorem 4]) Suppose f(τ) is a modular function on Γ0(pN), where p
is prime and p | N . Let r = β

δ be a cusp of Γ0(N), where δ | N and (β, δ) = 1. Then

Ord(Up(f), r,Γ0(N)) ≥


1
p Ord(f, r/p,Γ0(pN)) if νp(δ) ≥ 1

2νp(N)

Ord(f, r/p,Γ0(pN)) if 0 < νp(δ) <
1
2νp(N)

min
0≤k≤p−1

Ord(f, (r + k)/p,Γ0(pN)) if νp(δ) = 0.

Theorems 2.5, 2.7 and 2.8 give the following algorithm.

An algorithm for proving Up eta-product identities

STEP 0. Write the identity in the form

Up (α1g1(τ) + α2g2(τ) + · · ·+ αkgk(τ)) = β1f1(τ) + β2f2(τ) + · · ·+ βnfn(τ), (2.24)

where p is prime, p | N , each gj(τ) is an eta-product and a modular function on Γ0(pN), and each
fj(τ) is an eta-product and modular function on Γ0(N).

STEP 1. Use Theorem 2.1 to check that fj(τ) is a modular function on Γ0(N) for each 1 ≤ j ≤ n,
and gj(τ) is a modular function on Γ0(pN) for each 1 ≤ j ≤ k.

STEP 2. Use Theorem 2.3 to find a set SN of inequivalent cusps for Γ0(N) and the fan width of
each cusp.

STEP 3a. Compute Ord(fj , ζ,Γ0(N)) for each j at each cusp ζ of Γ0(N) apart from ∞.

STEP 3b. Use Theorem 2.8 to find lower bounds L(gj , ζ,N) for

Ord(Up(gj), ζ,Γ0(N))

for each cusp ζ of Γ0(N), and each 1 ≤ j ≤ k.
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STEP 4. Calculate

B =
∑
ζ∈SN
ζ 6=∞

min({Ord(fj , ζ,Γ0(N)) : 1 ≤ j ≤ n} ∪ {L(gj , ζ,N) : 1 ≤ j ≤ k}). (2.25)

STEP 5. Show that
Ord(h(τ),∞,Γ0(N)) > −B

where

h(τ) = Up (α1g1(τ) + α2g2(τ) + · · ·+ αkgk(τ))− (β1f1(τ) + β2f2(τ) + · · ·+ βnfn(τ)).

Theorem 2.5 then implies that h(τ) ≡ 0 and hence the Up eta-product identity (2.24).
The third author has included an implementation of this algorithm in his ETA MAPLE package.
As an application of our algorithm we sketch the proof of

U5(g) = 5 f1(τ) + 2 f2(τ), (2.26)

where

g(τ) =
η (50 τ)5 η (5 τ)4 η (4 τ)3 η (2 τ)3

η (100 τ)3 η (25 τ)2 η (10 τ)8 η (τ)2 ,

f1(τ) =
η (10 τ)8 η (τ)4

η (5 τ)4 η (2 τ)8 , f2(τ) =
η (10 τ)5 η (τ)2

η (20 τ)3 η (5 τ)2 η (4 τ) η (2 τ)
.

We use Theorem 2.1 to check that fj(τ) is a modular function on Γ0(20) for each 1 ≤ j ≤ 2, and
g(τ) is a modular function on Γ0(100). We use Theorem 2.3 to find a set S20 of inequivalent cusps for
Γ0(20) and the fan width of each cusp. By Theorems 2.3, 2.2 and Lemma 2.4 we have the following
table of orders.

ζ 0 1/2 1/4 1/5 1/10 1/20

Ord(f1(τ), ζ,Γ0(20)) 0 −2 −2 0 2 2

Ord(f2(τ), ζ,Γ0(20)) 1 0 −1 0 1 −1

Using Theorems 2.3, 2.2, 2.8 and some calculation we have the following table of lower bounds
L(g, ζ, 20).

ζ 0 1/2 1/4 1/5 1/10 1/20

Ord(U5(g), ζ,Γ0(20)) ≥ 0 −2 −2 −1/5 3/5 −6/5

Thus the constant B in (2.25) is B = −18/5. It suffices to show that

Ord(h(τ),∞,Γ0(20)) ≥ 4,

where
h(τ) = U5(g)− (5f1(τ) + 2f2(τ)).

This is easily verified. Thus by Theorem 2.5 we have h(τ) ≡ 0 and the result (2.26) follows.

2.D. Generalized eta-functions

The generalized Dedekind eta function is defined to be

ηδ,g(τ) = q
δ
2
P2(g/δ)

∏
m≡±g (mod δ)

(1− qm), (2.27)

where P2(t) = {t}2−{t}+ 1
6 is the second periodic Bernoulli polynomial, {t} = t− [t] is the fractional

part of t, g, δ,m ∈ Z+ and 0 < g < δ. The function ηδ,g(τ) is a modular function on SL2(Z) with a
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multiplier system. Let N be a fixed positive integer. A generalized Dedekind eta-product of level N
has the form

f(τ) =
∏
δ|N

0<g<δ

η
rδ,g
δ,g (τ), (2.28)

where

rδ,g ∈

{
1
2Z if g = δ/2,

Z otherwise.
(2.29)

Robins [Ro94] has found sufficient conditions under which a generalized eta-product is a modular
function on Γ1(N).

Theorem 2.9. ([Ro94, Theorem 3]) The function f(τ), defined in (2.28), is a modular function
on Γ1(N) if

(i)
∑
δ|N
g

δP2(gδ )rδ,g ≡ 0 (mod 2), and

(ii)
∑
δ|N
g

N

δ
P2(0)rδ,g ≡ 0 (mod 2).

Cho, Koo and Park [CKP09] have found a set of inequivalent cusps for Γ1(N) ∩ Γ0(mN). The
group Γ1(N) corresponds to the case m = 1.

Theorem 2.10. ([CKP09, Corollary 4, p.930]) Let a, c, a′, c′ ∈ Z with (a, c) = (a′, c′) = 1.

(i) The cusps a
c and a′

c′ are equivalent mod Γ1(N) if and only if(
a′

c′

)
≡ ±

(
a+ nc
c

)
(mod N)

for some integer n.

(ii) The following is a complete set of inequivalent cusps mod Γ1(N).

S =

{
yc,j
xc,i

: 0 < c | N, 0 < sc,i, ac,j ≤ N, (sc,i, N) = (ac,j , N) = 1,

sc,i = sc,i′ ⇐⇒ sc,1 ≡ ±sc′,i′ (mod N
c ),

ac,j = ac,j′ ⇐⇒

{
ac,j ≡ ±ac,j′ (mod c), if c = N

2 or N,

ac,j ≡ ac,j′ (mod c), otherwise,

xc,i, yc,j ∈ Z chosen so thatxc,i ≡ csc,i, yc,j ≡ ac,j (mod N), (xc,i, yc,j) = 1

}
.

(iii) The fan width of the cusp a
c is given by

κ(ac ,Γ1(N)) =

{
1, if N = 4 and (c, 4) = 2,
N

(c,N) , otherwise.

In this theorem, it is understood as usual that the fraction ±1
0 corresponds to ∞.

Robins [Ro94] has calculated the invariant order of ηδ,g(τ) at any cusp. This gives a method for
calculating the invariant order at any cusp of a generalized eta-product.
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Theorem 2.11. ([Ro94]) The order at the cusp ζ = a
c (assuming (a, c) = 1) of the generalized

eta-function ηδ,g(τ) (defined in (2.27) and assuming 0 < g < δ) is

ord(ηδ,g(τ); ζ) =
ε2

2δ
P2

(ag
ε

)
, (2.30)

where ε = (δ, c).

An algorithm for proving generalized eta-product identities

We note that the analog of Theorem 2.5 holds for generalized eta-products which are modular func-
tions on Γ1(N), and follows easily from the valence formula (2.7).

Theorem 2.12. ([FrGa19, Cor.2.5]) Let f1(τ), f2(τ), . . . , fn(τ) be generalized eta-products that
are modular functions on Γ1(N). Let SN be a set of inequivalent cusps for Γ1(N). Define the constant

B =
∑
s∈SN
s 6=∞

min({Ord(fj , s,Γ1(N)) : 1 ≤ j ≤ n} ∪ {0}), (2.31)

and consider
g(τ) := α1f1(τ) + α2f2(τ) + · · ·+ αnfn(τ) + 1, (2.32)

where each αj ∈ C. Then
g(τ) ≡ 0

if and only if
Ord(g(τ),∞,Γ1(N)) > −B. (2.33)

The algorithm for proving generalized eta-product identities is completely analogous to the method
for proving eta-product identities described in Section 2.B.. To prove an identity in the form

α1f1(τ) + α2f2(τ) + · · ·+ αnfn(τ) + 1 = 0,

the algorithm simply involves calculating the constant B in (2.31) and then calculating enough coef-
ficients to show that the inequality (2.33) holds. A more complete description is given in [FrGa19].

The third author has written a MAPLE package called thetaids which implements this algo-
rithm. See

http://qseries.org/fgarvan/qmaple/thetaids/

3. The rank parity function modulo powers of 5

3.A. A Generating Function

In this section we prove an identity for the generating function of

af (5n− 1) + af (n/5),

where it is understood that af (n) = 0 if n is not a non-negative integer. Our proof depends on some
results of Mao [Mao13] who found 5-dissection results for the rank modulo 10.

Theorem 3.1.
∞∑
n=0

(af (5n− 1) + af (n/5))qn =
J4

2J
2
10

J1J3
4J20

− 4q
J2

1J
3
4J5J20

J5
2J10

. (3.34)

http://qseries.org/fgarvan/qmaple/thetaids/
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Proof. From Watson [Wa36, p.64] we have

f(q) =
2

(q; q)∞

∞∑
n=−∞

(−1)nqn(3n+1)/2

1 + qn
. (3.35)

We find by replacing n by −n that

∞∑
n=−∞

(−1)nqn(3n+1)/2+4n

1 + q5n
=

∞∑
n=−∞

(−1)nqn(3n+1)/2

1 + q5n
, (3.36)

∞∑
n=−∞

(−1)nqn(3n+1)/2+3n

1 + q5n
=

∞∑
n=−∞

(−1)nqn(3n+1)/2+n

1 + q5n
.

By [Mao13, Lemma 3.1] we have

∞∑
n=−∞

(−1)nqn(3n+1)/2

1 + q5n
= P (q5,−q5; q25)− P (q10,−q5; q25)

q3
+

(q; q)∞
J25

∞∑
n=−∞

(−1)nq75n(n+1)/2+5

1 + q25n+5
,

(3.37)
∞∑

n=−∞

(−1)nqn(3n+1)/2+n

1 + q5n
= P (q10,−q10; q25)− q3P (q5,−q10; q25)− (q; q)∞

J25

∞∑
n=−∞

(−1)nq75n(n+1)/2+8

1 + q25n+10
,

(3.38)
∞∑

n=−∞

(−1)nqn(3n+1)/2+2n

1 + q5n
=
P (q5,−1; q25)

q6
− P (q10,−1; q25)

q9
− (q; q)∞

J25

∞∑
n=−∞

(−1)nq25n(3n+1)/2−1

1 + q25n
,

(3.39)

where

P (a, b; q) =
[a, a2; q]∞(q; q)2

∞
[b/a, ab, b; q]∞

. (3.40)

From (3.35)-(3.39), and noting that P (q5,−q5; q25) = P (q10,−q10; q25) we have

f(q) =
2

(q; q)∞

∞∑
n=−∞

(−1)nqn(3n+1)/2

1 + qn
(3.41)

=
2

(q; q)∞

∞∑
n=−∞

(−1)nqn(3n+1)/2(1− qn + q2n − q3n + q4n)

1 + q5n

=
2

(q; q)∞

∞∑
n=−∞

(−1)nqn(3n+1)/2(2− 2qn + q2n)

1 + q5n

=
2

J1

{
2q3P (q5,−q10; q25)− 2P (q10,−q5; q25)

q3
+
P (q5,−1; q25)

q6
− P (q10,−1; q25)

q9

}
+

4

J25

∞∑
n=−∞

(−1)nq75n(n+1)/2+5

1 + q25n+5
+

4

J25

∞∑
n=−∞

(−1)nq75n(n+1)/2+8

1 + q25n+10
− 1

q
f(q25).

We let

g(q) =
2

J1

{
2q3P (q5,−q10; q25)− 2P (q10,−q5; q25)

q3
+
P (q5,−1; q25)

q6
− P (q10,−1; q25)

q9

}
, (3.42)

and write the 5-dissection of g(q) as

g(q) = g0(q5) + q g1(q5) + q2 g2(q5) + q3 g3(q5) + q4 g4(q5). (3.43)
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From (3.35), (3.42) and (3.43), replacing q5 by q, we have

∞∑
n=0

af (5n+ 4)qn = −1

q
f(q5) + g4(q), (3.44)

after dividing both sides by q4 and replacing q5 by q.
The 5-dissection of J1 is well-known

J1 = J25

(
B(q5)− q − q2 1

B(q5)

)
, (3.45)

where

B(q) =
J2,5

J1,5
.

See for example [Ga88, Lemma (3.18)].
From (3.42), (3.43) and (3.45)

J25 (g0(q5) + q g1(q5) + q2 g2(q5) + q3 g3(q5) + q4 g4(q5))

(
B(q5)− q − q2 1

B(q5)

)
= 4q3P (q5,−q10; q25)− 4P (q10,−q5; q25)

q3
+

2P (q5,−1; q25)

q6
− 2P (q10,−1; q25)

q9
. (3.46)

By expanding the left side of (3.46) and comparing both sides according to the residue of the
exponent of q modulo 5, we obtain 5 equations:

B(q)g0 − qg4 −
q

B(q)
g3 = 0, (3.47)

B(q)g1 − g0 −
q

B(q)
g4 = −2P (q2,−1; q5)

q2J5
, (3.48)

B(q)g2 − g1 −
1

B(q)
g0 = −4P (q2,−q; q5)

qJ5
, (3.49)

B(q)g3 − g2 −
1

B(q)
g1 =

4P (q,−q2; q5)

J5
, (3.50)

B(q)g4 − g3 −
1

B(q)
g2 =

2P (q,−1; q5)

q2J5
, (3.51)

where gj = gj(q) for 0 ≤ j ≤ 4.
Solving these equations we find that

g4(q) =
1

J5(B5 − 11q − q2/B5)

(
2

q2
X2B

4 − 2

q
X1B

−4 + 4X4B
3 + 4X3B

−3

− 8

q
X3B

2 + 8qX4B
−2 − 6

q2
X1B −

6

q
X2B

−1

)
, (3.52)

where B := B(q) and

X1 =P (q2,−1; q5) =
q2J1,10J

3
2,10J

3
3,10J

2
5,10

2J6
10J4,10

, X2 = P (q,−1; q5) =
qJ3

1,10J3,10J
3
4,10J

2
5,10

2J6
10J2,10

,

X3 =P (q2,−q; q5) =
qJ3

1,10J
2
3,10J

2
4,10J5,10

J6
10

, X4 = P (q,−q2; q5) =
J2

1,10J
2
2,10J

3
3,10J5,10

J6
10

.
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The following identity is also well-known

J6
1

J6
5

= B5 − 11q − q2 1

B5
. (3.53)

See for example [HiHu81, Lemma (2.5)].
By (3.52) and (3.53), we have

g4(q) =
J3

1,10J3,10J
3
4,10J

2
5,10J

4
2,5J

5
5

qJ2,10J4
1,5J

6
10J

6
1

−
qJ1,10J

3
2,10J

3
3,10J

2
5,10J

4
1,5J

5
5

J4,10J4
2,5J

6
10J

6
1

+ 4
J2

1,10J
2
2,10J

3
3,10J5,10J

3
2,5J

5
5

J3
1,5J

6
10J

6
1

+ 4
qJ3

1,10J
2
3,10J

2
4,10J5,10J

3
1,5J

5
5

J3
2,5J

6
10J

6
1

− 8
J3

1,10J
2
3,10J

2
4,10J5,10J

2
2,5J

5
5

J2
1,5J

6
10J

6
1

+ 8
qJ2

1,10J
2
2,10J

3
3,10J5,10J

2
1,5J

5
5

J2
2,5J

6
10J

6
1

− 3
J1,10J

3
2,10J

3
3,10J

2
5,10J2,5J

5
5

J4,10J1,5J6
10J

6
1

− 3
J3

1,10J3,10J
3
4,10J

2
5,10J1,5J

5
5

J2,10J2,5J6
10J

6
1

. (3.54)

We prove

g4(q) = −4
J2

1J
3
4J5J20

J5
2J10

+
1

q

J4
2J

2
10

J1J3
4J20

, (3.55)

using the algorithm described in Section 2.D. We first use (3.54) to rewrite (3.55) as the following
modular function identity for generalized eta-products on Γ1(20).

0 =1−
η6

10,1η
4
10,4

η4
10,2η

6
10,3

+ 4
η2

10,2η10,3

η2
10,4η10,5

+ 4
η7

10,1η
6
10,4

η6
10,2η

6
10,3η10,5

− 8
η2

10,1η10,4

η10,2η10,3η10,5
+ 8

η5
10,1η

3
10,4

η3
10,2η

4
10,3η10,5

− 3
η10,1η10,2

η10,3η10,4

− 3
η5

5,1

η5
5,2

+ 4
η9

20,1η
3
20,3η

7
20,4η

4
20,6η

3
20,7η

3
20,8η

9
20,9

η2
20,10

−
η6

20,1η
6
20,2η

7
20,4η

10
20,6η

3
20,8η

6
20,9η

2
20,10

η4
20,5

. (3.56)

We use Theorem 2.9 to check that each generalized eta-product is a modular function on Γ1(20). We
then use Theorems 2.10 and 2.11 to calculate the order of each generalized eta-product at each cusp
of Γ1(20). We calculate the constant in equation (2.31) to find that B = 24. We let g(τ) be the
right side of (3.56) and easily show that Ord(g(τ),∞,Γ1(20)) > 24. The required identity follows by
Theorem 2.12.

From (3.44) and (3.55) we have

∞∑
n=0

af (5n− 1)qn + f(q5) = q g4(q) =
J4

2J
2
10

J1J3
4J20

− 4q
J2

1J
3
4J5J20

J5
2J10

, (3.57)

which is our result (3.34).

3.B. A Fundamental Lemma

We need the following fundamental lemma, whose proof follows easily from Theorem 2.6.

Lemma 3.2. (A Fundamental Lemma) Suppose u = u(τ), and j is any integer. Then

U5(u tj) = −
4∑
l=0

σl(τ)U5(u tj+l−5),

where t = t(τ) is defined in (2.14) and the σj(τ) are given in (2.15)–(2.19).

Proof. The result follows easily from (2.20) by multiplying both sides by u tj−5 and applying U5.
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Lemma 3.3. Let u = u(τ), and l ∈ Z. Suppose for l ≤ k ≤ l + 4 there exist Laurent polynomials
pu,k(t) ∈ Z[t, t−1] such that

U5(u tk) = v pu,k(t), (3.58)

and

ordt(pu,k(t)) ≥
⌈
k + s

5

⌉
, (3.59)

for a fixed integer s, where t = t(τ) is defined in (2.14) and where v = v(τ). Then there exists a
sequence of Laurent polynomials pu,k(t) ∈ Z[t, t−1], k ∈ Z, such that (3.58) and (3.59) hold for all
k ∈ Z.

Proof. We proceed by induction on k. Let N > l + 4 and assume the result holds for l ≤ k ≤ N − 1.
Then by Lemma 3.2 we have

U5(u tN ) = −
4∑
j=0

σj(τ)U5(u tN+j−5) = −v
4∑
j=0

σj(τ) pu,N+j−5(t) = v pu,N (t),

where

pu,N (t) = −
4∑
j=0

σj(τ) pu,N+j−5(t) ∈ Z[t, t−1],

and

ordt(pu,N (t)) ≥ min
0≤j≤4

(ordt(σj) + ordt(pu,N+j−5(t)))

≥ min
0≤j≤4

(
1 +

⌈
N + j + s− 5

5

⌉)
=

⌈
N + s

5

⌉
.

The result for all k ≥ l follows. The induction proof for k < l is similar.

Lemma 3.4. Let u = u(τ), and l ∈ Z. Suppose for l ≤ k ≤ l + 4 there exist Laurent polynomials
pu,k(t) ∈ Z[t, t−1] such that

U5(u tk) = v pu,k(t), (3.60)

where

pu,k(t) =
∑
n

cu(k, n) tn, ν5(cu(k, n)) ≥
⌊

3n− k + r

4

⌋
for a fixed integer r, where t = t(τ) is defined in (2.14) and where v = v(τ). Then there exists a
sequence of Laurent polynomials pu,k(t) ∈ Z[t, t−1], k ∈ Z, such that (3.60) holds for k > l+ 4, where

pu,k(t) =
∑
n

cu(k, n) tn, and ν5(cu(k, n)) ≥
⌊

3n− k + r + 2

4

⌋
.

Remark 3.5. Recall that νp(n) denotes the p-adic order of an integer n; i.e. the highest power of p
that divides n.

Proof. We proceed by induction on k. Let N > l + 4 and assume (3.60) holds for l ≤ k ≤ N − 1
where

pu,k(t) =
∑
n

cu(k, n) tn, ν5(cu(k, n)) =

⌊
3n− k + r

4

⌋
.
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As in the proof of Lemma 3.3 we have

U5(u tN ) = v pu,N (t),

where

pu,N (t) = −
4∑
j=0

σj(τ) pu,N+j−5(t) ∈ Z[t, t−1],

From Lemma 3.2 we have

σj(τ) =

j+1∑
l=1

s(j, l) tl ∈ Z[t],

where

ν5(s(j, l)) ≥
⌊

3l + j

4

⌋
,

for 1 ≤ l ≤ j + 1, 0 ≤ j ≤ 4. Therefore

pu,N (t) = −
4∑
j=0

j+1∑
l=1

s(j, l)
∑
m

cu(N + j − 5,m)tm+l =
∑
n

cu(N,n) tn,

where

cu(N,n) = −
4∑
j=0

j+1∑
l=1

s(j, l) cu(N + j − 5, n− l),

and

ν5(cu(N,n)) ≥ min
1≤l≤j+1
0≤j≤4

(
ν5(s(j, l)) + ν5(cu(N + j − 5, n− l)

)

≥ min
1≤l≤j+1
0≤j≤4

(⌊
3l + j

4

⌋
+

⌊
3(n− l)− (N + j − 5) + r

4

⌋)

≥ min
1≤l≤j+1
0≤j≤4

⌊
3l + j + 3(n− l)− (N + j − 5) + r − 3

4

⌋
≥
⌊

3n−N + r + 2

4

⌋
.

The result follows.

We define the following functions which will be needed in the proof of Theorem 1.2.

PA :=
J2

10J5J
6
2

J20J3
4J

5
1

− 4
qJ20J

2
5J

3
4

J10J3
2J

2
1

, PB :=
J6

10J
2
2J1

qJ3
20J

5
5J4

+ 4
qJ3

20J4J
2
1

J3
10J

2
5J2

A :=
J2

50J
4
1

J4
25J

2
2

, B :=
qJ25

J1
. (3.61)

For f = f(τ) we define
UA(f) := U5(Af), UB(f) := U5(B f). (3.62)

First we need some initial values of UA(PA t
k) and UB(PB t

k).

Lemma 3.6.

Group I

UA(PA) = PB(54t5 − 7 · 53t4 + 14 · 52t3 − 2 · 52t2 + t),

UA(PAt
−1) = −PBt,

UA(PAt
−2) = −5PBt

2,
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UA(PAt
−3) = −52PBt

3,

UA(PAt
−4) = −53PBt

4.

Group II

UB(PB) = PA,

UB(PBt
−1) = PA(−5t+ 2),

UB(PBt
−2) = PA(52t2 − 8 · 5t+ 8),

UB(PBt
−3) = PA(53t3 − 34 · 5t+ 34),

UB(PBt
−4) = PA(−54t4 + 16 · 53t3 − 36 · 52t2 − 128 · 5t+ 6 · 52).

Proof. We use the algorithm described in Section 2.C. to prove each of these identities. The identities
take the form

U5(g) = f,

where f , g are linear combinations of eta-products. For each identity we check that f is a linear
combination of eta-products which are modular functions on Γ0(20) and that g is a linear combination
of eta-products which are modular functions on Γ0(100). For each of the identities we follow the 5
steps in the algorithm given after Theorem 2.8. We note that the smallest value of the constant B
(defined in equation (2.25)) encountered is B = −14. These steps have been carried out with the help
of MAPLE, including all necessary verifications so that the results are proved.

Following [PaRa12] a map a : Z × Z −→ Z is called a discrete array if for each i the map
a(i,−) : Z −→ Z, by j 7→ a(i, j) has finite support.

Lemma 3.7. There exist discrete arrays a and b such that for k ≥ 1

UA(PA t
k) = PB

∑
n≥d(k+5)/5e

a(k, n) tn, where ν5(a(k, n)) ≥
⌊

3n− k
4

⌋
, (3.63)

UB(PB t
k) = PA

∑
n≥dk/5e

b(k, n) tn, where ν5(b(k, n)) ≥
⌊

3n− k + 2

4

⌋
. (3.64)

Proof. From Lemma 3.6, Group I we find there is a discrete array a such that

UA(PA t
k) = PB

∑
n≥d(k+5)/5e

a(k, n) tn, where ν5(a(k, n)) ≥
⌊

3n− k − 2

4

⌋
,

for −4 ≤ k ≤ 0. Lemma 3.3 (with s = 4) and Lemma 3.4 (with r = −2) imply (3.63) for k ≥ 1. From
Lemma 3.6, Group II we find there is a discrete array b such that

UB(PB t
k) = PA

∑
n≥dk/5e

b(k, n) tn, where ν5(b(k, n)) ≥
⌊

3n− k
4

⌋
,

for −4 ≤ k ≤ 0. Lemma 3.3 (with s = 0) and Lemma 3.4 (with r = 0) imply (3.64) for k ≥ 1.

3.C. Proof of Theorem 1.2

For α ≥ 1 define an integer δα by 0 < δα < 5α and 24δα ≡ 1 (mod 5α). Then

δ2α =
23× 52α + 1

24
, δ2α+1 =

19× 52α+1 + 1

24
.
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We let

λ2α = λ2α+1 =
5

24
(1− 52α).

For n ≥ 0 we define
cf (n) := af (5n− 1) + af (n/5). (3.65)

We find that for α ≥ 3

∞∑
n=0

(
af (5αn+ δα) + af (5α−2n+ δα−2)

)
qn+1 =

∞∑
n=1

cf (5α−1n+ λα−1)qn. (3.66)

We define the sequence of functions (Lα)∞α=0 by L0 := PA and for α ≥ 0

L2α+1 := UA(L2α), and L2α+2 := UB(L2α+1).

Lemma 3.8. For α ≥ 0,

L2α =
J5J

2
2

J4
1

∞∑
n=0

cf (52αn+ λ2α)qn,

and

L2α+1 =
J2

10J1

J4
5

∞∑
n=0

cf (52α+1n+ λ2α+1)qn.

Proof. By Theorem 3.1 we have

L0 = PA =
J2

10J5J
6
2

J20J3
4J

5
1

− 4q
J20J

2
5J

3
4

J10J3
2J

2
1

=
J5J

2
2

J4
1

(
J2

10J
4
2

J20J3
4J1
− 4q

J20J5J
3
4J

2
1

J10J5
2

)
=
J5J

2
2

J4
1

∞∑
n=0

(af (5n− 1) + af (n/5))qn =
J5J

2
2

J4
1

∞∑
n=0

cf (n+ λ0)qn,

since λ0 = 0.

L1 = UA(L0) = U5(AL0) = U5

(
J2

50J5

J4
25

∞∑
n=0

cf (n)qn

)

=
J2

10J1

J4
5

∞∑
n=0

cf (5n+ λ1)qn,

since λ1 = 0. This is the second equation with α = 0. The general result follows similarly using a
routine induction argument, by noting that

5λα−1 − 1 = δα − 5α,
1

5
λα−1 = δα−2.

Our main result for the rank parity function modulo powers of 5 is the following theorem.

Theorem 3.9. There exists a discrete array ` such that for α ≥ 1

L2α = PA
∑
n≥1

`(2α, n) tn, where ν5(`(2α, n)) ≥ α+

⌊
3n− 3

4

⌋
, (3.67)

L2α+1 = PB
∑
n≥2

`(2α+ 1, n) tn, where ν5(`(2α+ 1, n)) ≥ α+ 1 +

⌊
3n− 6

4

⌋
. (3.68)
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Proof. We define the discrete array ` recursively. Define

`(1, 1) = 1, `(1, 2) = −2 · 52, `(1, 3) = 14 · 52, `(1, 4) = −7 · 53, `(1, 5) = 54,

and `(1, k) = 0, for k ≥ 6.

For α ≥ 1 define
`(2α, n) =

∑
k≥1

`(2α− 1, k) b(k, n) (for n ≥ 1), (3.69)

and
`(2α+ 1, n) =

∑
k≥1

`(2α, k) a(k, n) (for n ≥ 2), (3.70)

where a and b are the discrete arrays given in Lemma 3.7. From Lemma 3.6, Group I and by Lemma
3.7 and equation (3.69) we have

L1 = UA(L0) = UA(PA) = PB

5∑
n=1

`(1, n) tn, where ν5(`(1, n)) ≥
⌊

3n− 2

4

⌋
.

L2 = UB(L1) =
5∑

n=1

`(1, n)UB(PBt
n),

=
5∑

n=1

`(1, n)PA
∑
k≥1

b(n, k)tk

= PA
∑
n≥1

5∑
k=1

`(1, k)b(k, n)tn

= PA
∑
n≥1

`(2, n)tn,

where

ν5(`(2, n)) ≥ min
1≤k≤5

(
ν5(`(1, k)) + ν5(b(k, n)

)
≥ min

1≤k≤5

(⌊
3k − 2

4

⌋
+

⌊
3n− k + 2

4

⌋)
=

⌊
3n+ 1

4

⌋
,

since when k = 1,
⌊

3k−2
4

⌋
+
⌊

3n−k+2
4

⌋
=
⌊

3n+1
4

⌋
, and for k ≥ 2,⌊

3k − 2

4

⌋
+

⌊
3n− k + 2

4

⌋
≥
⌊

3n+ 2k − 3

4

⌋
≥
⌊

3n+ 1

4

⌋
.

Thus the result holds for L2α when α = 1. We proceed by induction. Suppose the result holds for
L2α for a given α ≥ 1. Then by Lemma 3.7 and equation (3.70) we have

L2α+1 = UA(L2α) =
∑
n≥1

`(2α, n)UA(PAt
n),

=
∑
n≥1

`(2α, n)PB
∑
k≥2

a(n, k)tk

= PB
∑
n≥2

∑
k≥1

`(2α, k)a(k, n)tn

= PB
∑
n≥2

`(2α+ 1, n)tn,
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where

ν5(`(2α+ 1, n)) ≥ min
1≤k

(
ν5(`(2α, k)) + ν5(a(k, n)

)
≥ min

1≤k

(
α+

⌊
3k − 3

4

⌋
+

⌊
3n− k

4

⌋)
≥ α+ 1 +

⌊
3n− 6

4

⌋
,

since when k = 1,
⌊

3k−3
4

⌋
+
⌊

3n−k
4

⌋
= 1 +

⌊
3n−5

4

⌋
, and for k ≥ 2,⌊

3k − 3

4

⌋
+

⌊
3n− k

4

⌋
≥
⌊

3n+ 2k − 6

4

⌋
≥ 1 +

⌊
3n− 6

4

⌋
.

Thus the result holds for L2α+1. Suppose the result holds for L2α+1 for a given α ≥ 1. Then again
by Lemma 3.7 and equation (3.69) we have

L2α+2 = UB(L2α+1) =
∑
n≥2

`(2α+ 1, n)UB(PBt
n),

=
∑
n≥2

`(2α+ 1, n)PA
∑
k≥1

b(n, k)tk

= PA
∑
n≥1

∑
k≥2

`(2α+ 1, k)b(k, n)tn

= PA
∑
n≥1

`(2α+ 2, n)tn,

where `(2α+ 1, 1) = 0. Here

ν5(`(2α+ 2, n)) ≥ min
2≤k

(
ν5(`(2α+ 1, k)) + ν5(b(k, n)

)
≥ min

2≤k

(
α+ 1 +

⌊
3k − 6

4

⌋
+

⌊
3n− k + 2

4

⌋)
≥ min

2≤k

(
α+ 1 +

⌊
3n+ 2k − 7

4

⌋)
= α+ 1 +

⌊
3n− 3

4

⌋
.

Thus the result holds for L2α+2, and the result holds in general by induction.

Corollary 3.10. For α ≥ 1 and all n ≥ 0 we have

cf (52αn+ λ2α) ≡ 0 (mod 5α), (3.71)

cf (52α+1n+ λ2α+1) ≡ 0 (mod 5α+1). (3.72)

Proof. The congruences follow immediately from Lemma 3.8 and Theorem 3.9.

In view of (3.66) and Corollary 3.10 we obtain (1.4). This completes the proof of Theorem 1.2.

4. Further results

The methods of this paper can be extended to study congruences mod powers of 7 for both the rank
and crank parity functions. We describe some of these results, which we will prove in a subsequent
paper [CCG21]. Analogous to (3.34) we find that

∞∑
n=0

(af (n/7)− af (7n− 2))qn =
J3

7

J2
2

(
J3

1J
3
7

J3
2J

3
14

+ 6q2J
4
14J

4
1

J4
2J

4
7

)
, (4.73)

which leads to the following
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Theorem 4.1. For all α ≥ 3 and all n ≥ 0 we have

af (7αn+ δα)− af (7α−2n+ δα−2) ≡ 0 (mod 7

⌊
1
2 (α−1)

⌋
), (4.74)

where δα satisfies 0 < δα < 7α and 24δα ≡ 1 (mod 7α).

As mentioned earlier in Section 1., Karl-Heinz Fricke [Fr13, p.232] independently observed this theo-
rem and related results for Ramanujan’s third order mock theta function ω(q), but without proof.

It turns out that for the crank parity function congruences mod powers of 7 are more difficult.
Define the crank parity function

β(n) = Me(n)−Mo(n), (4.75)

for all n ≥ 0. The following is our analog of Choi, Kang and Lovejoy’s Theorem 1.1.

Theorem 4.2. For each α ≥ 1 there is an integral constant Kα such that

β(49n− 2) ≡ Kα β(n) (mod 7α), if 24n ≡ 1 (mod 7α). (4.76)

This gives a weak refinement of Ramanujan’s partition congruence modulo powers of 7:

p(n) ≡ 0 (mod 7α), if 24n ≡ 1 (mod 7

⌊
a+2

2

⌋
).

This was also proved by Watson [Wa38]. Atkin and O’Brien [AO67] obtained congruences mod powers
of 13 for the partition function similar to (4.76).

Acknowledgement. We would like to thank Jonathan Bradley-Thrush for his comments and sug-
gestions. As well we thank Karl-Heinz Fricke for his comments and for sharing some of his recent
work. Finally, we thank the referee for corrections and helpful comments.
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