Distribution of generalized mex-related integer partitions

Kalyan Chakraborty and Chiranjit Ray

Abstract

The minimal excludant or "mex" function for an integer partition π of a positive integer n, mex (π), is the smallest positive integer that is not a part of π. Andrews and Newman introduced $\sigma \operatorname{mex}(n)$ to be the sum of mex (π) taken over all partitions π of n. Ballantine and Merca generalized this combinatorial interpretation to $\sigma_{r} m e x(n)$, as the sum of least r-gaps in all partitions of n. In this article, we study the arithmetic density of $\sigma_{2} \operatorname{mex}(n)$ and $\sigma_{3} \operatorname{mex}(n)$ modulo 2^{k} for any positive integer k.

Keywords. Minimal excludant, Integer partition; Eta-quotients; Modular forms; Distribution.
2010 Mathematics Subject Classification. Primary: 05A17, 11P83, 11F11, 11F20.

1. Introduction and statement of results

In 2015, Fraenkel and Peled [FrPe15] defined the minimal excludant or "mex" function on a set S of positive integers as the least positive integer not in S . Perhaps the notion of the mex function was introduced in the 1930s, and best known for the applications in combinatorics and game theory [Gr39, Sp35].

A partition of a non-negative integer n is a non-increasing sequence of positive integers whose sum is n. Let π be a partition of n and $\mathcal{P}(n)$ be the set of all partitions of n. Recently, Andrews and Newman [AnNe19] considered the minimal excludant function applied to integer partitions. The minimal excludant of π, denoted $\operatorname{mex}(\pi)$, is the smallest positive integer which is not a part of π. Thus if π is $6+4+3+2+1$, a partition of 16 , then $\operatorname{mex}(\pi)=5$. For each positive integer n, we have

$$
\sigma \operatorname{mex}(n):=\sum_{\pi \in \mathcal{P}(n)} \operatorname{mex}(\pi)
$$

For example, $\sigma \operatorname{mex}(4)=9$ with the relevant mex partitions being: $\operatorname{mex}(4)=1, \operatorname{mex}(3+1)=2$, $\operatorname{mex}(2+2)=1, \operatorname{mex}(2+1+1)=3$, and $\operatorname{mex}(1+1+1+1)=2$. The generating function for $\sigma \operatorname{mex}(n)$ is given by

$$
\sum_{n=0}^{\infty} \sigma m e x(n) q^{n}=(-q ; q)_{\infty}^{2},
$$

where the q-shifted factorial $(a ; q)_{\infty}:=\prod_{n=1}^{\infty}\left(1-a q^{n-1}\right), \quad|q|<1$. Let $\mathcal{D}_{2}(n)$ be the set of partitions of n into distinct parts using two colors and let $D_{2}(n)=\left|\mathcal{D}_{2}(n)\right|$. In [AnNe19], the authors give two proofs of the following theorem.

Theorem 1.1. Given an integer $n>0$, we have

$$
\sigma \operatorname{mex}(n)=D_{2}(n)
$$

They also studied the parity of $\sigma m e x$ function and proved that $\sigma \operatorname{mex}(n)$ is almost always even and is odd exactly when n is of the form $j(3 j \pm 1)$, where j is a non-negative integer.

[^0]In some literature, the minimal excludant of a partition π is referred to as the least gap or smallest gap of π. The r-gap of a partition π is the least positive integer that does not appear at least r times as a part of π. Let $s_{r}(\pi)$ be the smallest part of the partition π appearing less than r times and $S_{r}(n)=\sum_{\pi \in \mathcal{P}(n)} s_{r}(\pi)$.
For example, all the 3 -gaps in the partitions of 5 are: $s_{3}(5)=1, s_{3}(4+1)=1, s_{3}(3+2)=1$, $s_{3}(3+1+1)=1, s_{3}(2+2+1)=1, s_{3}(2+1+1+1)=2, s_{3}(1+1+1+1+1)=2$. Therefore $S_{3}(5)=\sum_{\pi \in \mathcal{P}(5)} s_{3}(\pi)=9$.
Ballantine and Merca [Ba, Ba20] generalized Theorem 1.1 to the sum $S_{r}(n)$ of r-gaps in all partitions of n. To keep notation uniform, in this article we use $\sigma_{r} \operatorname{mex}(n)$ for $S_{r}(n)$. The generating function for $\sigma_{r} \operatorname{mex}(n)$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sigma_{r} \operatorname{mex}(n) q^{n}=\frac{\left(q^{2 r} ; q^{2 r}\right)_{\infty}}{(q ; q)_{\infty}\left(q^{r} ; q^{2 r}\right)_{\infty}} \tag{1.1}
\end{equation*}
$$

In [Ba20], Ballantine and Merca proved the following identity.
Theorem 1.2. For $n \geq 0$ and $r \geq 1$ we have

$$
\sum_{k=0}^{\infty} p\left(n-r T_{k}\right)=\sigma_{r} \operatorname{mex}(n)
$$

where $p(n)$ counts the number of partition of n and T_{k} is the k-th triangular number.
Recently, Ray and Barman [RaBa20, Theorem 1.6], studied the divisibility of Uncu's partition function $\mathcal{E} \mathcal{O}_{u}(n)$. After some elementary calculations we observe that the generating function of $\mathcal{E} \mathcal{O}_{u}(2 n)$ and $\sigma \operatorname{mex}(n)$ (or $\sigma_{1} \operatorname{mex}(n)$) are the same. So using the result mentioned above, $\sigma \operatorname{mex}(n)$ is almost always divisible by 2^{k} for any positive integer k.

A well-known conjecture of Parkin and Shanks [PS67], for integer partitions $p(n)$, states that the even and odd values of $p(n)$ are equally distributed, that is,

$$
\lim _{X \rightarrow \infty} \frac{\#\{0 \leq n \leq X: p(n) \equiv a \quad(\bmod 2)\}}{X}=\frac{1}{2}
$$

where $a \in\{0,1\}$. Little is known regarding this conjecture. In the following theorem we prove that $\sigma_{2} \operatorname{mex}(n)$ and $\sigma_{3} \operatorname{mex}(n)$ are almost always even. More generally we prove the following result.

Theorem 1.3. (Main Theorem) Let k be a positive integer and $r \in\{2,3\}$. Then

$$
\lim _{X \rightarrow+\infty} \frac{\#\left\{0 \leq n<X: \sigma_{r} \operatorname{mex}(n) \equiv 0\left(\bmod 2^{k}\right)\right\}}{X}=1
$$

In other words for almost every non-negative integer n lying in an arithmetic progression, the integer $\sigma_{r} \operatorname{mex}(n)$ is a multiple of 2^{k} where $r \in\{2,3\}$.

2. Preliminaries

In this section, we recall some definitions and facts relating to the arithmetic of classical modular forms. For more details, one can consult [On04, Ko93]. Let \mathbb{H} denote the upper-half plane. The complex vector space of modular forms of weight ℓ (a positive integer) with respect to a congruence subgroup Γ will be denoted by $M_{\ell}(\Gamma)$.

Definition 2.1. [On04, Definition 1.15] Let χ be a Dirichlet character modulo N (a positive integer). Then a modular form $f \in M_{\ell}\left(\Gamma_{1}(N)\right)$ has Nebentypus character χ if

$$
f\left(\frac{a z+b}{c z+d}\right)=\chi(d)(c z+d)^{\ell} f(z)
$$

for all $z \in \mathbb{H}$ and all $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma_{0}(N)$. The space of such modular forms is denoted by $M_{\ell}\left(\Gamma_{0}(N), \chi\right)$. Here $\Gamma_{0}(N)$ will be as usual the Hecke congruence subgroup of level N.

Recall that Dedekind's eta-function is defined by

$$
\eta(z):=q^{1 / 24}(q ; q)_{\infty}=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right),
$$

where $q=e^{2 \pi i z}$ and $z \in \mathbb{H}$. A function $f(z)$ is called an eta-quotient if it is of the form

$$
f(z)=\prod_{\delta \mid N} \eta(\delta z)^{r_{\delta}},
$$

where N is a positive integer and r_{δ} is an integer.
We now recall two theorems from [On04, p. 18], which help us check the modularity of eta-quotients that show up in our study.

Theorem 2.2. [On04, Theorem 1.64] Suppose that $f(z)=\prod_{\delta \mid N} \eta(\delta z)^{r_{\delta}}$ is an eta-quotient such that

$$
\begin{aligned}
\ell & =\frac{1}{2} \sum_{\delta \mid N} r_{\delta} \in \mathbb{Z}, \\
\sum_{\delta \mid N} \frac{N}{\delta} r_{\delta} & \equiv 0(\bmod 24) .
\end{aligned}
$$

Then

$$
f\left(\frac{a z+b}{c z+d}\right)=\chi(d)(c z+d)^{\ell} f(z)
$$

for every $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma_{0}(N)$. Here

$$
\chi(d):=\left(\frac{(-1)^{\ell} \prod_{\delta \mid N} \delta^{r_{\delta}}}{d}\right) .
$$

Suppose that f is an eta-quotient satisfying the conditions of Theorem 2.2. If f is also holomorphic at all of the cusps of $\Gamma_{0}(N)$, then $f \in M_{\ell}\left(\Gamma_{0}(N), \chi\right)$. To check the holomorphicity at cusps of $f(z)$ it suffices to check that the orders at the cusps are non-negative. The necessary criterion for determining orders of an eta-quotient at cusps is the following.

Theorem 2.3. [On04, Theorem 1.65] Let c, d, and N be positive integers with $d \mid N$ and $\operatorname{gcd}(c, d)=$ 1. If $f(z)$ is an eta-quotient satisfying the conditions of Theorem 2.2 for N, then the order of vanishing of $f(z)$ at the cusp $\frac{c}{d}$ is

$$
\frac{N}{24} \sum_{\delta \mid N} \frac{\operatorname{gcd}(d, \delta)^{2} r_{\delta}}{\operatorname{gcd}\left(d, \frac{N}{d}\right) d \delta} .
$$

3. Proof of main results

In this section, we prove Theorem 1.3. We prove the following lemmas.
Lemma 3.1. Let k be a positive integer and $r \in\{2,3\}$. Then

$$
\frac{\eta(24 r z)^{2^{k}-1}}{\eta(24 z) \eta(48 r z)^{2^{k-1}-2}} \equiv \sum_{n=0}^{\infty} \sigma_{r} m e x(n) q^{24 n+3 r-1}\left(\bmod 2^{k}\right) .
$$

Proof. From (1.1), the generating function of $\sigma_{r} m e x(n)$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sigma_{r} m e x(n) q^{n}=\frac{\left(q^{2 r} ; q^{2 r}\right)_{\infty}^{2}}{(q ; q)_{\infty}\left(q^{r} ; q^{r}\right)_{\infty}} \tag{3.2}
\end{equation*}
$$

Consider

$$
\mathcal{A}(z)=\prod_{n=1}^{\infty} \frac{\left(1-q^{24 r n}\right)^{2}}{\left(1-q^{48 r n}\right)}=\frac{\eta(24 r z)^{2}}{\eta(48 r z)} .
$$

By the binomial theorem, for any positive integers r and k we have

$$
\left(q^{r} ; q^{r}\right)_{\infty}^{2^{k}} \equiv\left(q^{2 r} ; q^{2 r}\right)_{\infty}^{2^{k-1}}\left(\bmod 2^{k}\right)
$$

Therefore,

$$
\mathcal{A}^{2^{k-1}}(z)=\frac{\eta(24 r z)^{2^{k}}}{\eta(48 r z)^{2^{k-1}}} \equiv 1\left(\bmod 2^{k}\right)
$$

Define $\mathcal{B}_{r, k}(z)$ by

$$
\mathcal{B}_{r, k}(z)=\frac{\eta(48 r z)^{2}}{\eta(24 z) \eta(24 r z)} \mathcal{A}^{2^{k-1}}(z) .
$$

Now, modulo 2^{k}, we have

$$
\begin{align*}
\mathcal{B}_{r, k}(z) & =\frac{\eta(48 r z)^{2}}{\eta(24 z) \eta(24 r z)} \frac{\eta(24 r z)^{2^{k}}}{\eta(48 r z)^{2 k-1}} \\
& \equiv \frac{\eta(48 r z)^{2}}{\eta(24 z) \eta(24 r z)} \\
& =q^{3 r-1} \frac{\left(q^{48 r} ; q^{48 r}\right)_{\infty}^{2}}{\left(q^{24} ; q^{24}\right)_{\infty}\left(q^{24 r} ; q^{24 r}\right)_{\infty}} . \tag{3.3}
\end{align*}
$$

Since

$$
\mathcal{B}_{r, k}(z)=\frac{\eta(24 r z)^{2^{k}-1}}{\eta(24 z) \eta(48 r z)^{2^{k-1}-2}},
$$

combining (3.2) and (3.3), we obtain the required result.
Lemma 3.2. Let $k>1$ be a positive integer and $r \in\{2,3\}$. Then

$$
\mathcal{B}_{r, k}(z)=\frac{\eta(24 r z)^{2^{k}-1}}{\eta(24 z) \eta(48 r z)^{2^{k-1}-2}} \in M_{2^{k-2}}\left(\Gamma_{0}(L), \chi(\bullet)\right)
$$

where

$$
L= \begin{cases}1152 & \text { if } r=2, \\ 576 & \text { if } r=3 .\end{cases}
$$

Proof. First, we use Theorem 2.2 and find the following:

1. The weight of the eta-quotient $\mathcal{B}_{r, k}(z)$ is 2^{k-2}.
2. Suppose the level of the eta-quotient $\mathcal{B}_{r, k}(z)$ is $48 r u$, where u is the smallest positive integer satisfying the following identity.

$$
\frac{48 r u}{24 r}\left(2^{k}-1\right)-\frac{48 r u}{24}-\frac{48 r u}{48 r}\left(2^{k-1}-2\right) \equiv 0(\bmod 24)
$$

Equivalently, we have

$$
u\left(3 \cdot 2^{k-1}-2 r\right) \equiv 0(\bmod 24) .
$$

Since $k>1$, we have $u=12$ if $r=2$ and $u=4$ if $r=3$. Hence level of the eta-quotient $\mathcal{B}_{r, k}(z)$ is

$$
\begin{cases}1152 & \text { if } r=2 \\ 576 & \text { if } r=3\end{cases}
$$

3. The Nebentypus character is

$$
\chi(\bullet)=\left(\frac{(-1)^{2^{k-2}}(24 r)^{2^{k}-1}(24)^{-1}(48 r)^{-2^{k-1}+2}}{\bullet}\right) .
$$

By Theorem 2.3, the cusps of $\Gamma_{0}(L)$ are given by $\frac{c}{d}$ where $d \mid L$ and $\operatorname{gcd}(c, d)=1$. Now note that eta-quotient $\mathcal{B}_{r, k}(z)$ is holomorphic at a cusp $\frac{c}{d}$ if and only if

$$
\left(2^{k}-1\right) \frac{\operatorname{gcd}(d, 24 r)^{2}}{24 r}-\frac{\operatorname{gcd}(d, 24)^{2}}{24}-\left(2^{k-1}-2\right) \frac{\operatorname{gcd}(d, 48 r)^{2}}{48 r} \geq 0
$$

Equivalently, if and only if

$$
\begin{equation*}
2\left(2^{k}-1\right) \frac{\operatorname{gcd}(d, 24 r)^{2}}{\operatorname{gcd}(d, 48 r)^{2}}-2 r \frac{\operatorname{gcd}(d, 24)^{2}}{\operatorname{gcd}(d, 48 r)^{2}}-\left(2^{k-1}-2\right) \geq 0 \tag{3.4}
\end{equation*}
$$

Case (i). When $r=2$ then the left side of (3.4) can be written as

$$
\begin{equation*}
2\left(2^{k}-1\right) \frac{\operatorname{gcd}(d, 48)^{2}}{\operatorname{gcd}(d, 96)^{2}}-4 \frac{\operatorname{gcd}(d, 24)^{2}}{\operatorname{gcd}(d, 96)^{2}}-\left(2^{k-1}-2\right) \geq 0 \tag{3.5}
\end{equation*}
$$

To check the positivity of (3.5), we have to find all the possible divisors of 1152 . We define three sets as follows

$$
\begin{aligned}
\mathcal{H}_{1} & =\left\{2^{\alpha} 3^{\beta}: 0 \leq \alpha \leq 3,0 \leq \beta \leq 2\right\}, \\
\mathcal{H}_{2} & =\left\{2^{\alpha} 3^{\beta}: \alpha=4,0 \leq \beta \leq 2\right\}, \\
\mathcal{H}_{3} & =\left\{2^{\alpha} 3^{\beta}: 5 \leq \alpha \leq 7,0 \leq \beta \leq 2\right\} .
\end{aligned}
$$

Note that $\mathcal{H}_{1} \cup \mathcal{H}_{2} \cup \mathcal{H}_{3}$ contains all positive divisors of 1152. In the following table we compute all necessary data to prove the positivity of (3.5).

Values of d such that $d \mid 1152$	$\frac{\operatorname{gcd}(d, 48)^{2}}{\operatorname{gcd}(d, 96)^{2}}$	$\frac{\operatorname{gcd}(d, 24)^{2}}{\operatorname{gcd}(d, 96)^{2}}$	Values of (3.5)
$d \in \mathcal{H}_{1}$	1	1	$2^{k-1} 3-4$
$d \in \mathcal{H}_{2}$	1	$1 / 4$	$2^{k-1} 3-1$
$d \in \mathcal{H}_{3}$	$1 / 4$	$1 / 16$	$5 / 4$

Since $k>1$, it is clear from the above table that the quantities in (3.5) are always greater than equal to 0 for any positive integer $d \mid 1152$.

Case (ii). When $r=3$ then the left side of (3.4) can be written as

$$
\begin{equation*}
2\left(2^{k}-1\right) \frac{\operatorname{gcd}(d, 72)^{2}}{\operatorname{gcd}(d, 144)^{2}}-6 \frac{\operatorname{gcd}(d, 24)^{2}}{\operatorname{gcd}(d, 144)^{2}}-\left(2^{k-1}-2\right) \geq 0 . \tag{3.6}
\end{equation*}
$$

To check the positivity of (3.6), we have to find all the possible divisors of 576 . We define four sets as follows

$$
\begin{array}{ll}
\mathcal{G}_{1}=\left\{2^{\alpha} 3^{\beta}: 0 \leq \alpha \leq 3,0 \leq \beta \leq 1\right\}, & \mathcal{G}_{2}=\left\{2^{\alpha} 3^{\beta}: 0 \leq \alpha \leq 3, \beta=2\right\}, \\
\mathcal{G}_{3}=\left\{2^{\alpha} 3^{\beta}: 4 \leq \alpha \leq 6,0 \leq \beta \leq 1\right\}, & \mathcal{G}_{4}=\left\{2^{\alpha} 3^{\beta}: 4 \leq \alpha \leq 6, \beta=2\right\} .
\end{array}
$$

Note that $\mathcal{G}_{1} \cup \mathcal{G}_{2} \cup \mathcal{G}_{3} \cup \mathcal{G}_{4}$ contains all positive divisors of 576. In the following table we compute all necessary data to prove the positivity of (3.6).

Values of d such that $d \mid 576$	$\frac{\operatorname{gcd}(d, 72)^{2}}{\operatorname{gcd}(d, 144)^{2}}$	$\frac{\operatorname{gcd}(d, 24)^{2}}{\operatorname{gcd}(d, 144)^{2}}$	Values of (3.6)
$d \in \mathcal{G}_{1}$	1	1	$2^{k-1} 3-6$
$d \in \mathcal{G}_{2}$	1	$1 / 9$	$2^{k-1} 3-2 / 3$
$d \in \mathcal{G}_{3}$	$1 / 4$	$1 / 4$	0
$d \in \mathcal{G}_{4}$	$1 / 4$	$1 / 36$	$4 / 3$

Since $k>1$, it is clear from the above table that the quantities in (3.6) are always greater than equal to 0 for any positive integer $d \mid 576$.

Therefore, by Case (i) and Case (ii), the eta-quotient $\mathcal{B}_{r, k}(z)$, where $r \in\{2,3\}$ and $k>1$, are holomorphic at every cusp $\frac{c}{d}$ and hence it is a modular form on $\Gamma_{0}(L)$ with Nebentypus character $\chi(\bullet)$. This completes the proof of Lemma 3.2.

We state the following result of Serre.
Theorem 3.3. [On04, Theorem 2.65] Let k, m be positive integers. If $f(z) \in M_{k}\left(\Gamma_{0}(N), \chi(\bullet)\right)$ has the Fourier expansion $f(z)=\sum_{n=0}^{\infty} c(n) q^{n} \in \mathbb{Z}[[q]]$, then there is a constant $\alpha>0$ such that

$$
\#\{n \leq X: c(n) \not \equiv 0(\bmod m)\}=\mathcal{O}\left(\frac{X}{\log ^{\alpha} X}\right) .
$$

Proof of Theorem 1.3. Suppose $k>1$ is a positive integer and $r \in\{2,3\}$. From Lemma 3.2, we have

$$
\mathcal{B}_{r, k}(z)=\frac{\eta(24 r z)^{2^{k}-1}}{\eta(24 z) \eta(48 r z)^{2^{k-1}-2}} \in M_{2^{k-2}}\left(\Gamma_{0}(L), \chi(\bullet)\right) .
$$

Also the Fourier coefficients of the eta-quotient $\mathcal{B}_{r, k}(z)$ are integers. So, by Theorem 3.3 and Lemma 3.1, we can find a constant $\alpha>0$ such that

$$
\#\left\{n \leq X: \sigma_{r} \operatorname{mex}(n) \not \equiv 0\left(\bmod 2^{k}\right)\right\}=\mathcal{O}\left(\frac{X}{\log ^{\alpha} X}\right)
$$

Hence

$$
\lim _{X \rightarrow+\infty} \frac{\#\left\{n \leq X: \sigma_{r} \operatorname{mex}(n) \equiv 0\left(\bmod 2^{k}\right)\right\}}{X}=1
$$

This completes the proof of Theorem 1.3.

Acknowledgement. The second author has carried out this work at Harish-Chandra Research Institute, affiliated with Homi Bhabha National Institute (Department of Atomic Energy, India), as a Postdoctoral Fellow. We thank the anonymous referee for his/her thorough review and highly appreciate the comments and suggestions, which significantly contributed to improve this article.

References

[AnNe19] Andrews, G.E. and Newman, D., Partitions and the minimal excludant, Ann. Comb., 23, (2019), 249-254.
[Ba20] Ballantine, C. and Merca, M., Bisected theta series, least r-gaps in partitions, and polygonal numbers, Ramanujan J., 52, (2020), 433-444.
[Ba] Ballantine, C. and Merca, M., Combinatorial Proof of the Minimal Excludant Theorem, Arxiv, (arXiv:1908.06789).
[FrPe15] Fraenkel, A.S. and Peled, U., Harnessing the unwieldy MEX function, Games of no chance 4, volume 63 of Math. Sci. Res. Inst. Publ., 77-94. Cambridge Univ. Press, New York, 2015.
[Gr39] Grundy, P. M., Mathematics and games, Eureka, 2, (1939), 6-9.
[Ko93] Koblitz, N., Introduction to elliptic curves and modular forms, volume 97 of Graduate Texts in Mathematics, SpringerVerlag, New York, second edition, 1993.
[On04] Ono, K., The web of modularity: arithmetic of the coefficients of modular forms and q-series, volume 102 of $C B M S$ Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004.
[PS67] Parkin, T.R. and Shanks, D., On the distribution of parity in the partition function, Math. Comp., 21, (1967), 466-480.
[RaBa20] Ray, C. and Barman, R., On Andrews' integer partitions with even parts below odd parts, J. Number Theory, 215, (2020), 321-338.
[Sp35] R. Sprague, Über mathematische Kampfspiele, Tohoku Mathematical Journal, 41 (1935), 438-444.

Kalyan Chakraborty

Department of Mathematics
Kerala School of Mathematics
Kozhikode - 673571
Kerala, INDIA
e-mail: director@ksom.res.in

Chiranjit Ray

Department of Mathematics
Harish-Chandra Research Institute
Prayagraj - 211019
Uttar Pradesh, INDIA
e-mail: chiranjitray.m@gmail.com

[^0]: We thank episciences.org for providing open access hosting of the electronic journal Hardy-Ramanujan Journal

