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Partition-theoretic formulas for arithmetic densities, II
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Abstract. In earlier work generalizing a 1977 theorem of Alladi, the authors proved a partition-theoretic formula to compute

arithmetic densities of certain subsets of the positive integers N as limiting values of q-series as q → ζ a root of unity (instead
of using the usual Dirichlet series to compute densities), replacing multiplicative structures of N by analogous structures in the

integer partitions P. In recent work, Wang obtains a wide generalization of Alladi’s original theorem, in which arithmetic densities
of subsets of prime numbers are computed as values of Dirichlet series arising from Dirichlet convolutions. Here the authors prove

that Wang’s extension has a partition-theoretic analogue as well, yielding new q-series density formulas for any subset of N. To do

so, we outline a theory of q-series density calculations from first principles, based on a statistic we call the “q-density” of a given
subset. This theory in turn yields infinite families of further formulas for arithmetic densities.
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1. Introduction and statement of results

It is well-known that the Möbius function satisfies

− lim
N→∞

N∑
n=2

µ(n)

n
= 1. (1.1)

This fact can be used to obtain formulas for arithmetic densities for suitable subsets of the positive
integers. A celebrated example of this idea was obtained by Alladi [Al77], who proved for r, t,∈ N
that if gcd(r, t) = 1, then

−
∑
n≥2

pmin(n)≡r (mod t)

µ(n)

n
=

1

ϕ(t)
. (1.2)

Here ϕ(t) is Euler’s phi function, and pmin(n) is the smallest prime factor of n.
Over the last few years, (1.2) has been generalized in various ways in works by Dawsey [Da17],

Sweeting and Woo [SwWo19], Kural, McDonald and Sah [KMS], and Wang [Wa1, Wa2]. In a re-
cent preprint [Wa3], Wang obtained a beautiful generalization of this phenomenon which makes
use of Dirichlet convolutions. If a : N → C is an arithmetic function satisfying a(1) = 1 and∑

n≥2
|a(n)|
n log log n <∞, then for suitable subsets S of the positive integers Wang proves that

− lim
N→∞

∑
2≤n≤N
pmin(n)∈S

(µ ∗ a)(n)

n
= dS , (1.3)

where (f ∗ g)(n) =
∑

d|n f(d)g(n/d) is the classical Dirichlet convolution of f and g.
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In earlier work the authors obtained a partition-theoretic analogue of formulas such as (1.2) using
natural analogies between the multiplicative structure of the integers and the additive structure of
partitions. The purpose of this note is to show that an analogue also exists for (1.3), as a consequence
of a general theorem offering infinitely many formulas (see Theorem 1.3).

We first recall fundamental features of these analogies. A partition is a finite non-increasing
sequence of positive integers, say λ = (λ1, λ2, ..., λ`(λ)), where `(λ) denotes the length (number of
parts) of λ. The size of λ is |λ| := λ1 + λ2 + · · ·+ λ`(λ) (sum of parts) and the norm of the partition
is N(λ) = λ1 · λ2 · · ·λ`(λ) (product of parts).1 Furthermore, we let sm(λ) := λ`(λ) denote the smallest
part of λ (resp. lg(λ) := λ1 the largest part of λ).

We will use the partition Möbius function

µP(λ) :=

{
0 if λ has repeated parts,

(−1)`(λ) otherwise.
(1.4)

Notice that µP(λ) = 0 if λ has any repeated parts, which is analogous to the vanishing of µ(n)
for integers n which are not square-free. In particular, the different parts in a partition λ play the
role of prime factors of n in this analogy. We define µ∗P(λ) := −µP(λ) as in Dawsey’s theorem, to
eliminate minus signs in our formulas. Finally, we recall the usual q-Pochhammer symbol (a; q)n :=∏n−1
k=0(1− aqk) and (a; q)∞ := limn→∞(a; q)n for a, q ∈ C, |q| < 1.

To complete the analogy, also recall the partition phi function defined in [Sc17], an analogue of
Euler’s totient function,

ϕP(λ) := N(λ) ·
∏
k∈λ

without repetition

(
1− k−1

)
,

where “k ∈ λ” means k ∈ N is a part of λ ∈ P.
Table 1 offers some of the identifications making up this multiplicative-additive analogy.

Natural number n Partition λ

Prime factors of n Parts of λ

Square-free integers Partitions into distinct parts

µ(n) µP(λ)

ϕ(n) ϕP(λ)

pmin(n) sm(λ)

pmax(n) lg(λ)

n−s q|λ|

ζ(s)−1 (q; q)∞
s→ 1 q → 1

Table 1: Analogies between arithmetic and partition theory

Remark 1.1. We note that other, different multiplicative-additive analogies exist, such as those
drawn in [ScSi20] between partitions of length m and those of size m, in which the duality instead
correlates ζ(s) to the geometric series q(1− q)−1, with m−s in bijection with qm.

To describe our results, let S be a subset of the positive integers with arithmetic density

dS := lim
N→∞

#{n ∈ S : n ≤ N}
N

.

1The norm is referred to as the “integer” of λ and written nλ in some earlier works [ORS17, Sc16].
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As noted above, we let µ∗P(λ) := −µP(λ). In [OSW17] the function

FS(q) :=
∑
λ∈P

sm(λ)∈S

µ∗P(λ)q|λ| (1.5)

was defined, and it was shown, for suitable S and associated roots of unity ζ, that

lim
q→ζ

FS(q) = dS . (1.6)

This theorem is a partition-theoretic analogue of (1.2).

Remark 1.2. We note that throughout this paper, “q → ζ” with ζ a root of unity (including the case
ζ = 1) denotes that q approaches the point on the unit circle from within the unit disk.

To state the partition analogue of Wang’s theorem requires some further notation for partition
multiplication, division, and subpartitions that are analogous to partition divisors. For two partitions
λ, δ ∈ P, we define δλ to be the partition obtained by concatenating the parts of λ to δ (and then
reordering by size by notational convention). We write δ|λ if all of the parts of δ appear in the
partition λ with greater than or equal multiplicities and define the subpartition λ/δ as the partition
obtained by removing those parts, counting multiplicities, from λ.

For two functions f and g on partitions, we define their partition Dirichlet convolution by

(f ∗ g)(λ) :=
∑
δ|λ

f(δ)g(λ/δ), (1.7)

where the sum is taken over the subpartitions δ of λ (including the empty partition δ = ∅).
To state our results succinctly, we define an auxiliary series that effectively serves to identify

different classes of density results. For |q| < 1, a(λ) a function on P, and n ≥ 1, let

An(q) := a ((n)) +
∑

sm(γ)≥∗n

[a(γ · (n))− a(γ)] q|γ|, (1.8)

with (n) ∈ P the partition of n with one part, γ · (n) ∈ P the partition formed by adjoining part n to
partition γ, and with ≥∗ denoting > if a(λ) = 0 at partitions with any part repeated, and denoting
≥ otherwise.

We introduce one final piece of terminology: throughout this paper, the formulas we prove hold
true for “nice” subsets S ⊆ N amenable to q-series density calculations, which we call q-commensurate
subsets (see Section 3 below for the precise definition).

Theorem 1.3. Let S ⊆ N be a q-commensurate subset, and a(λ) a function on P such that a(∅) = 1.
If limq→1An(q) = 1 when n ∈ S, then

lim
q→1

∑
sm(λ)∈S

(µP ∗ a)(λ)q|λ| = 0.

If limq→1An(q) = 1 + f(n) for f(n) an arithmetic function nonzero when n ∈ S, then

lim
q→1

∑
sm(λ)∈S

(µP ∗ a)(λ)

f (sm(λ))
q|λ| = dS .

If we set f(n) = n, Theorem 1.3 gives the partition analogue of (1.3). Immediately we have a nice
generalization of formula (1.6) with ζ = 1.
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Corollary 1.4. For S ⊆ N a q-commensurate subset, if limq→1An(q) = 0 when n ∈ S, then

− lim
q→1

∑
sm(λ)∈S

(µP ∗ a)(λ)q|λ| = dS .

Remark 1.5. Set a(λ) =
∑

δ|λ µP(δ) = 1 if λ = ∅ and = 0 otherwise; one computes An(q) = 0 for
all n ≥ 1. Then the theorem reduces to the main result of [OSW17], viz. limq→1 FS(q) = dS .

Furthermore, for an arithmetic function a(n), Wang defines b(n) :=
∑

d|n(µ ∗ a)(d) d
ϕ(d) with ϕ(k)

the classical Euler phi function, and in equation (36) of [Wa3] uses Möbius inversion to show

(µ ∗ a)(n)

ϕ(n)
=

(µ ∗ b)(n)

n
. (1.9)

This along with the main theorem (1.3) allows Wang to prove beautiful formulas like

− lim
N→∞

∑
2≤n≤N
pmin(n)∈S

(µ ∗ a)(n)

ϕ(n)
= dS . (1.10)

Replacing a, b with functions on partitions, Theorem 1.3 yields an analogue of these equations.

Corollary 1.6. Let S ⊆ N be a q-commensurate subset, a(λ) a function on P such that a(∅) = 1, f
and g functions on Z≥0 such that f(n) 6= 0, g(n) nonzero when n ∈ S, and

b(λ) = ba,f,g(λ) :=
∑
δ|λ

(µP ∗ a)(δ)
g (sm(δ))

f (sm(δ))
.

If limq→1An(q) = 1 + f(n) for n ∈ S, then

lim
q→1

∑
sm(λ)∈S

(µP ∗ b)(λ)

g (sm(λ))
q|λ| = dS .

A version of Corollary 1.6 gives an analogue to Wang’s identity (1.10).

Corollary 1.7. Let S ⊆ N be a q-commensurate subset, and take a(λ), b(λ) = ba,f,g(λ) as in Corollary
1.6. In analogy with (1.8), define

Bn(q) := b ((n)) +
∑

sm(γ)≥∗n

[b(γ · (n))− b(γ)] q|γ|.

Let f(n) = −ϕ(n), g(n) = −1, so that b = ba,−ϕ,−1. If limq→1Bn(q) = 0 for n ∈ S, then

− lim
q→1

∑
sm(λ)∈S

(µP ∗ a)(λ)

ϕ (sm(λ))
q|λ| = dS ,

where ϕ(n) is the classical phi function.

We prove these limiting formulas in Section 4.

Remark 1.8. As noted in Section 3 below, by a Tauberian theorem of Frobenius [Fr1880], the for-
mulas in this paper hold for every subset S ⊆ N if one lets q → 1− strictly radially.
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2. Conceptual background

2.A. Partition analogue of multiplicative number theory

Before proceeding to prove the propositions in Section 1 let us discuss the multiplicative-additive
confluence that provides the context in which results like these — displaying a fusion of partition-
theoretic objects with familiar-looking forms from classical multiplicative number theory — arise
naturally.

In the preceding section we introduced the multiplicative partition norm N(λ), the partition
product (concatenation), partition division (deleting parts) and subpartition sums that act like sums
over divisors, as well as partition analogues of classical arithmetic functions and Dirichlet convolution;
this multiplicative theory of additive partitions was introduced in [Sc16, Sc17, Sc18] and subsequent
work [ORS17, OSW17, ScSi20]. Some of these analogies, pertinent to this paper, are captured in
Table 1.

These partition-theoretic structures behave almost identically to their classical counterparts. For
instance, one can prove familiar-looking “divisor sum” identities like∑

δ|λ

µP(δ) =

{
1 if λ = ∅,
0 otherwise,∑

δ|λ

ϕP(δ) = N(λ);

the partition Möbius inversion formula

A(λ) =
∑
δ|λ

a(δ) ⇐⇒ a(λ) =
∑
δ|λ

A(δ)µP(λ/δ), (2.11)

and closely connected order-of-summation-swapping principle∑
λ∈P

a(λ)
∑
δ|λ

b(δ) =
∑
λ∈P

b(λ)
∑
γ∈P

a(γλ);

and other analogues of classical identities, like a partition Cauchy product formula for absolutely
convergent series (∑

λ∈P
a(λ)

)(∑
λ∈P

b(λ)

)
=
∑
λ∈P

∑
δ|λ

a(δ)b(λ/δ), (2.12)

which is obviously related to partition convolution defined in (1.7).2 We note two useful consequences
of (2.12) from [Sc17], setting b = µP :

(q; q)−1
∞
∑
λ∈P

a(λ)q|λ| =
∑
λ∈P

q|λ|
∑
δ|λ

a(δ),

(q; q)∞
∑
λ∈P

a(λ)q|λ| =
∑
λ∈P

q|λ|
∑
δ|λ

a(δ)µP(λ/δ).

These are q-series analogues of the classical Dirichlet series identities (see Table 1)

ζ(s)−1
∞∑
n=1

f(n)n−s =

∞∑
n=1

n−s
∑
d|n

f(d),

ζ(s)

∞∑
n=1

f(n)n−s =

∞∑
n=1

n−s
∑
d|n

f(d)µ(n/d).

2We note that the partition convolution operation was initially suggested to the second author by O. Beckwith
(personal communication, 2018).
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This multiplicative-additive theory also contains broad classes of partition zeta functions

ζP ′(s) :=
∑
λ∈P ′

N(λ)−s (Re(s) > 1)

where P ′ ( P, that yield beautiful evaluations [Sc16] and interesting analytic information [ORS17,
ScSi20]. There also exist partition Dirichlet series [ORS17, Sc18] that enjoy identities generalizing
classical Dirichlet series relations, e.g. if PS denotes partitions with all parts in any S ⊂ N,∑

λ∈PS

µP(λ)N(λ)−s =
1

ζPS (s)
(Re(s) > 1),

∑
λ∈PS

ϕP(λ)N(λ)−s =
ζPS (s− 1)

ζPS (s)
(Re(s) > 2).

Taking S = P regains the classical cases. While this is indeed looking a lot like multiplicative number
theory, the same superstructure encompasses q-hypergeometric series, partition bijections and other
aspects of additive number theory, and recovers classical theorems in those areas as well (see [Sc18]
for further reading).

3. Computing arithmetic densities with q-series

3.A. The q-density statistic

For |q| < 1, we recall that the function FS(q) from (1.5) has two natural representations, one involving
sm(λ) and one involving lg(λ), the smallest and largest parts of partition λ, respectively. Namely, we
have

FS(q) :=
∑

sm(λ)∈S

µ∗P(λ)q|λ| =

∑
lg(λ)∈S q

|λ|∑
λ∈P q

|λ| = (q; q)∞
∑
n∈S

qn

(q; q)n
, (3.13)

noting sm(∅) = lg(∅) := 0. We proved in [OSW17] that limq→1 FS(q) = dS for special subsets S ⊆ N.
The story arc represented in the works of Alladi [Al77], Dawsey [Da17], Wang [Wa1, Wa2, Wa3], et

al., together with our own work in [OSW17], stems from the observation that (1.1) can be interpreted
as a statement about arithmetic density. Now, this statement itself can be interpreted via L’Hospital’s
rule and Lambert series as a statement about q-series, since

∑
n≥2

µ(n)

n
= lim

q→1
(1− q)

∑
n≥1

µ(n)qn

1− qn
− µ(1)q

1− q

 = lim
q→1

(1− q)
(
q − q

1− q

)
= −1,

assuming the implicit order-of-limits swap with “limq→1” and the infinite series is valid.
The classical q-binomial theorem was at the heart of our results in [OSW17]. In order to prove

the main results of this paper involving less familiar-looking forms, we sketch a theory of q-series
computations of arithmetic density from first principles, based on a simple statistic.

Definition 3.1. For |q| < 1 we define the q-density of S ⊆ N by the quotient

dS(q) :=

∑
n∈S q

n∑
n≥0 q

n
= (1− q)

∑
n∈S

qn. (3.14)
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The q-density is a geometric series analogue of (3.13).3 Of course, from both the shape of dS(q)
and known instances of FS(q), one wants to see the limiting behavior

lim
q→1

∑
n∈S q

n∑
n≥0 q

n
= lim

N→∞

∑
n∈S(N) 1∑
0≤n<N 1

=: dS , (3.15)

where S(N) = {n ∈ S : n ≤ N}. It is a consequence of a Tauberian theorem due to Frobenius
with a converse by Hardy-Littlewood (see [Fr1880, Ko]), that in fact (3.15) holds for every subset
S ⊆ N if q → 1 radially.4 In [OSW17], we prove arithmetic density formulas using other paths,
and approaching other roots of unity; we do not rigorously prove general limiting properties here
(certainly such a study would be useful), but side-step the issue somewhat circularly by defining it to
be a property of a subset of N that the limit computations we undertake are valid.

Definition 3.2. We define a subset S ⊆ N to be q-commensurate if limq→1 dS(q) = dS is approached
sufficiently rapidly for the asymptotic proofs we employ here to hold.

Remark 3.3. In full generality, a subset S being q-commensurate is equivalent to one’s being able,

for that subset, to interchange order of limits in the calculation dS := limN→∞ limq→1

∑
n∈S(N) q

n∑
0≤n<N qn , and

to having all implicit error terms in the following asymptotic equalities of lower order than the main
terms, so the errors vanish when multiplied by (q; q)∞ as q → 1.

Immediately we see that S = N is q-commensurate since dN(q) = q → 1 = dN. The analogy
between dS(q) and FS(q) holds quite closely with respect to density.

Theorem 3.4. Let r ∈ Z, t ∈ N. For subsets Sr,t := {n ≥ 0 : n ≡ r (mod t)} we have that

lim
q→1

dSr,t(q) = dSr,t =
1

t
.

Proof. The claimed limit follows from geometric series and L’Hospital’s rule:

lim
q→1

dSr,t(q) = lim
q→1

(1− q)
∑
k≥0

qkt+r = lim
q→1

qr(1− q)
1− qt

=
1

t
.

Theorem 3.4 is a geometric series version of Theorem 1.3 in [OSW17]. There is also a q-density
analogue of Corollary 1.5 in [OSW17].

Corollary 3.5. For subsets S(k)
fr ⊂ N of kth power-free integers, k ≥ 2, we have that

lim
q→1

dS(k)fr

(q) = dS(k)fr

=
1

ζ(k)
.

Proof. The steps of the proof of Cor. 1.5 in [OSW17] hold identically here, only one replaces FSr,M (q)
with dSr,M (q), then uses Theorem 3.4 in place of Th. 1.3 of [OSW17].

Thus the subsets Sr,t and S(k)
fr are q-commensurate. Table 2 illustrates the k = 2 (square-free)

case of Corollary 3.5 as q → 1 radially.5

3For q ∈ [0, 1), equation (3.14) can be interpreted as the expected value of the indicator function for the subset S,
given the probability function P (n) = qn−1(1− q) for random n ∈ N.

4Indeed, (3.15) holds if q → 1 in a “Stolz sector” of the unit circle; for a somewhat more general context, the reader
is referred to the second author’s study [Sc], following up on the present work.

5The values in Table 2 were computed by A. V. Sills in Mathematica.
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q dS(2)fr

(q)

0.90 0.739971...

0.91 0.729108...

0.92 0.717828...

0.93 0.706100...

0.94 0.693895...

0.95 0.681180...

0.96 0.667921...

0.97 0.654062...

0.98 0.639523...

0.99 0.624215...

0.999 0.609613...

0.9999 0.608069...

Table 2: Illustration of dS(2)fr

(q) approaching 6
π2 = 0.607927...

3.B. Further q-series density formulas

The q-density statistic can be used as a building block for further arithmetic density relations.6 For
S ⊆ N a q-commensurate subset7, as q → 1 it follows from (3.15) that∑

n∈S
qn ∼ dS ·

q

1− q
. (3.16)

Because geometric series are central components of partition generating functions and q-series,
the q-density may be embedded in diverse partition relations. For example, one can prove the central
claims of [OSW17] (with a sufficient condition) by applying generating function methods to (3.16).

Theorem 3.6. For S ⊆ N a q-commensurate subset, we have

lim
q→1

FS(q) = − lim
q→1

∑
n∈S

∑
k≥1

(−1)kqnk+
k(k−1)

2

(q; q)k−1
= dS .

Proof. Take q 7→ qk in (3.16). Multiply through by (−1)kq
k(k−1)

2 (q; q)−1
k−1 and sum both sides over

k ≥ 1, swapping order of summation on the left to give∑
n∈S

∑
k≥1

(−1)kqnk+
k(k−1)

2

(q; q)k−1
. (3.17)

For each k ≥ 1, the factor (q; q)−1
k−1 generates partitions with largest part strictly < k. The factor qnk

adjoins a largest part k with multiplicity n ∈ S to each partition. The qk(k−1)/2 = q1+2+3+...+(k−1)

factor guarantees at least one part of each size < k. Thus (3.17) is the generating function for
partitions γ with largest part having multiplicity in S, and with every natural number < lg(γ)
appearing as a part, weighted by (−1)lg(γ) = (−1)k. Under conjugation, this set of partitions γ maps
to partitions λ into distinct parts with smallest part sm(λ) ∈ S, weighted by µP(λ) = (−1)`(λ) = (−1)k

which is nonzero since λ has no repeated part. Multiplying by −1 gives µ∗P(λ) := −µP(λ); thus

−
∑
n∈S

∑
k≥1

(−1)kqnk+
k(k−1)

2

(q; q)k−1
=

∑
sm(λ)∈S

µ∗P(λ)q|λ| = FS(q).

6E.g. see Section 5. below.
7Or any subset of N if q → 1 radially, by the result of Frobenius cited above.



K. Ono, R. Schneider and I. Wagner, Partition-theoretic formulas for arithmetic densities, II 9K. Ono, R. Schneider and I. Wagner, Partition-theoretic formulas for arithmetic densities, II 9

Manipulating the right-hand side of (3.16) accordingly, we then have

−
∑
n∈S

∑
k≥1

(−1)kqnk+
k(k−1)

2

(q; q)k−1
∼ −dS ·

∑
k≥1

(−1)kq
k(k+1)

2

(q; q)k
= −dS · ((q; q)∞ − 1) ,

using an identity of Euler in the last step, which clearly approaches dS as q → 1.

We don’t necessarily need to restrict smallest parts to S to give formulas for dS . For instance, by
similar methods, an analogous formula extends to the “largest parts” case.

Theorem 3.7. For S ⊆ N a q-commensurate subset, we have

lim
q→1

∑
lg(λ)∈S

µ∗P(λ)q|λ| = dS .

Proof. Take q 7→ qk in (3.16). Multiply both sides by (q; q)−1
k−1, sum over k ≥ 1, then swap order of

summation and make the change of indices k 7→ k + 1 on the left side, to give∑
n∈S

qn
∑
k≥0

qnk

(q; q)k
∼ dS ·

∑
k≥1

qk

(q; q)k
. (3.18)

By the q-binomial theorem, the inner sum over k ≥ 0 is equal to (qn; q)−1
∞ , and the summation on

the right equals (q; q)−1
∞ − 1. Then multiplying both sides of (3.18) by (q; q)∞ implies by well-known

generating function arguments that, as q → 1, we have∑
n∈S

qn(q; q)n−1 =
∑

lg(λ)∈S

µ∗P(λ)q|λ| ∼ dS . (3.19)

Remark 3.8. Taken together, Theorems 3.6 and 3.7 present an “Alladi duality” connecting relations
over minimal and maximal elements of multisets, as exemplified in [Al77, Al17, Wa3]. Whereas in
[Al77] the smallest and largest prime factors of n induce a duality, here the duality is between the
smallest and largest parts of λ.

4. Proof of Theorem 1.3 and its corollaries

4.A. Partition convolution identities

Now we turn our attention toward proving the partition convolution identities analogous to formulas
of Wang [Wa3]. It is an instance of (2.12) for arbitrary partition-theoretic functions a(λ), b(λ) that(∑

λ∈P
a(λ)q|λ|

)(∑
λ∈P

b(λ)q|λ|

)
=
∑
λ∈P

(a ∗ b)(λ)q|λ| =
∑
n≥0

∑
sm(λ)=n

(a ∗ b)(λ)q|λ|, (4.20)

where we now take ∗ to be partition-theoretic convolution (which is apparent from the context). We
record a useful formula for the inner sum

∑
sm(λ)=n of the right-hand double series. This will serve

as another building block for further arithmetic density formulas.

Lemma 4.1. For a(λ), b(λ) functions on P, we have

∑
sm(λ)=n

(a ∗ b)(λ)q|λ| =

 ∑
sm(γ)=n

a(γ)q|γ|

b(∅) +
∑

sm(γ)≥∗n

b(γ)q|γ|


+

a(∅) +
∑

sm(γ)≥∗n

a(γ)q|γ|

 ∑
sm(γ)=n

b(γ)q|γ|

 ,
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where ≥∗ denotes > if the associated summands vanish at partitions with any part repeated, and
denotes ≥ otherwise.

Proof. The right-hand side of Lemma 4.1 generates the partitions λ with smallest part n on the left.

That the summands on the left should have the form q|λ|
∑

δ|λ a(δ)b(λ/δ) =
∑

δδ′=λ

(
a(δ)q|δ| · b(δ′)q|δ′|

)
is obvious from standard partition generating function ideas, e.g. (4.20). Now consider λ = δδ′ on
the left, choosing δ from a sum with coefficients a(γ) on the right-hand side, and δ′ from a sum with
coefficients b(γ). If subpartition δ contains the copy of part n satisfying the “sm(λ) = n” condition,
then λ is generated by the first term “(

∑
sm(γ)=n)(b +

∑
sm(γ)≥∗n)” on the right: δ comes from the∑

sm(γ)=n factor, and δ′ comes from the b+
∑

sm(γ)≥∗n factor. If, on the other hand, δ′ contains the
designated smallest part n, then λ is generated by the second term “(a+

∑
sm(γ)≥∗n)(

∑
sm(γ)=n)” on

the right: δ comes from a+
∑

sm(γ)≥∗n and δ′ comes from the
∑

sm(γ)=n factor.

We wish to find formulas with coefficients of the form µP ∗ a, to yield Theorem 1.3. Now, for

|q| < 1, recall the q-bracket 〈a〉q :=
∑
λ∈P a(λ)q|λ|∑
λ∈P q

|λ| = (q; q)∞
∑

λ∈P a(λ)q|λ| of Bloch and Okounkov.

The q-bracket can be interpreted as the expected value of a(λ) over all partitions, given certain
hypotheses from statistical physics; it is connected to modular, quasi-modular and p-adic modular
forms (see [BlOk00, BOW, GJT16, Za15]). Then (4.20) gives∑

λ∈P
(µP ∗ a)(λ)q|λ| = 〈a〉q , (4.21)

which of course leads to further partition convolution relations from q-bracket examples in the liter-
ature. Taken over all partitions λ, we see µP ∗ a induces a type of averaging phenomenon, as well as
a connection to the theory of modular forms.

To restrict smallest parts to the subset S, we require a specialization of Lemma 4.1.

Lemma 4.2. For a(λ) a function on P, we have∑
sm(λ)=n

(µP ∗ a)(λ)q|λ| = Ãn(q) · qn(qn+1; q)∞,

where Ãn(q) := An(q)− a(∅) with An(q) as in (1.8).

Proof. Swap a, b in Lemma 4.1, noting a ∗ b = b ∗ a, and let b(λ) = µP(λ) to yield

∑
sm(λ)=n

(µP ∗ a)(λ)q|λ| =− qn(qn+1; q)∞

a(∅) +
∑

sm(γ)≥∗n

a(γ)q|γ|


+ (qn+1; q)∞

 ∑
sm(γ)=n

a(γ)q|γ|

 .

Factor qn out of the
∑

sm(γ)=n factor on the right; the summands undergo the transformation

a
(
γ)q|γ| 7→ a(γ · (n)

)
q|γ|. Then a little arithmetic gives

∑
sm(λ)=n

(µP ∗ a)(λ)q|λ| = qn(qn+1; q)∞

a ((n))− a(∅) +
∑

sm(γ)≥∗n

[a(γ · (n))− a(γ)] q|γ|

 .

The parenthetical term on the right is exactly Ãn(q), completing the proof.
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This lemma works out nicely when the choice of a(λ) allows one to factor out aspects of Ãn(q),
or simplify the sum otherwise. Now the following general lemma, wrapping together the preceding
formulas, will lead to the proof of Theorem 1.3 as q → 1.

Lemma 4.3. For a(λ) a partition-theoretic function, f(n) an arithmetic function, we have∑
λ 6=∅

(µP ∗ a)(λ)f (sm(λ)) q|λ| = (q; q)∞
∑
n≥1

f(n)Ãn(q)qn

(q; q)n
,

where Ãn(q) := An(q)− a(∅) with An(q) as in (1.8).

Proof. Multiply Lemma 4.2 through by f(n), and sum over n ≥ 1, noting for each index n the
partitions generated on the left-hand side have smallest part sm(λ) = n. Swapping order of summation
on the left, then, takes f(n) 7→ f (sm(λ)). On the right-hand side, use the factorization (qn+1; q)∞ =
(q;q)∞
(q;q)n

to give the Lemma 4.3.

4.B. Proof of Theorem 1.3 and Corollaries 1.4 and 1.6

We now have all the ingredients to prove Theorem 1.3 and its corollaries.

Proof of Theorem 1.3. Consider the identity in Lemma 4.3 above. By hypothesis we assume a(∅) =

1.8 Letting χS(n) denote the indicator function for S ⊆ N, make the substitution f(n) 7→ χS(n)
f(n)

(hence the condition that f not vanish on S in the denominator) to give∑
sm(λ)∈S

(µP ∗ a)(λ)

f (sm(λ))
q|λ| = (q; q)∞

∑
n∈S

Ãn(q)qn

f(n) · (q; q)n
. (4.22)

As q → 1, if An(q)→ 1 for n ∈ S, then Ãn(q) = An(q)−1→ 0 in the summands on the right. Clearly
the right side vanishes as q → 1, which proves the first identity of the theorem.

Similarly, if An(q) → 1 + f(n) for n ∈ S, then Ãn(q) → f(n). In the limit, Ãn(q)
f(n) → 1 and the

right-hand side of (4.22) asymptotically equals FS(q), which approaches dS by Theorem 3.6. This is
the content of the second identity and its analytic condition.

Remark 4.4. The idea is to set f(n) = limq→1 Ãn(q) for n ∈ S, so the right-hand side becomes
FS(q) in the limit.

Proof of Corollary 1.4. We have by hypothesis An(q) = Ãn(q) + 1→ 0, which is equivalent to having
limq→1 Ãn(q) = −1. Then setting f(k) = −1 in (4.22) gives the corollary as q → 1.

Proof of Corollary 1.6. With a, f, g and b = ba,f,g as defined in Corollary 1.6, following Wang’s treat-
ment, apply the partition Möbius inversion formula (2.11) to the definition of ba,f,g(λ) in the statement
of the corollary to give

(µP ∗ a) (λ)
g (sm(λ))

f (sm(λ))
=
∑
δ|λ

µP(δ)ba,f,g(λ/δ) = (µP ∗ b)(λ). (4.23)

Divide through by g (sm(λ)) (thus the condition that it also is non-vanishing), multiply both sides by
q|λ|, sum over partitions λ with sm(λ) ∈ S, then compare the result with the An(q)→ 1 + f(n) case
of Theorem 1.3, to see

lim
q→1

∑
sm(λ)∈S

(µP ∗ b)(λ)

g (sm(λ))
q|λ| = lim

q→1

∑
sm(λ)∈S

(µP ∗ a)(λ)

f (sm(λ))
q|λ| = dS . (4.24)

8A slightly more general theorem follows from using arbitrary a(∅) in this proof.
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Proof of Corollary 1.7. With b(λ) = ba,−ϕ,−1(λ), Bn(q) as defined in Corollary 1.7, if Bn(q) → 0 on
S, the left-hand side of the resulting equation from (4.24) is the instance of Corollary 1.4 where a is
replaced by b = ba,−ϕ,−1. The right-hand equality of (4.24) then yields Corollary 1.7.

5. Further examples

In this section we give further examples of applications of the formulas and methods developed above.
We note in passing for any q-commensurate subset S, that L’Hospital’s rule yields infinitely many
formulas for limq→1 dS(q) by taking derivatives of the numerator and denominator of (3.14). Taking
antiderivatives instead, then applying L’Hospital’s rule, yields another arithmetic density relation for
q-commensurate subset S:

− lim
q→1

1

log(1− q)
∑
n∈S

qn

n
= dS , (5.25)

where log z denotes the principle branch of the complex logarithm function for z ∈ C.
The asymptotic (3.16) is suggestive of further, less trivial formulas to compute dS .

Example 5.1. Let µ(k) denote the classical Möbius function, and let f(k) be an arithmetic function
that is not identically zero. For S ⊆ N a q-commensurate subset, we have

lim
q→1

∑
n∈S

∑
k≥1(µ ∗ f)(k)qnk∑
k≥1 f(k)qk

= dS ,

where ∗ denotes classical Dirichlet convolution.

Proof. Take q 7→ qk in (3.16). Multiply both sides of the asymptotic equality by (µ ∗ f)(k) =∑
d|k µ(d)f(k/d), sum over k ≥ 1, and (noting the series are absolutely convergent) swap order of

summation on the left. Then as q → 1, well-known relations involving classical Lambert series and
Dirichlet convolution give

∑
n∈S

∑
k≥1

(µ ∗ f)(k)qnk ∼ dS ·
∑
k≥1

(µ ∗ f)(k)qk

1− qk
= dS ·

∑
k≥1

f(k)qk. (5.26)

Dividing through by
∑

k≥1 f(k)qk completes the proof.

Setting f(k) := 1 for all k ≥ 1, then Example 5.1 reduces to (3.15). Setting f(k) := σ0(k), the
classical divisor function such that (µ ∗ σ0)(k) = 1, yields a Lambert series calculation.

Example 5.2. For S ⊆ N a q-commensurate subset, we have

lim
q→1

∑
n∈S

qn

1−qn∑
n≥1

qn

1−qn
= dS .

Setting f(1) := 1, f(k) := 0 for k > 1, viz. the function f(k) :=
∑

d|k µ(d), gives another density
formula that resembles a power series analogue of the first sum in (3.13).

Example 5.3. For S ⊆ N a q-commensurate subset, we have

lim
q→1

∑
n∈S

∑
k≥1

µ(k)qnk = dS .
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Setting f(n) equal to the partition function p(n) in Example 5.1, gives an example that looks
more like the formulas in [OSW17] and the present work.

Example 5.4. Let p(n) denote the partition function. For S ⊆ N a q-commensurate subset, we have

lim
q→1

(q; q)∞
∑
n∈S

∑
k≥1

(µ ∗ p)(k)qnk = dS .

Beyond giving analogues of classical convolution theorems as in Section 2. above, and giving
formulas for expected value and arithmetic density, partition-theoretic convolution leads to other
interesting q-series relations. Here is a nice consequence of Lemma 4.1, making another connection
between partition convolution and modular forms.

Example 5.5. For z ∈ C, z 6= 0, set z`(λ) := z`(λ), z−`(λ) := z−`(λ). Recall the rank generating
function for strongly unimodal sequences, U(z, q) :=

∑
n≥0 q

n+1(−zq; q)n(−z−1q; q)n. Then

∑
λ∈P

(z` ∗ z−`)(λ)q|λ| = 1 +
z + z−1

(zq; q)∞(z−1q; q)∞
U(−z, q).

Remark 5.6. We note in Example 5.5 a close relation to the crank generating function of Andrews-
Garvan, C(z, q) = (q;q)∞

(zq;q)∞(z−1q;q)∞
(see [AnGa88]), viz.

∑
λ 6=∅

(z` ∗ z−`)(λ)q|λ| =
(z + z−1)C(z, q)U(−z, q)

(q; q)∞
. (5.27)

Proof. Take a = z`, b = z−` in Lemma 4.1 to yield∑
sm(λ)=n

(z` ∗ z−`)(λ)q|λ| =
zqn

(zqn; q)∞
· 1

(z−1qn; q)∞
+

1

(zqn; q)∞
· z−1qn

(z−1qn; q)∞

=
z + z−1

(zq; q)∞(z−1q; q)∞
· qn(zq; q)n−1(z−1q; q)n−1.

Summing over n ≥ 1, then adding 1 to both sides of the equation to adjoin the λ = ∅ term on the
left, and comparing with the definition of U(z, q), completes the proof.

The rank generating function for strongly unimodal sequences is connected to mock modular and
quantum modular forms (see e.g. [FOR13]). Example 5.5 itself, equal to (zq; q)−1

∞ (z−1q; q)−1
∞ by

(4.20), is modular for z a root of unity, up to multiplication by a rational power of q.
One may obtain different forms of partition convolution identities for dS from those in Theorem

1.3 as consequences of Lemma 4.3, such as the following pair of identities.

Example 5.7. For S ⊆ N a q-commensurate subset, a(λ) = `(λ) (partition length) and σ0(n) :=∑
d|n 1 as usual, we have

lim
q→1

∑
sm(λ)∈S(µP ∗ `)(λ)q|λ|∑

n≥1 σ0(n)qn
= dS .

For S ⊆ N a q-commensurate subset, a(λ) = sz(λ) := |λ| (partition size) and σ1(n) :=
∑

d|n d, we
have

lim
q→1

∑
sm(λ)∈S(µP ∗ sz)(λ)q|λ|∑

n≥1 σ1(n)qn
= dS .
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Proof. For the first identity, set a(λ) = `(λ) and f equal to the indicator function of S in Corollary
4.3. Then since `((n)) = 1, `(∅) = 0, and `(γ · (n))− `(γ) = 1 for any γ ∈ P, we have

Ãn(q) = 1 +
∑

sm(γ)≥n

q|γ| =
1

(qn; q)∞
=

(q; q)n−1

(q; q)∞
. (5.28)

Note from the right-hand side that Ãn(q) does not satisfy either of the analytic conditions of Theorem
1.3 as q → 1. However, by (5.28), it fits nicely into the right-hand side of Lemma 4.3:

∑
sm(λ)∈S

(µP ∗ `)(λ)q|λ| = (q; q)∞
∑
n∈S

Ãn(q)qn

(q; q)n
=
∑
n∈S

qn(q; q)n−1

(q; q)n
=
∑
n∈S

qn

1− qn
,

which reduces the corollary to a rewriting of Example 5.2 above. Dividing through by
∑

n≥1
qn

1−qn =∑
n≥1 σ0(n)qn and letting q → 1 completes the proof of the first identity.
We prove the second identity along very similar lines, setting a(λ) = sz(λ) = |λ|. Then since

|(n)| = n, |∅| = 0, and |γ · (n)| − |γ| = n for any γ ∈ P, in this case we compute

Ãn(q) = n+
∑

sm(γ)≥n

nq|γ| =
n

(qn; q)∞
=
n · (q; q)n−1

(q; q)∞
. (5.29)

Again, this Ãn(q) does not satisfy the conditions of Theorem 1.3; however, by (5.29), we have

∑
sm(λ)∈S

(µP ∗ sz)(λ)q|λ| = (q; q)∞
∑
n∈S

Ãn(q)qn

(q; q)n
=
∑
n∈S

nqn(q; q)n−1

(q; q)n
=
∑
n∈S

nqn

1− qn
.

Now, the right-hand side of these equalities can be rewritten∑
n∈S

nqn

1− qn
=
∑
n∈S

n
∑
k≥1

qnk =
∑
k≥1

∑
n∈S

nqnk. (5.30)

It follows from (3.16) that ∑
n∈S

nqn = q
d

dq

∑
n∈S

qn ∼ dS ·
q

(1− q)2
, (5.31)

which, combined with (5.30) above, gives∑
n∈S

nqn

1− qn
∼ dS ·

∑
k≥1

qk

(1− qk)2
= dS ·

∑
k≥1

kqk

1− qk
= dS ·

∑
k≥1

σ1(k)qk,

using well-known Lambert series identities in the right-hand equalities. Dividing through by
∑

n≥1 σ1(n)qn

and letting q → 1 gives the second identity.

Remark 5.8. Note that `(λ) and sz(λ) are the r = 0 and r = 1 cases, respectively, of

szr(λ) :=
∑
λi∈λ

λri ,

where the sum is over the parts λi ∈ N of partition λ.9 More generally, inserting szr(λ) for any
integer r ≥ 0 in place of `(λ) and sz(λ), the steps of the proof of Example 5.7 continue to hold, but
yielding (µP ∗ szr)(λ) in the numerator and σr(n) :=

∑
d|n d

r in the denominator.
9One might write szr(λ) = |λ|r to generalize the standard absolute value notation for partition size.
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Remark 5.9. Note from (5.31) and from the fact q
(1−q)2 =

∑
k≥1

ϕ(k)qk

1−qk =
∑

k≥1 kq
k, that

lim
q→1

∑
n∈S nq

n∑
n≥1 nq

n
= dS , (5.32)

which can also be found by applying L’Hospital’s rule to (3.14) as q → 1, as noted above.

We anticipate that formulas similar to those proved here will hold for sums over partitions with
parts restricted in other ways to subsets S such as in Corollary 3.7, as well as for q → ζ a root of unity
not equal to one, along the lines of those in [OSW17]; but pursuing this was outside of our present
aims. Using limiting techniques such as the Hardy-Ramanujan circle method [HR1918], techniques
of Watson [Wat37] and other methods from the universe of q-series and modular forms — as well as
limiting values of special functions at roots of unity — perhaps closed formulas can be computed for
dS beyond the cases of S being integers in arithmetic progressions, kth power-free integers, and other
subsets of N with arithmetic densities already explicitly known.

Acknowledgement. We wish to express our gratitude to A.V. Sills for computing the values in
Table 2, and to Paul Pollack for providing advice and references on Tauberian theorems. Moreover,
the second author thanks G.E. Andrews and Prof. Sills for discussions on convergence, divergence
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