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Abstract. Using an intrinsic q-hypergeometric strategy, we generalise Dwork-type congruencesH(ps+1)/H(ps) ≡ H(ps)/H(ps−1)

(mod p3) for s = 1, 2, . . . and p a prime, when H(N) are truncated hypergeometric sums corresponding to the periods of rigid
Calabi–Yau threefolds.
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Number theory would not be full without q. It would have missed partitions from combinatorics,
cyclotomic polynomials from algebra, modular forms and q-hypergeometry from analysis — a lot of
beautiful stuff whose existence we now take for granted. There would not have been the phenomenon
of Srinivasa Ramanujan, who creatively invented many q-objects and demonstrated the power of
experiment in number theory.

I hope that the story in this note is very much in Ramanujan’s spirit, though not particularly
touching his discoveries. While studying myself Ramanujan’s famous formulae [Ra1914] for 1/π, I was
astonished to realise their reincarnation as supercongruences [Zu09]. It took some time for me to find
out that, in many cases, both the former and latter originate from common q-analogues. The principal
body of that work [GZ18, GZ19a, GZ19b, GZ20, GZ21] went in collaboration with Victor Guo and
culminated in a simple analytical method of ‘creative microscoping’ [GZ19a, Zu20] that powerfully
converts q-hypergeometric identities into congruences. I must admit that Victor has done way more
in this direction (see [Gu19a, Gu19b, Gu20a, Gu20b, Gu20c, Gu20d, GS19, GS20a, GS20b, GS21] and
many other recent contributions by him) but there is still some room for further interesting results.
One of those ‘open slots’ is our subject here.

1. Supercongruences associated with modular Calabi–Yau three-
folds

In order to start the theme, we have to introduce some standard notation and conventions. If you
are already familiar with that, feel free to jump to the next paragraph. We set (a; q)n = (1− a)(1−
aq) · · · (1− aqn−1) to be the q-shifted factorial (q-Pochhammer symbol), with its multiple version

(a1, . . . , am; q)k =
m∏
j=1

(aj ; q)k.

Further, let

Φn(q) =
∏

1≤k≤n
gcd(n,k)=1

(q − ζkn),
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be the nth cyclotomic polynomial, where ζn = e2πi/n is an nth primitive root of unity. Also recall
the ordinary shifted factorial (a)n = Γ(a + n)/Γ(a) = a(a + 1) · · · (a + n − 1) for n = 0, 1, 2, . . . . In
what follows, the congruence A1(q)/A2(q) ≡ 0 (modP (q)) for polynomials A1(q), A2(q), P (q) ∈ Z[q] is
understood as P (q) divides A1(q) and is coprime with A2(q); more generally, A(q) ≡ B(q) (modP (q))
for rational functions A(q), B(q) ∈ Z(q) means A(q)−B(q) ≡ 0 (modP (q)).

Let r1, r2 ∈
{

1
2 ,

1
3 ,

1
4 ,

1
6

}
or (r1, r2) ∈

{(
1
5 ,

2
5

)
,
(

1
8 ,

3
8

)
,
(

1
10 ,

3
10

)
,
(

1
12 ,

5
12

)}
(there are precisely fourteen

cases of those with r1 ≤ r2) and d = dr1,r2 denote the least common denominator of r1, r2. For
N = 1, 2, . . . , define the truncated q-hypergeometric sums

H(N ; q) = Hr1,r2(N ; q) =
N−1∑
k=0

(qdr1 , qd(1−r1), qdr2 , qd(1−r2); qd)k
(qd; qd)4

k

qdk.

Main theorem. For positive integers A,B, n with (n, d) = 1 and n > 1, the following q-supercongruence
is true:

H(An; q)

H(Bn; q)
≡ H(A; qn

2
)

H(B; qn2)
(mod Φn(q)3). (1)

Notice that

H(N) = lim
q→1

H(N ; q) =

N−1∑
k=0

(r1)k(1− r1)k(r2)k(1− r2)k
k!4

and the above congruence (with the choices A = ps, B = ps−1 and n = p) implies

H(ps+1)

H(ps)
≡ H(ps)

H(ps−1)
(mod p3) (2)

provided that H(p) 6≡ 0 (mod p). Dwork’s theory in fact guarantees that

H(ps+1)

H(ps)
≡ H(ps)

H(ps−1)
(mod ps),

so that the quotient H(ps+1)/H(ps) converges p-adically to a unit root γp (see [LTYZ17, Theorem
1]). The congruence (2) valid for all s = 1, 2, . . . implies that

γp ≡
H(ps+1)

H(ps)
≡ H(p1)

H(p0)
(mod p3) = H(p),

so that H(p) ≡ γp ≡ a(p) (mod p3), where f = fr1,r2 =
∑∞

n=1 a(n)qn is the corresponding weight 4
modular form. This comparison of truncated hypergeometric sum H(p) with the pth coefficient of the
modular form modulo p3 was originally conjectured by Rodrigues-Villegas [R-V03] for the fourteen
cases above; those correspond to the modularity instances of rigid Calabi–Yau threefolds whose periods
are described through 4F3 hypergeometric differential equations (refer to [LTYZ17, R-V03] for details
of this setup). The particular case r1 = r2 = 1

2 was conjectured earlier by Van Hamme [VH97,
Congruence (M.2)] and established later by Kilbourn [Ki06] (who was unaware of Van Hamme’s
paper). The case (r1, r2) = (1

5 ,
2
5) of Rodrigues-Villegas’ conjecture attached to the famous quintic

threefold [COGP91] was settled by McCarthy [Mc12], while the reduction of case (r1, r2) = (1
4 ,

1
2) to

Kilbourn’s result from [Ki06] was performed by McCarthy and Fuselier [FM16]. Finally, the uniform
treatment of all fourteen cases was completed in our joint work [LTYZ17] with Long, Tu and Yui,
using two(!) different methods. The main theorem here leads to another proof of Rodriguez-Villegas’
conjectures in [R-V03].
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In fact, as observed by Roberts and Rodriguez-Villegas in [RR-V19] the expectation is that, for
s = 1, 2, . . . ,

H(ps+1)

H(ps)
≡ H(ps)

H(ps−1)
(mod p3s)

provided that H(p) 6≡ 0 (mod p). There seems to be, however, no clear way to q-cast this expectation
for s > 1.

Among all fourteen weight 4 modular forms corresponding to the rigid hypergeometric Calabi–Yau
threefolds, only f1/4,1/3 = q

∏∞
n=1(1− q3n)8 is a CM modular form: we have γp = −Γp

(
1
3

)9
for p ≡ 1

(mod 3) and a(p) = 0 for primes p ≡ 2 (mod 3). It is observed numerically in [LTYZ17] that the
supercongruence for this case also reflects the additional CM structure: for all primes p ≡ 1 (mod 3),

p−1∑
k=0

(1
3)k(

2
3)k(

1
4)k(

3
4)k

k!4
≡ −Γp

(1

3

)9
(mod p4),

which is sharp. (The latter p-adic gamma value is also featured in [VH97, Congruence (D.2)]. However
its known q-analogues are obscurely complicated.) In comparison, the choice p3 is sharp in all remain-
ing thirteen cases. This suggests that there might be a closed form for H1/4,1/3(n; q) (mod Φn(q)3)
when n ≡ 1 (mod 3).

Finally, we notice the weaker companion to (1) of shape

H(An; q)

H(Bn; q)
≡ H(A; qn)

H(B; qn)
(mod Φn(q)2), (3)

which possesses a stronger form

H(An; q)

H(Bn; q)
≡ H(A; qn)

H(B; qn)
+ C(A,B)(n2 − 1)(qn − 1)2 (mod Φn(q)3) (4)

for the quantity

Cr1,r2(A,B) = d2 H(A; 1)
∑B−1

`=0 `(`+ µ)c(`; 1)−H(B; 1)
∑A−1

`=0 `(`+ µ)c(`; 1)

12H(B; 1)2
(5)

with µ = µr1,r2 = r1(1− r1) + r2(1− r2) and c(k; q) defined below in (6). Particular instances of (1)
and (3) are conjectured in [Gu20d] in the case r1 = r2 = 1

2 . As we will see below, the congruences
(4) are derivatives of the congruences (1), therefore they do not require separate attention.

There is a numerical evidence that the conditions on r1, r2 cannot be relaxed, so that the fourteen
cases are the only ones when such supercongruences take place.

Denoting

c(k; q) =
(qdr1 , qd(1−r1), qdr2 , qd(1−r2); qd)k

(qd; qd)4
k

qdk = c(k; 1/q) (6)

the kth term of the sum H(N ; q) and writing (1) in the form

H(An; q)

H(A; qn2)
≡ H(Bn; q)

H(B; qn2)
(mod Φn(q)3),

we see that the latter follows from

n−1∑
k=0

c(`n+ k; q)

c(`n; q)
≡ c(`; qn

2
)

c(`n; q)

n−1∑
k=0

c(k; q) (mod Φn(q)3) (7)

to be true for all ` = 1, 2, . . . . Also notice that there are ‘closed forms’ for the prefactor on the
right-hand side in (7) in all the fourteen cases, thanks to [St19] (see also [Zu19, Section 5]).

It does not seem realistic (and deserving!) to record detailed proofs for each case covered in
the main theorem. We illustrate the general strategy on the particular case r1 = r2 = 1

2 , which is
definitely lighter than the others and has a history of its own [Gu20d, Ki06, VH97].
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2. Details of proofs when r1 = r2 = 1/2

Below we concentrate entirely on the case r1 = r2 = 1
2 , so that

c(k; q) =
(q; q2)4

k

(q2; q2)4
k

q2k. (8)

In this situation we will often use the fact that c(k; q) ≡ 0 modulo Φn(q)4 (hence modulo Φn(q)3 as
well!) when the residue k (modn) exceeds m = (n− 1)/2; in particular,

n−1∑
k=0

c(k; q) ≡
m∑
k=0

c(k; q) (mod Φn(q)3).

Lemma 1. In the case r1 = r2 = 1
2 we have, for ` = 0, 1, 2, . . . ,

c(`; qn
2
)

c(`n; q)
≡ c
(n− 1

2
; q
)2`
− `(2`+ 1)(n2 − 1)

6
(qn − 1)2 (mod Φn(q)3).

The resulting expression for c(`; qn
2
)/c(`n; q) makes sense, more generally, for ` ∈ 1

2Z. Since the
left-hand side in (7) is also defined for those `, the congruence (7) is implied by

Q(`; q) ≡ c
(n− 1

2
; q
)2`
− `(2`+ 1)(n2 − 1)

6
(qn − 1)2 (mod Φn(q)3), (9)

where

Q(`; q) =

(n−1)/2∑
k=0

c(`n+ k; q)

c(`n; q)

/
(n−1)/2∑
k=0

c(k; q). (10)

In what follows we will be verifying the congruence (9).

Proof of Lemma 1. Write

c(k; q) =
(q; q)4

2k

(q2; q2)8
k

q2k =

[
2k

k

]4 q2k∏k
j=1(1 + qj)8

and use [St19, Theorem 2.2] to get

c(`; qn
2
)

c(`n; q)
=

([2`
`

]
qn2[

2`n
`n

] )4

q2`n(n−1)

∏`n
j=1(1 + qj)8∏`
j=1(1 + qjn2)8

≡ q2`n(n−1)

∏`n
j=1(1 + qj)8∏`
j=1(1 + qjn2)8

+
`2(n2 − 1)

6
(qn − 1)2 (mod Φn(q)3).

Notice that for

F`(q) =

∏`n
j=1(1 + qj)∏`
j=1(1 + qjn2)

we have F0(q) = 1 and

F`(q) ≡ F1(q)` ·
(

1− n2 − 1

8
(qn − 1)2

)`(`−1)/2

≡
(∏n

j=1(1 + qj)

1 + qn2

)`(
1− `(`− 1)(n2 − 1)

16
(qn − 1)2

)
≡
(∏n

j=1(1 + qj)

1 + qn2

)`
− `(`− 1)(n2 − 1)

16
(qn − 1)2 (mod Φn(q)3)
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for ` = 0, 1, . . . , hence

c(`; qn
2
)

c(`n; q)
≡ q2`n(n−1)

(∏n
j=1(1 + qj)

1 + qn2

)8`

− `(2`− 3)(n2 − 1)

6
(qn − 1)2 (mod Φn(q)3).

Finally, notice the following congruence:(
(q; q2)(n−1)/2

(q2; q2)(n−1)/2

)2

q(n−1)/2 ≡ qn(n−1)/2

(∏n
j=1(1 + qj)

1 + qn2

)2

+
n2 − 1

6
(qn − 1)2 (mod Φn(q)3), (11)

which follows from [Pa07, Theorem 1.2] (though stated there for n odd primes but proved without
the primality assumption; see also [LPZ15, Eq. (1.5)]). �

Lemma 2. The congruence (9) is true for ` = −1
2 .

Proof. We rearrange the summation:

(n−1)/2∑
k=0

c(−1
2n+ k; q)

c(−1
2n; q)

=

(n−1)/2∑
k=0

(
(q−n+1; q2)k
(q−n+2; q2)k

)4

q2k

=

(
(q−n+1; q2)(n−1)/2

(q−n+2; q2)(n−1)/2

)4 (n−1)/2∑
k=0

(
(q−1; q−2)k
(q−2; q−2)k

)4

qn−1−2k

=

(
(q2; q2)(n−1)/2

(q; q2)(n−1)/2

)4

q−n+1

(n−1)/2∑
k=0

(
(q; q2)k
(q2; q2)k

)4

q2k

= c
(n− 1

2
; q
)−1

(n−1)/2∑
k=0

c(k; q).

This proves (9) for ` = −1
2 . �

Lemma 3. For the quotient (10) we have

Q(`; q) ≡ 1− 8`Σ1(q)(qn − 1)

− 4`(2`− 1)Σ1(q)(qn − 1)2 + 8`2Σ2(q)(qn − 1)2 (mod Φn(q)3),

where

Σ1(q) =

∑(n−1)/2
k=0 c(k; q)S1(k)∑(n−1)/2

k=0 c(k; q)
, Σ2(q) =

∑(n−1)/2
k=0 c(k; q)(4S1(k)2 − S2(k))∑(n−1)/2

k=0 c(k; q)

and the ‘harmonic sums’ S1(k) = S1(k; q), S2(k) = S2(k; q) are defined in (12) below.

Proof. We essentially apply to (8) the strategy from [Zu19]. Namely, using

(aq; q)k
(q; q)k

= 1 + (1− a)

k∑
j=1

qj

1− qj

+
(1− a)2

2

(( k∑
j=1

qj

1− qj

)2

−
k∑
j=1

q2j

(1− qj)2

)
+O

(
(1− a)3

)
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with a = q2`n, we get, for 0 ≤ k ≤ (n− 1)/2,

c(`n+ k; q)

c(`n; q)c(k; q)
≡ 1 + 4S1(k; q)(1− q2`n)

+ 2(4S1(k; q)2 − S2(k; q))(1− q2`n)2 (mod Φn(q)3),

where

S1(k) = S1(k; q) =

2k∑
j=1

qj

1− qj
− 2

k∑
j=1

q2j

1− q2j
=

k∑
j=1

qj

1 + qj
+

2k∑
j=k+1

qj

1− qj
,

S2(k) = S2(k; q) =

2k∑
j=1

q2j

(1− qj)2
− 2

k∑
j=1

q4j

(1− q2j)2
.

(12)

Then

(n−1)/2∑
k=0

c(`n+ k)

c(`n)
≡

(n−1)/2∑
k=0

c(k) + 4(1− q2`n)

(n−1)/2∑
k=0

c(k)S1(k)

+ 2(1− q2`n)2

(n−1)/2∑
k=0

c(k)(4S1(k)2 − S2(k))

≡
(n−1)/2∑
k=0

c(k)− 4
(
2`(qn − 1) + `(2`− 1)(qn − 1)2

) (n−1)/2∑
k=0

c(k)S1(k)

+ 8`2(qn − 1)2

(n−1)/2∑
k=0

c(k; q)(4S1(k)2 − S2(k)) (mod Φn(q)3). �

Lemma 4. For m = (n − 1)/2 and the sums defined in (12) we have S1(m; q) + S2(m; q) ≡ 0
(mod Φn(q)).

Proof. Consider

S(q) = S1(m; q) + S2(m; q) =
n−1∑
j=1

qj

(1− qj)2
− 2

(n−1)/2∑
j=1

q2j

(1− q2j)2

modulo Φn(q). Take ζ = ζn to be an nth primitive root of unity. Then

(n−1)/2∑
j=1

ζ2j

(1− ζ2j)2
=

(n−1)/2∑
j=1

ζn−2j

(1− ζn−2j)2
=

1

2

n−1∑
j=1

ζj

(1− ζj)2

implying S(ζ) = 0. The equality precisely means that S(q) ≡ 0 (mod Φn(q)). �

Lemma 5. For n odd, put m = (n− 1)/2. Then

c
(n− 1

2
; q
)

=

(
(q; q2)m
(q2; q2)m

)4

q2m

≡ 1− 2S1(m)(qn − 1) + (S1(m) + 2S1(m)2)(qn − 1)2 (mod Φn(q)3),

with S1(m) = S1(m; q) defined in (12).
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Proof. Consider

T (q) = T (n; q) =

(
(q; q2)m
(q2; q2)m

)2

qm =
(q; q2)4

m

(q; q)2
2m

qm

already featured in (11). We get

T (q) = T (q−1) =
(q−1; q−2)4

m

(q−1; q−1)2
2m

q−m =
(q−n+2; q2)4

m

(q−n+1; q)2
2m

q−m

≡ (q2; q2)4
m

(q; q)2
2m

q−m
(
1− 2(1− q−n)S1(m) + 2(1− q−n)2S1(m)2 + (1− q−n)2S2(m)

)
≡ (q2; q2)4

m

(q; q)2
2m

q−m
(
1− 2(1− q−n)S1(m)

+ 2(1− q−n)2S1(m)2 − (1− q−n)2S1(m)
)

(mod Φn(q)3)

with the help of Lemma 4. Comparing two expressions for T (q) and using 1−q−n ≡ (qn−1)−(qn−1)2

and (1− q−n)2 ≡ (qn − 1)2 modulo Φn(q)3, we deduce the desired claim. �

Lemma 6. In the previous notation, the following congruence is true:

Σ1 + 4Σ2
1 − Σ2 ≡

n2 − 1

24
(mod Φn(q)).

Proof. It follows from Lemma 3 that

Q(−`; q)Q(`; q) ≡ 1− 16`2(Σ1 + 4Σ2
1 − Σ2)(qn − 1)2

≡ 1− 4(Σ1 + 4Σ2
1 − Σ2)(q2`n − 1)2 (mod Φn(q)3),

so that the required assertion is equivalent to

Q(−`; q)Q(`; q) ≡ 1− n2 − 1

6
(q2`n − 1)2 (mod Φn(q)3). (13)

Introduce the rational function

Fn(a; q) =
n−1∑
k=0

(aq; q2)4
k

(aq2; q2)4
k

q2k

with the motive that Q(`; q) = Fn(q2`n; q)/Fn(1; q). This means that if

Fn(a; q)Fn(a−1; q)

Fn(1; q)2
= 1 + f(q)(a− 1)2 +O

(
(a− 1)3

)
is the Taylor series expansion around a = 1 (the coefficient of a−1 vanishes because of the symmetry
a↔ 1/a of the expression), then

Q(−`; q)Q(`; q) ≡ 1 + f(q)(q2`n − 1)2 (mod Φn(q)3).

To compute f(q) (mod Φn(q)) we employ the following remarkable identity:

Fn(a; ζ)Fn(a−1; ζ)

Fn(1; ζ)2
=

(
na(n−1)/2

1 + a+ a2 + · · ·+ an−1

)4

(14)

valid for any nth primitive root of unity ζ. It remains to observe that

na(n−1)/2

1 + a+ a2 + · · ·+ an−1
= 1− n2 − 1

24
(a− 1)2 − n2 − 1

24
(a− 1)3 +O

(
(a− 1)4

)
,

so that f(ζ) = −(n2−1)/6 implying f(q) ≡ −(n2−1)/6 (mod Φn(q)), hence the congruence (13) and
our lemma. �
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Proof of the main result. Connecting the results of Lemmas 2, 3 and then applying Lemma 6 we
conclude that

c
(n− 1

2
; q
)−1
≡ 1 + 4Σ1(qn − 1)− (4Σ1 − 2Σ2)(qn − 1)2

≡ 1 + 4Σ1(qn − 1)−
(

2Σ1 − 8Σ2
1 +

n2 − 1

12

)
(qn − 1)2 (mod Φn(q)3).

On the other hand, from Lemma 5 we find out that

c
(n− 1

2
; q
)−1
≡ 1 + 2S1(m)(qn − 1)− (S1(m)− 2S1(m)2)(qn − 1)2 (mod Φn(q)3).

The comparison of these two representations leads to

S1(m; q) ≡ 2Σ1(q)− n2 − 1

24
(qn − 1) (mod Φn(q)2).

Thus,

Q(`; q) ≡ 1− 4`

(
S1(m) +

n2 − 1

24
(qn − 1)

)
(qn − 1)− 2`(2`− 1)S1(m)(qn − 1)2

+ 4`2
(
S1(m) + 2S1(m)2 − n2 − 1

12

)
(qn − 1)2 (mod Φn(q)3)

= 1− 4`S1(m)(qn − 1)

+

(
2`S1(m) + 8`2S1(m)2 − `(2`+ 1)(n2 − 1)

6

)
(qn − 1)2

≡ c
(n− 1

2
; q
)2`
− `(2`+ 1)(n2 − 1)

6
(qn − 1)2 (mod Φn(q)3)

establishing (9), hence (7) and (1) for r1 = r2 = 1
2 . �

3. Concluding remarks

All the ingredients of our proof in Section 2 extend more generally to the remaining thirteen cases
(r1, r2) of the main theorem. The corresponding modifications of statements are not entirely trivial
(and most are incredibly complicated!) but we do not think they deserve recording here. It is however
worth mentioning that the remarkable identity (14) is valid for any rational function

Fn(a; q) = Fn;r1,r2(a; q) =
n−1∑
k=0

(aqdr1 , aqd(1−r1), aqdr2 , aqd(1−r2); qd)k
(aqd; qd)4

k

qdk

(allowing to deal one with (6) in particular) and an nth primitive root of unity ζ, whenever (n, d) = 1.
Here r1, r2 are arbitrary rationals on the interval (0, 1) and d is their least common denominator.
Analogues of this result can be stated for other balanced hypergeometric sums. One example (visually
related to [GZ21, Conjecture 3.13]) sources the rational function

Gn(a; q) = Gn;r(a; q) =
n−1∑
k=0

2(aqdr, aqd(1−r); qd)k
(aqd; qd)2

k(1 + qdk)
qdk,

where d is the denominator of rational r ∈ (0, 1) and (n, 2d) = 1; then

Gn(a; ζ)Gn(a−1; ζ)

Gn(1; ζ)2
=

(
n

1− a+ a2 − · · · − an−2 + an−1

1 + a+ a2 + · · ·+ an−2 + an−1

)2

. (15)
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We leave proofs of identities (14) and (15) as a homework to the intelligent reader.

The form (7) also suggests that C(A,B) in (4) comes from the asymptotics of c(`; qn
2
)/c(`; qn).

In our r1 = r2 = 1
2 illustrative case we get

c(`; qn
2
)

c(`; qn)
= 1− `(2`+ 1)(n2 − 1)

6
(qn − 1)2 (mod Φn(q)3)

implying

c(`; qn
2
) = c(`; qn)− `(2`+ 1)c(`; 1) · n

2 − 1

6
(qn − 1)2 (mod Φn(q)3)

and transforming (7) into

n−1∑
k=0

c(`n+ k; q) ≡ c(`; qn)

n−1∑
k=0

c(k; q)− `(2`+ 1)c(`; 1)

n−1∑
k=0

c(k; q) · n
2 − 1

6
(qn − 1)2 (mod Φn(q)3)

for ` = 1, 2, . . . . This means that

H(An; q) ≡
(
H(A; qn)−

A−1∑
`=0

`(2`+ 1)c(`; 1) · n
2 − 1

6
(qn − 1)2

) n−1∑
k=0

c(k; q) (mod Φn(q)3)

and leads to (4) with

C(A,B) =
H(A; 1)

∑B−1
`=0 `(2`+ 1)c(`; 1)−H(B; 1)

∑A−1
`=0 `(2`+ 1)c(`; 1)

6H(B; 1)2
.

This is precisely the form assumed in (5) when r1 = r2 = 1
2 , and this generalises to the other thirteen

cases along the lines.
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