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Arithmetical Fourier transforms and Hilbert space:

Restoration of the lost legacy

J.-W. Feng, S. Kanemitsu and T. Kuzumaki

Abstract. In this survey-type paper we show that the seemingly unrelated two fields—Chebyshev-Markov expansion (CME)

[On83] and Arithmetical Fourier Transform (AFT) [Che10]—are indeed different looks of one entity, by the plausible missing
link—Romanoff-Wintner theory (RWT). RWT generalizes both approaches, CME and AFR, and was developed in [Wi44] and

[Ro51a], [Ro51b] which were written independently. These two lost researches are very closely related and effective for producing

new number-theoretic identities. Cf. [CKT09] for fragmental restoration of them.
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2010 Mathematics Subject Classification. 42A16, 11A25, 01A55.

1. Introduction

Two generations are long enough for the mathematical community to forget what was found 50 years
ago, which we call every 50 years phenomenon. One of the most famous examples is the case of
the Lerch-Chowla-Selberg formula for a relation between special values of the gamma- and theta-
functions (which arises by comparing the Kronecker limit formula and decomposition theorem). The
case of the Dedekind eta-transformation formula (ETF) and discriminant-functions transformation
formula (DTF) is well restored. Ramanujan would have proved the ETF [KaTs14, pp. 80-95]. In
1968 Chowla proved the DTF and in 1970 Weil proved the ETF by the functional equation for the
relevant zeta-function. The proof of the DTF depending on Eisenstein series is given in the most
recent inspirational book of Chan [Ch20, §6.5, pp.71-77]. With Ramanujan there are associated many
sources for further research, and so there exist proper restoration of his legacy. Hardy-Ramanujan J.
is one of the welcome trends of revival of Ramanujan’s ideas and thoughts.

At this occasion, we restore another legacy which is not well-known but is to be better known.
It is the case of Chebyshev-Markov Expansion (CME) and Romanoff-Wintner Theory (RWT). We
have restored RWT very fragmentarily in [CKLW09]. One year later, Chen’s book [Che10] appeared
in Tsinghua Univ. Phys. Ser. and only recently it came to our attention in view of part of its
title Möbius inversion. Chen’s main purpose [Che10] is the revival of Arithmetical Fourier Transform
(AFT) or the Bruns’ algorithm [Br1903] in the setting of computer algorithms, cf. toward the end
of §4.. AFT is analogous to the CME. True that the author [Che10] has rather diligently searched
for lost references after 1983 (the year [On83] was published), especially [Chb1851] and [Wi47]. The
former is not mentioned in [On83] but is the very genesis of CME (cf. the passage after Table 1
below), while the latter is not easily available since it is a private edition. But [Che10] misses [On83]
etc. and does not mention CME nor its generalization RWT, [Ro51a], [Ro51b], [Wi44], all the more
[CKLW09], i.e. the right half of Figure 1 is missing, so that if not recorded properly, only AFT will
survive since books are long-lived, papers being very short-lived. Remark that Chebyshev ∼ 1850,
Markov, Bruns ∼ 1900, Romanoff, Wintner ∼ 1950, Chakraborty et al, Chen ∼ 2010, intervals being
nearly 50 years.

Thus our aim is to restore the invaluable knowledge from the past and streamline their relation in
a proper perspective and framework in which the Möbius inversion plays a central role. In Romanoff-
Wintner theory of an orthonormal system (ONS) in Hilbert space, the Möbius inversion works as an
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alternative for the classical Gram-Schmidt orthogonalization method if the sequence has the Dg-
property, cf. §3., [Ro51a, p.6], [KaKi95, p.17].

We give mostly survey type presentations save for §3.A. where we state some examples of an ONS
in a Hilbert space á la Romanoff. In §2. we state description of CME, in §3., Romanoff-Wintner
theory of ONS in a Hilbert space, in §4., the Discrete Fourier Transform (DFT) and brief description
of AFT and the Fast Fourier Transform (FFT). The following Figure and Table will make it easier
to go through the paper.

CME
[Ahiezer (1945)]

[Onufurieva (1983)]

[Chen (2010)] - AFT

[Bruns (1903)]

[Wintner (1944)]

[Wintner (1947)]

[Romanoff (1951)]

[Chakraborty et. al (2009)]

RWT

Figure 1. Relation among literature

short-hand full name related subject matter

AFT Arithmetical Fourier Transform Bruns’ algorithm, CME, FFT

CME Chebyshev-Markov Expansion RWT

DFT Discrete Fourier Transform for fast computation, AFT & FFT

FFT Fast Fourier Transform Cooley-Tukey algorithm, AFT

RWT Romanoff-Wintner Theory [CKLW09]

Table 1. List of abbreviations

In relation to Remark 3.10 below, we note the following in anticipation of further study. As
mentioned above, Chen [Che10] refers to a very classical paper of Chebyshev [Chb1851, pp.96-99]
which is not referred to in [On83]. It deals with the Fourier expansion of the triangular waves and
their Möbius inversion. This must be the genesis of CME and shows how [Che10] is thorough.

All similar waves can be expressed as a linear combination of the first periodic Bernoulli poly-
nomial, or the imaginary part of the boundary function `1(x) of the polylogarithm function of order
1 (after analytic continuation, cf. below). Cf. [KaTs07, pp.136-150]. In general, the polylogarithm
function Lis(z) =

∑∞
n=1

zn

ns is defined inside the unit circle |z| < 1. It is probably Wintner [Wi41]
who studied the boundary function of Lambert series, which naturally led to the boundary function
of Lis(z), i.e. the polylogarithm function of the complex exponential argument `s(x) =

∑∞
n=1

e2πinx

ns .
Cf. e.g. [Lew80]. It is another name for the Lerch zeta-function, cf. [LaGa02]. As has been well-
established cf. e. g. [WAK20], the Lerch zeta-function being a Fourier series as well as a zeta-function
that satisfies the functional equation, turns out to be quite useful.

Short character sums have been the object of enormous amount of studies since the result of
Dirichlet for the 1

4 -sum. But this does not fall in every 50 years category since there were so many re-
discoveries and even Dirichlet’s result is re-discovered. It is Yamamoto’s decisive work [Ya77], after an
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intermediate summit of [Be76], that enables us to express any short character sums with polynomial
or Clausen function weight in terms of linear combination of L(1, χ). This has not properly been cited
in literature but is decisive. Only recently, the underlying structure of Yamamoto’s results has been
revealed as a consequence of the boundary Fourier series, the Lerch zeta-function by [WMK20]. In
Remark 3.10, we will see an example of the correspondence between Li1(z) and its boundary function
`1(x).

2. Chebyshev-Markov expansion

Onuferieva [On83, esp. p.268∼] is the most informative reference on the Chebyshev-Markov expan-
sion (CME) up to 1983 while [Che10, esp. p.126] contains information on modern applications of
Arithmetical Fourier Transform (AFT) to signal processing, VLSI etc. Both refer to Bruns [Br1903]
but Liebmann [Li1909] and Müller [M54] are referred to only in [On83] in which the author criticizes
Romanoff [Ro51a], [Ro51b] and his students for not referring to the fundamental work of Chebyshev
[Chb1859] ([Chb1858] is a short communication) and Markov [Ma1898]. As is mentioned on [On83,
p.273], Ahiezer [Ah45] and [Ah47, p.511], had been the only sources about Chebyshev-Markov sys-
tems. Indeed, Ahiezer [Ah45, pp.38-40] is as informative as Onufrieva [On83] and in some sense
more authoritative, referring to the famous Rademacher system [Rad1922], which is a part of the
Chebyshev-Markov system.

Wintner [Wi47] is a reformulation of Bruns’ algorithm (which is developed independently of
[Br1903]).

Onufrieva mistakingly refers to the paper [Ma1895] which is not the one in question and the paper
should be [Ma1898]. It seems that the author missed the second line in the title.

These two fields—CME and AFT—look almost irrelevant, the missing link being probably [Wi44]
which is written independently of [Ro51a, Ro51b]. Wintner’s theory [Wi44] is not mentioned in [On83]
nor in [Che10] but is closely related to Romanoff’s theory and we summed them up to write a paper
[CKLW09].

As is mentioned [On83], toward the end of his paper [Ma1898], Markov established a trigonometric
analogue of Chebyshev’s method.

We state the outline of CME.
Let σ(x) be a non-decreasing function on I = [0, 1], say. Then the system of functions {rn(x)}

and {sn(x)} (n = 0, 1, · · · ) is called biorthogonal if∫
I
ri(x)sj(x) dσ(x) = δij . (2.1)

We write {rn; sn} to indicate biorthogonality. For any function f(x) for which the integrals below
exist, we have a formal expansion

f(x) ∼
∞∑
n=0

Anrn(x), An =

∫
I
f(x)sn(x) dσ(x). (2.2)

In what follows we choose σ(x) = x and we let µ denote the Möbius function. Following the
notation of [On83], we put for n ∈ N

ψ0(x) = 1, ψn(x) =
π

2

∑
d|n

µ(d)χ(d)

d
cos

2πnx

d
, (2.3)

ϕn(x) =
π

2

∑
d|n

µ(d)χ2(d)

d
sin

2πnx

d
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where χ = χ4 is the primitive Dirichlet character mod 4 and

u0(x) = 1, un(x) = sign cos 2πnx, vn(x) = sign sin 2πnx, (2.4)

where sign y =
y

|y|
or 0 according as y 6= 0 or y = 0. Markov proved that the system {ψ0, ψn, ϕn;u0, un, vn} =

{ψ0, ψ1, ϕ1, ψ2, ϕ2, · · · ;u0, u1, v1, u2, v2, · · · } is biorthogonal on [0, 1]. By some change of variable,
{ϕn; vn} coincides with the system constructed by Chebyshev and so the system is called the Chebyshev-
Markov (biorthogonal) system [Ah45, p.39]. Suppose f ∈ L2(0, 1). Then (2.2) reads

f(x) ∼ A0 +

∞∑
n=1

(Anψn(x) +Bnϕn(x)) (2.5)

where

A0 =

∫
I
f(x) dx, An =

∫
I
f(x)sign cos 2πnxdx, Bn =

∫
I
f(x)sign sin 2πnxdx. (2.6)

Onufrieva calls this the Chebyshev-Markov expansion (CME). If am, bm are Fourier coefficients of f(x),
then

An =
2

π

∞∑
k=1

χ(k)

k
akn, Bn =

2

π

∞∑
k=1

χ2(k)

k
bkn (2.7)

as proved by Liebmann [Li1909]. By Möbius inversion, (2.7) is inverted into

an =
π

2

∞∑
k=1

µ(k)χ(k)

k
Akn, bn =

π

2

∞∑
k=1

µ(k)χ2(k)

k
Bkn (2.8)

formally by Bruns [Br1903]. Rigorously, this can be proved by the method of Ahiezer [Ah47] by which
he proved completeness of the system {sign sin 2πnx} on [0, 1

2 ]. A more cumbersome proof is given
by Müller [M54]. Another proof is given in [On83, pp.271-273] which depends on the integrated form
of (2.5) developed in [KiOn61].

We restate the proof. Let (x ∈ [0, 1])

F (x) =

∫ x

0
(f(t)−A0) dt. (2.9)

Then

F (x) = A∗0 +
∞∑
n=1

(A∗ngn(x) +B∗nhn(x)) (2.10)

where the series is uniformly convergent on I and A∗n = −Bn
4n , B∗n = An

4n and where

gn(x) = −4n

∫ x

0
ϕn(t) d =

∑
d|n

µ(d)χ2(d) cos
2πnx

d
+

{
−1 n = 2ν

0 n 6= 2ν
, (2.11)

hn(x) = 4n

∫ x

0
ψn(t) dt =

∑
d|n

µ(d)χ(d) sin
2πnx

d
.

Note that ∫ 1

0
F (t) cos 2πmtdt = − 1

2πm

∫ 1

0
f(t) sin 2πmtdt = − bm

4πm
(2.12)

and ∫ 1

0
F (t) sin 2πmtdt =

1

2πm

∫ 1

0
f(t) cos 2πmtdt =

am
4πm

. (2.13)
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It follows that the Fourier coefficients of F (x) are constant multiples of those of f(x). Hence we
may simply find the Fourier coefficients of the right-hand side of (2.9). This method (more gener-
ally summability method) may work in many other problems. E.g. for arithmetical Fourier series
[KaTs14, pp.196-206], integrated ones follow from the functional equation but in order to assure uni-
form convergence of differentiated series, estimates for exponential sums are needed which are as deep
as those for the prime number theorem.

In the same paper [KiOn61], they proved that if f is either of Lipα, α > 0 and of bounded
variation or Lipα, α > 1

2 , then the series (2.5) is absolutely and uniformly convergent to f(x) while
the integrated form holds with equality as long as f ∈ L2(0, 1), the Fourier coefficients having the
reducing factor 1

n .

3. Romanoff-Wintner theory of ONS in a Hilbert space

The purpose of the present section is to show that some number-theoretic identities have very natural
hidden structure, i.e. the Parseval identity, that is why they are to hold. To uncover such phenomena,
we are to discover suitable complete orthonormal systems. We state essentials of RWT to find complete
ONS. Note that in the case of finite-dimensional normed vector spaces, all orthonormal systems (ONS)
consisting of the dimension-number of elements are complete and therefore, we immediately obtain
the Parseval identities. On the other hand, in the Hilbert space L2(0, 1), the space of all square-
integrable functions, completeness is essential to attain the Parseval identity. We follow [Ro51a] (and
[KaKi95], which is an annotated translation thereof), [Ro51b] and [Wi44].

Definition 1. A sequence {fn} of a Hilbert space H is said to have the Dg property if

(fm, fn) = g((m,n)), (3.14)

where (m,n) means the gcd of m and n and g is a given function of positive integer argument.

Throughout in what follows, we mean by H a (complex) Hilbert space.

Theorem 3.1. ([Ro51a, Theorem 3]) Suppose ω(n) 6= 0 is a totally multiplicative complex-valued
function with finite square norm

w :=
∞∑
n=1

|ω(n)|2 <∞ (3.15)

and that {αn} is an ONS in H. Let

fn := ω(n)
−1
∞∑
k=1

ω(k)αkn. (3.16)

Then {fn} has the Dg property, where

g(n) =
w

|ω(n)|2
. (3.17)

Theorem 3.2. ([Ro51a, Theorem 2]) Suppose two sequences {fn} and {ψn} of a Hilbert space are
connected by

ψn =
1√
G(n)

∑
d|n

µ
(n
d

)
fd, (3.18)

where G(n) > 0. Then {ψn} forms an ONS if and only if {fn} has the Dg-property, where

G(n) =
∑
d|n

µ
(n
d

)
g(d). (3.19)
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Combining Theorem 3.1 and Theorem 3.2 with G(n) = wΩ(n) in (3.19), we deduce the following
theorem, where Ω(n) is given in (3.21):

Theorem 3.3. ([Ro51a, Theorem 4]) Suppose αn is an ONS in H and that ω(n) 6= 0 is as in Theorem
3.1. Let

ψn := (wΩ(n))−
1
2

∑
d|n

µ
(n
d

)
fd = (wΩ(n))−

1
2

∑
d|n

µ
(n
d

)
ω(d)−1

∞∑
k=1

ω(k)αkd, (3.20)

where
Ω(n) =

∑
d|n

µ
(n
d

)
|ω(d)|−2 = |ω(n)|−2

∏
p|n

(
1− |ω(p)|2

)
. (3.21)

Then {ψn} forms an ONS.

Theorem 3.4. ([Ro51a, Theorem 5]) Notation being the same as in Theorem 3.3, suppose that {αn}
is a complete ONS in the subspace H ′ of H. Then {ψn} in (3.20) forms a complete ONS in H ′.

3.A. Example of a Hilbert space

Lemma 3.5. If f(z) is analytic in an open disc Dr : |w − z| < r, then

|f(z)|2 ≤ 1

πr2
0

∫∫
Dr0

|f(w)|2 dxdy, w − z = x+ iy (3.22)

for 0 < r0 < r, with the bar denoting the closure.

Proof. Let

f(w) =
∞∑
n=0

an(w − z)n w ∈ Dr

be the Taylor expansion. Then
f(z) = a0. (3.23)

Writing x+ iy = w − z = ρeiθ and multiplying f(w) by f(w), we obtain

f(w)f(w) =
∞∑

m,n=0

amanρ
m+ne(m−n)iθ (3.24)

which is absolutely and uniformly convergent in 0 ≤ ρ ≤ r0 < r, 0 ≤ θ ≤ 2π. Hence we may integrate
(3.24) termwise to obtain∫∫

Dr0

|f(w)|2 dxdy =

∫ r0

0

∫ 2π

0
|f(w)|2 dθρdρ = 2π

∞∑
n=0

|an|2
∫ r0

0
ρ2n+1 dρ (3.25)

= 2π

∞∑
n=0

|an|2
1

2n+ 2
r2n+2

0 .

Hence the last term ≥ πr2
0|a0|2 = πr2

0|f(z)|2 and the lemma follows.

Theorem 3.6. Let A2(D) denote the space of all functions f(z) which are (one-valued) and analytic
on a (bounded) domain D satisfying∫∫

D
|f(z)|2 dxdy <∞, z = x+ iy. (3.26)
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Define operations as usual, i.e. (f + g)(z) = f(z) + g(z) and (af)(z) = af(z) and introduce the inner
product

(f, g) =

∫∫
D
f(z)g(z) dxdy. (3.27)

Then A2 = A2(D) forms a Hilbert space, i.e. every Cauchy sequence is convergent.

Proof. That f + g ∈ A2 follows from the inequality |α+ β|2 ≤ 2(|α|2 + |β|2). That (f, g) in (3.27)
is finite follows from the inequality |αβ| ≤ 1

2(|α|2 + |β|2) and one can easily check this is an inner
product, defining the norm ‖‖. It remains to prove completeness.

Suppose {fn} ⊂ A2 is a Cauchy sequence, i.e.

lim
m,n→∞

‖fn − fm‖ = 0. (3.28)

We may choose ν1 so that for n > ν1 we have

‖fn − fν1‖ < 2−1

and then choose ν2 > ν1 so that for n > ν2 we have

‖fn − fν2‖ < 2−2

and so on. Thus we may find a strictly increasing subsequence {νk} such that for n > νk we have

‖fn − fνk‖ < 2−k

and in particular
‖fνk+1

− fνk‖ < 2−k, (3.29)

whence
∞∑
k=1

‖fνk+1
− fνk‖ ≤ 1. (3.30)

We write fνm as a telescoping series (k < m)

fνm = fνk +
m−1∑
j=k

(fνj+1 − fνj ) (3.31)

and consider the majorant (with l = 1)

gνm = |fνk |+
m−1∑
j=k

|fνj+1 − fνj |(≥ |fνm |) (3.32)

which is a monotone increasing sequence ∈ A2 ∩ R. For by the triangular inequality and (3.30)

‖gνm‖ ≤ ‖fνk‖+
m−1∑
j=k

‖fνj+1 − fνj‖ ≤ ‖fνk‖+ 1 (3.33)

a.e., and a fortiori, bounded a.e., so that the sequence {gνm} is convergent to g(z), say. Hence fνm
in (3.31) is absolutely convergent as m→∞ to f∞(z) a. e. . By the Lebesgue bounded convergence
theorem and (3.33), we have

‖g(z)‖2 =

∫
lim
m→∞

gνm(z)2 dx = lim
m→∞

∫
gνm(z)2 dx = lim

m→∞
‖gνm‖2 (3.34)

≤ (‖fνk‖+ 1)2.
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Hence g ∈ A2. Since |f∞| ≤ g, f∞ ∈ A2. Now letting m→∞ in (3.31), we have

f∞ − fνk =

∞∑
j=k

(fνj+1 − fνj ). (3.35)

Hence

‖f∞ − fνk‖ ≤
∞∑
j=k

‖fνj+1 − fνj‖ → 0

as k →∞, whence
lim
k→∞

fνk = f∞.

From this we may conclude that

lim sup
n→∞

‖f∞ − fn‖ ≤ lim
k→∞

‖f∞ − fνk‖+ lim
k→∞,n>νk

‖fνk − fn‖ → 0, (3.36)

i.e. the sequence {fn} is convergent. There exists a subsequence {fνk} which converges to f∞ a.e. in
D and the limit function satisfies (3.26).

Now for any open disc Dr : |w − z| < r, choose Dr ⊂ D. Then for 0 < r0 < r, we apply Lemma
3.5 with Dr0 to obtain

|fνk − fνl |
2 ≤ 1

πr2
0

∫∫
Dr0

|fνk − fνl |
2 dxdy ≤ 1

πr2
0

∫∫
D
|fνk − fνl |

2 dxdy → 0 (3.37)

as k, l →∞. Hence {fνk} is uniformly convergent on D in the wide sense, which implies that f∞(z)
is regular in D. Hence every Cauchy sequence in A2 converges.

Remark 3.7. If we replace the norm ‖‖ by the 2-norm, then the above proof also proves that the
space L2(a, b) of all square integrable functions is a Hilbert space.

Suppose h ∈ A2 and hn(z) = h(r)zn. Then similarly as in the proof of Lemma 3.5, we have with
r = |z|, D1 : |z| < 1 the inner product of hm, hn,

(hm, hn) =

∫∫
D1

h(r)h̄(r)zmz̄n dxdy = δmnWn, (3.38)

where

Wn = 2π

∫ 1

0
|h(r)|2r2n+1 dr(> 0). (3.39)

Hence letting

αn = αn(x, y) =
1√
Wn

h(r)zn, (3.40)

{αn} forms an ONS by (3.38). Choose

h = h(r) = (− log r)s−
1
2 r−1, σ = Re s > 0. (3.41)

Then
Wn = 2π(2n)−2σΓ(2σ). (3.42)

Indeed, in

Wn = 2π

∫ 1

0
(− log r)2σ−1r2n−1 dr (3.43)
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we make the change of variable − log r = 1
2nu to deduce that

Wn = 2π(2n)−2σ
∫ ∞

0
u2σ−1e−u du (3.44)

which leads to (3.42). Hence (3.40) under the special choice of (3.41) amounts to

αn(z) = αn(x, y) =
nσ√

(2π)2−2σΓ(2σ)

(− log |z|)s−
1
2

|z|
zn. (3.45)

In (3.16) we choose
(i) ω(n) = n−σ resp. (ii) ω(n) = n−σ−1.
Then we obtain

fn(z) := ω(n)
−1
∞∑
k=1

ω(k)αkn(z) =


nσ
∑∞

k=1

1

kσ
αkn(z) (i)

nσ+1
∑∞

k=1

1

kσ+1
αkn(z) (ii)

. (3.46)

Hence using αkn = nσ√
(2π)2−2σΓ(2σ)

(− log |z|)s−
1
2

|z| kσzkn, we have for |z| < 1

fn(z) =


n2σ√

(2π)2−2σΓ(2σ)

(− log |z|)s−
1
2

|z|
zn

1− zn
(i)

− n2σ+1√
(2π)2−2σΓ(2σ)

(− log |z|)s−
1
2

|z|
log(1− zn) (ii)

(3.47)

on finding the resulting sum
∑∞

k=1 z
kn resp.

∑∞
k=1

zkn

k .
Hence by Theorem 3.1, {fn} has the Dg property, whence by Theorem 3.4, the sequence {ψn}

forms an ONS defined by

ψn(z) =
1√

(2π)2−2σΓ(2σ)ζ(2σ)ϕ2σ(n)

(− log |z|)s−
1
2

|z|
∑
d|n

µ
(n
d

) d2σzd

1− zd
(i), (3.48)

ψn(z) = − 1√
(2π)2−2σΓ(2σ)ζ(2σ + 2)ϕ2σ+2(n)

(− log |z|)s−
1
2

|z|

·
∑
d|n

µ
(n
d

)
d2σ+1 log(1− zd) (ii).

Here the w in (3.15) is w = ζ(2σ) or w = ζ(2σ + 2) and invoking (3.21), we have

ϕa(n) = Ω(n) =
∑
d|n

µ
(n
d

)
da (3.49)

the Jordan totient function, where a = 2σ or a = 2σ + 1 according to the choice of ω(n) above.

Theorem 3.8. Let ψn be defined by (3.48). Then {1, ψn(z), ψn(z̄)} forms a complete ONS.

Completeness follows from the fact that the system {1, zn

1−zn ,
z̄n

1−z̄n } forms a complete system since
{1, zn, z̄n} does so.
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Now consider the boundary functions of the above hn = hn(x) = e2πinx, x ∈ (0, 1), i.e. L2(0, 1).
The inner product (3.38) becomes

(hm, hn) =

∫ 1

0
e2πimxe−2πinx dx = δmnWn. (3.50)

The simplest ONS w.r.t. this inner product is αn(x) = e2πinx, Wn being = 1. Hence with ω(n) = 1
n ,

we see that

fn(x) = n
∞∑
k=1

e2πinkx

k
= n log(1− e2πinx), x /∈ Z (3.51)

has the Dg-property with g(n) = ζ(2)n2 on noting that w = ζ(2) = π2

6 . Hence we infer that

ψn(x) =
1√

ζ(2)ϕ2(n)

∑
d|n

µ
(n
d

)
d log(1− e2πidx), x /∈ Z (3.52)

forms an ONS. It is often more convenient to allow z to take other complex values as long as the
logarithm remains meaningful.

Note that if we choose L2(0, 2π), then Wn = 1√
2π

and fn and ψn must be multiplied by 1√
2π

and

so (3.52) should read

ψn(x) =

√
3

π
3
2

√
ϕ2(n)

∑
d|n

µ
(n
d

)
d log(1− eidx), x /∈ 2πZ (3.53)

as in [Ro51b, p. 144].

Example 3.9. Let

Qn,k(z) =
∏
d|n

(1− zd)µ(
n
d )dk

, Qn(z) = Qn,1(z) =
∏
d|n

(1− zd)µ(
n
d )d

. (3.54)

The we have

Qn(z) =
∏
d|n

Φd(z)
ϕ(nd )d, (3.55)

where

Φn(z) =
∏
d|n

(1− zd)µ(
n
d )

(3.56)

is the nth cyclotomic polynomial, i.e. the polynomial containing all primitive nth roots of 1 and
ϕ(n) = ϕ1(n) , cf. (3.49), is the Euler function. Then (3.52) may be written as

ψn(z) =
1√

ζ(2)ϕ2(n)

∑
d|n

ϕ
(n
d

)
d log Φd(z) =

1√
ζ(2)ϕ2(n)

logQn(z). (3.57)

We may define the inner product so that {logQn,k} forms an ONS in A2(D).

Remark 3.10. Note that (3.47), (ii) resp. (3.51) (−f1(x) = `1(x)) is essentially the polylogarithm
function of order 1 and its boundary function.
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4. Discrete Fourier transform

The theory of discrete Fourier transform, DFT, is stated in many literature, [Fr99, pp.101-164],
[Pa62], [W80, pp.89-109] and we will be brief. With the development of computers, fast computation
(of DFT) is looked for and the Cooley-Tukey algorithm (Fast Fourier transform, FFT) and its gener-
alizations have been prevailing [ATW82], [Bri74], [CT65], [DR90], [MS81], [Ros80], [SSW88], [W80].
For Fourier analysis on finite groups, cf. [C-SST08], [Ed72], [Her69], [Rud62], [Ter99] etc.

The theory of DFT, which is also known as the Finite Fourier Transform, for arithmetic functions
has been developed in [LWK13] in the case of periodic functions and in [LLWK17, pp.109-114] in the
case of a finite group. Cf. also [KaTs07, §8.1], [CKLW09, §§4.1, 4.3].

Definition 2. Let
εj(x) = e2πijx/N , 1 ≤ j ≤ N, (4.58)

where x is an integer variable and N is a positive integer ≥ 2. Then the set {εj(x)|1 ≤ j ≤ N}
forms an orthogonal basis of the vector space C(N) of all periodic arithmetic functions with period
N , where an arithmetic function is one defined only for integer arguments. We define the discrete
Fourier transform (DFT) f̂ (or the yth Fourier coefficient) w.r.t. the ONB { 1√

N
εj(x)|1 ≤ j ≤ N} of

f by

f̂(y) =
1√
N

N−1∑
x=0

εy(−x)f(x). (4.59)

Then the Fourier inversion or Fourier expansion formula holds true:

f(x) =
ˆ̂
f(−x) =

1√
N

N−1∑
y=0

εy(x)f̂(y). (4.60)

DFT w.r.t. the orthogonal basis {εj(x)|1 ≤ j ≤ N} is also often used in much the same way as
ordinary Fourier transforms.

One of the most prominent cases of applications of DFT to number theory is [Leh75] and subse-
quent [Fu90], both of which use (3.51) and have been incorporated as special cases of a more general
theorem in [WAK20].

As Chen [Che10, pp.125-126] states, both arithmetical Fourier transform, AFT and FFT are algo-
rithms for quick computation of DFT. We briefly state references on AFT, following [Che10]. Bruns
[Br1903] proposed a method for calculating Fourier coefficients by Möbius inversion and Wintner
[Wi47] re-established it for odd periodic function (without knowing the existence of Bruns’ paper).
Tufts and Sadasiv [TS88] repeated Wintner’s argument with applications to VLSI. Schiff and Walker
[SW92] extended Wintner’s results to all periodic functions. After [RT90], it is termed AFT, cf.
[Che10, pp. 125-147].
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