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A Reinforcement Learning Based Algorithm to Find a

Triangular Graham Partition

Byungchan Kim

In memory of Ramanujan on occasion of the 100th anniversary of his death

Abstract. We introduce an algorithm to find a partition of n of the form

n = Tk1
+ Tk2

+ · · ·+ Tkm and 1 =
1

k1
+

1

k2
+ · · ·+

1

km
,

where Tk =
k(k+1)

2
is the k-th triangular number. The algorithm is based on a reinforcement learning algorithm (TD3) and a

genetic algorithm.

Keywords. Graham partition, triangular number, reinforcement learning, genetic algorithm

2010 Mathematics Subject Classification. 11P81 and 05A17

1. Introduction

Three striking integer partition congruences

p(5n+ 4) ≡ 0 (mod 5), p(7n+ 5) ≡ 0 (mod 7), p(11n+ 6) ≡ 0 (mod 11),

and the asymptotic formula on the number of integer partitions

p(n) ∼ 1

4n
√

3
e
π
√

2n
3

are probably two most well-known results among Ramanujan’s thousands of thousands results, where
p(n) is the number of integer partitions of n [An98]. Ramanujan got an inspiration by examining the
values of p(n) up to n = 200, which P.A. MacMahon calculated.

The goal of this note is to introduce an algorithm to find a partition of a special form and to give
a conjecture regarding the existence of such partitions. Using the algorithm, we make a table of such
partitions. We hope this table help researchers get insights as Ramanujan found surprising patterns
from MacMahon’s table on partition function values. We say that λ = (λ1, λ2, . . . , λ`) is an integer
partition of a positive integer n if

∑`
i=1 λi = n, where a different order of λi’s is considered the same

partition. Here, we call λi a part of the partition λ. As far as the author knows, Graham [Gr63]
first studied the partition with a specific condition on the reciprocal sum of parts. He showed that if
n ≥ 78, then there is a partition of n into distinct parts such that the reciprocal sum of the parts is
1. The authors in [KKLLP] call a partition λ a Graham partition if the reciprocal sum of its parts is
1. For example, 78 has a Graham partition with distinct parts:

78 = 2 + 6 + 8 + 10 + 12 + 40 and 1 =
1
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1

6
+

1

8
+

1
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.
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In this note, we consider how to find a partition of n into triangular numbers Tk = k(k+1)
2 satisfying

that

n = Tk1 + Tk2 + · · ·+ Tkm and 1 =
1

k1
+

1

k2
+ · · ·+ 1

km
.

We call a partition (Tk1 , Tk2 , . . . , Tkm) a triangular Graham partition if it satisfies the above condition.
For example, since

18 = 6 + 6 + 6 and 1 =
1

3
+

1

3
+

1

3
,

(6, 6, 6) is a triangular Graham partition of 18. Graham conjectured that there is a triangular Graham
partition of n for sufficiently large n. Actually, Graham [Gr63] made much stronger conjectures in
which triangular numbers can be replaced by any polygonal numbers. For the square numbers case,
Alekseyev [Al19] showed that if n ≥ 8543, then there is a partition of n into distinct squares such
that

n = k2
1 + k2

2 + · · ·+ k2
m and 1 =

1

k1
+

1

k2
+ · · ·+ 1

km
.

For example, there is such a partition of 49 as

49 = 22 + 32 + 62 and 1 =
1

2
+

1

3
+

1

6
.

This is the only progress toward Graham’s conjecture during the last few decades. In both proofs
for Graham’s result [Gr63] and for Alekseyev’s result [Al19], the key idea is using the induction via
recurrence relations among partitions. For example, if λ = (λ1, λ2, . . . , λ`) is a Graham partition of n,
then (2, 2λ1, 2λ2, . . . , 2λ`) is also a Graham partition of 2n+ 2. If the parts are squares, then one can
find a recurrence from the fact that four times of a square is again a square. For triangular numbers
(and other polygonal numbers beside squares), this trick does not work anymore. Moreover, since the
number of partitions of n into triangular numbers grows quickly, an exhaustive search for triangular
Graham partitions of an integer n eventually becomes infeasible.

A common approach in the theory of partitions is finding a generating function. Let Gt(n) be the
number of triangular Graham partitions of n. Then, we see that

∑
n≥0

Gt(n)qn = [z]

∞∏
n=1

1

1− z1/nqn(n+1)/2

= q + q6 + q18 + q23 + q30 + q40 + q47 + q54 + q66 + q75 + · · · ,

where [z]f(z, q) means the coefficient of z for the power series f(z, q) ∈ Z[[z, q]]. This generating
function is useful for first few hundreds of n, but it is not effective to find Gt(n) for a sufficiently large
n.

Here we take an alternative approach to find a triangular Graham partition, which is based on
reinforcement learning (RL). RL is a branch of machine learning (see Sutton and Barto’s excellent
guide [SuBa18] for details), which has recently achieved many remarkable successes, beating Go world
champions (Silver et. al. [Si16]), human level video game plays (Mnih et. al. [Mn15]), playing a
team play game (OpenAI [OpenAI]) to name few. Our algorithm is inspired by AlphaGo1[Si16] in the
following sense. To train a policy network, we use data from an exhaustive search like that AlphaGo
learns at first from human experts’ moves. Beside pre-generated data, the policy network learns from
experiences like that AlphaGo learns a better policy via self-plays. Most importantly, the trained
policy itself is not sufficient to find a desired partition, thus we employ another selection method, a
variant of the genetic algorithm. This is like that AlphaGo uses a Monte Carlo Tree Search to find
a better move in the game of Go. While there are at most 361 moves available in the game of Go,
when we find a partition of a given integer n, the number of possible parts depends on n. At least

1Not AlphaGo Zero[Si17], which do not use human generated data.
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theoretically, there is no upper bound on n, which means that the number of possible actions (choosing
an appropriate part) could be very large. Therefore, we employ a continuous control algorithm, twin
delayed deep deterministic policy gradient (TD3) algorithm [FHM18], which achieved the state-of-arts
performances in many simulated robot control tasks.

Using this algorithm, we try to find a triangular Graham partition of n from n = 500 to n = 1004.2

Interested readers can find the list of triangular Graham partitions at the below.

https://github.com/math-bkim/tri_GP_finder/blob/master/Tri_GP_Table.csv

These examples support the following effective version of Graham’s conjecture.

Conjecture 1. For all integers n ≥ 645, Gt(n) > 0.

Remark 1.1. Using an exhaustive search, we check that there is no triangular Graham partitions of
n if n ∈ {500, 503, 518, 529, 570, 589, 644}. During the search, we have used the single agent and the
same hyper-parameters (see Section 2). Our algorithm fails to find the following triangular Graham
partitions.

565 = 210 + 210 + 55 + 55 + 15 + 10 + 10,

653 = 300 + 55 + 55 + 55 + 55 + 55 + 36 + 21 + 21,

685 = 120 + 78 + 78 + 78 + 78 + 78 + 78 + 55 + 21 + 21,

685 = 210 + 210 + 210 + 15 + 15 + 15 + 10,

719 = 231 + 120 + 120 + 78 + 78 + 28 + 28 + 21 + 15,

774 = 78 + 78 + 78 + 78 + 78 + 78 + 78 + 78 + 78 + 36 + 36,

774 = 210 + 210 + 210 + 78 + 21 + 15 + 15 + 15,

774 = 465 + 120 + 120 + 21 + 21 + 21 + 6.

It seems that our algorithm is struggling if a desired partition has many repeated parts.

As a fan of Ramanujan, we should mention that our algorithm can find a triangular Graham
partition of 1729:

1729 = 1176 + 210 + 136 + 78 + 36 + 36 + 21 + 21 + 15,

1 =
1
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The rest of the note is organized as follows. In Section 2, we introduce basic concepts of reinforce-
ment learning and sketch briefly how our algorithm works. In Section 3, we remark characteristics of
our algorithm and propose mathematical questions derived from our search.

2. Algorithm

In this section, we explain the structure of the policy network, the training method, and a variant of
the genetic algorithm.

2.A. Reinforcement Learning

RL is a branch of machine learning in which the agent learns how to act to achieve a task goal while
interacting with the environment. Mathematically, this learning process is modelled by a Markov
Decision Process (MDP) consisting of the set of states, S, the set of actions, A, the reward signal
r : S × A → R, the transition probability p(st+1 = s′|st = s, at = a), and the discount factor
γ ∈ [0, 1]. Roughly speaking, the goal of the agent is to find an optimal policy π : S → A to maximize
the expected return E[

∑∞
i=1 γ

i−1r(si, ai)|ai = π(si)]. There have been extensive studies how to find
an optimal policy and here we use a policy gradient method as our state-action space is quite huge.

21004 is pronounced same with “angel” in Korean. We hope readers get intuition from an angel like Ramanujan
dreamed the goddess Namakkal.

https://github.com/math-bkim/tri_GP_finder/blob/master/Tri_GP_Table.csv
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2.B. Policy network

To limit the number of possible actions reasonably, we set the state as two-dimensional (w1, w2),
where w1 ∈ Q represents the distance toward 0 and w2 represents the sum of reciprocals. If we want
to find a triangular Graham partition of n, we set the initial state (n/100, 0). At the state (w1, w2),
the policy selects a triangular number less than or equal to 100w1. If the policy selects Tk, then the
new state is (w1 − Tk/100, w2 + 1/k). The policy repeats this step until w1 <

3
100 or w2 ≥ 1. For

example, if we want the policy finds a triangular Graham partition of 18, then the first state is ( 18
100 , 0).

Our policy selects a triangular number which is most likely to being a part of a triangular Graham
partition according to the policy’s evaluation. Say, the policy selects 6. Then, the next state becomes
(18−6

100 , 0 + 1
3). Once the policy receives a new state, then it selects another triangular number. If it

selects 6 again, then the next state is (18−6−6
100 , 0 + 1

3 + 1
3). If the policy selects a triangular number 6

at this state, then the policy succeeds to find a Graham partition. Otherwise, it goes to a new state.
Now we explain how the policy network chooses a triangular number. To make the output of the

network is in the same range regardless of the size of s1, we choose tanh as the output activation
function, so the image of π is between −1 and 1. We partition the interval [−1, 1] uniformly into
the number of triangular numbers between 3 and 100w1. If the value of tanh is in the i-th interval,
then the policy chooses i+ 1-th triangular number. This is because we do not want to select the first
triangular number T1 = 1, which never appears in a triangular Graham partition of n > 1.

To reflect the above considerations, we construct the policy network as follows. The input dimen-
sion is 2 and it has two hidden layers with 300 neurones with rectified linear unit activation functions,
and the output layer is 1-dimensional with the hyperbolic tangent activation function.

2.C. Training Method

To train the policy network, we use the TD3 algorithm. To this end, we need to define the reward
signal. Let (w1, w2) be the input state and (w∗1, w

∗
2) be the output state. Recall that if π(w1, w2) = Tk,

then w∗1 = w1 − Tk/100 and w∗2 = w2 + 1
k . The reward signal r is defined by

r(w∗1, w
∗
2) =

0.5

1 + |w∗1|
+

0.5

1 + |1− w∗2|
+ 0.5χ(w∗1 = 0) + 2χ(w∗2 = 1),

where χ(T ) = 1 if the statement T is true, 0 otherwise.
Let D be the set of triangular Graham partitions of n up to n = 450, which we can find by an

exhaustive search. During the training, we set the initial state either a random portion of an element
in D with the probability 0.1 or (n/100, 0) for a random integer n between n = 100 and n = 700 with
the probability 0.9. Other hyper-parameters for the TD3 algorithm are as follows.

• the number of training episodes : 2× 105

• the size of the replay buffer : 105 (steps)

• the size of a mini batch : 100

• training starts from the time step : 103

• γ (a discount factor) : 0.99

• τ (a soft update rate for the target network) : 0.01

• the exploration noise factor : 0.3

• the policy noise factor : 0.2

• the noice clip factor : 0.5

• the policy update frequency : 3

• the actor learning rate : 5× 10−4

• the critic learning rate : 1× 10−3
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Figure 1: Fitness of partitions generated by the policy.

We use PyTorch for the training process, and we use a code based on the TD3 paper author’s
code [FHM].

Since there are too many partitions of n into triangular numbers, It is hard for the agent to
get an experience which succeeds to find a triangular Graham partitions. For example, there are
3, 977, 459, 451 partitions of 590 into triangular numbers. Among these partitions, there is only one
triangular Graham partition. Therefore, the training number 2 × 106 is very small compared to the
whole search space. Thus, it is not surprising that the performance of the policy network is far from
satisfactory. Figure 1 shows the performance of the policy network for target integers n from n = 500
to n = 1000.

In Figure 1, the fitness of the partition λ = (Tk1 , Tk2 , . . . , Tkm) is defined by

fitness(λ) =
50n

n+ |n−
∑m

i=1 Tki |
+

50

1 +
∣∣∣1−∑m

i=1
1
ki

∣∣∣ , (2.1)

where n is a desired weight. If the partition λ is a triangular Graham partition of n, then fitness(λ)
is 100. We observe that the fitness becomes larger after the training even for un-trained cases, i.e.
n > 700 cases. This shows that the agent has obtained some generality. However, the fitness are still
far from the perfect. To overcome this issue, we use a genetic algorithm to improve the fitness of the
partition generated by the policy network.

2.D. Genetic Algorithm

The Genetic Algorithm is a widely used global optimization algorithm inspired by the natural selection
in the evolution. A population of chromes evolves via cross-overs and mutations and the chromes fit
well in the environment get more chances to spread springs. In our case, the chromes are partitions
generated by the policy network. As generations span, we desire one of these springs to become a
triangular Graham partition. We use the policy network not only to generate the initial population
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Figure 2: Fitness of partitions generated by the policy and the genetic algorithm after 5 generations.

of chromes, but also to cross-over two chromes (partitions) and to mutate the chromes (partitions).
For a cross-over step, we select a length of parts from one of its parent, and use the policy network
to get a new partition from the selected parts. The mutation step works similarly. We select a
random portion of the partition and get a new partition using the policy network. Since we use
the deterministic policy, we use an exploration rate. To encourage explorations, we increases the
exploration rate and the mutation rate if we do not get a better partition for a given period of
generations. Interested readers can find the code and running examples at the below.3

https://github.com/math-bkim/tri_GP_finder/

By incorporating a genetic algorithm, the predicted partition is more like a Graham partition. In
Figure 2, we see that the resulting fitness after 5 generations are near 100. Since we require that the
fitness is exactly 100, it usually takes 20 to 200 generations to get a desired partition. By the nature
of a genetic algorithm, our algorithm is not deterministic and thus the required number of generations
until we find a Graham partition varies for each trial.

3. Concluding remark

One nice feature of our algorithm is that we can set a list of parts which we desire to be contained
in a Graham partition. If we give some parts, then the algorithm tries to find a Graham partition
containing them. For the triangular partition case, there are very few Graham partitions of small
weights, thus it is unlikely that there is a Graham partition with desired parts. However, for the
ordinary partition case, there are relatively much more Graham partitions, so there is a higher chance

3In the actual application of a genetic algorithm, we put more weights on the condition for the reciprocal sum as it
is harder to achieve. We use the same policy network and hyper-parameters during the search: the initial population
500 and the initial mutation rate 0.1.

https://github.com/math-bkim/tri_GP_finder/
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to succeed. For example, the below4 is a Graham partition of 1729 with that 1200 and 300 are given
as initial parts.

1729 = 1200 + 300 + 90 + 54 + 30 + 27 + 16 + 6 + 3 + 3

1 =
1

1200
+

1

300
+

1

90
+

1
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+

1
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+

1
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+

1
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+
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+

1

3
+

1

3
.

We also remark that we may find a different partition if we equip with a different policy.5 For
example, the below are triangular Graham partitions of 1729 from other policy networks:

1729 = 300 + 300 + 300 + 171 + 136 + 136 + 120 + 78 + 78 + 55 + 45 + 10,

1729 = 1176 + 136 + 105 + 78 + 78 + 36 + 36 + 28 + 28 + 28.

Though our algorithm has its own interests and is able to find a desired partition for a wide range
of integers, it is surely far from the best effective algorithm. In particular, the algorithm could be
much slower than an exhaustive search for small integers. We hope one can find a better algorithm
whether it is machine learning based or not.

It would be very interesting if one can find a one-variable generating function for Gt(n) and if one
can use the one variable generating function to determine how fast Gt(n) grows. In fact, we do not
know the one-variable generating function for the number of Graham partitions of n, say G(n),

∑
n≥0

G(n)qn = [z]
∞∏
n=1

1

1− z1/nqn

= q + q4 + q9 + q10 + q11 + q16 + q17 + q18 + q20 + · · · .

By employing the inductive method we explain in the introduction, it is not hard to see that G(n) > 0
for all integers n > 23. However, it is still desired to find a better expression for the generating function
and to investigate how fast G(n) grows.

Acknowledgement. The author appreciates the anonymous referee for his or her detailed comments
on an earlier version of the paper.
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