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Abstract. In this paper, we study the one level density of low-lying zeros of a family of quadratic Hecke L-functions to prime

moduli over the Gaussian field under the generalized Riemann hypothesis (GRH) and the ratios conjecture. As a corollary, we

deduce that at least 75% of the members of this family do not vanish at the central point under GRH.
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1. Introduction

The low-lying zeros of families of L-functions have important applications in problems such as deter-
mining the size of the Mordell-Weil groups of elliptic curves and the size of class numbers of imaginary
quadratic number fields. For this reason, much work (see [FI03, ILS00, DM09, HM07, RR11, Ro01,
BZ08, H-B04, Br92, Mi04, Yo05a, Gü05a, Du06, HR03]) has been done towards the density conjecture
of N. Katz and P. Sarnak [KS99a, KS99b], which relates the distribution of zeros near the central
point of a family of L-functions to the eigenvalues near 1 of a corresponding classical compact group.

In this paper, we focus on L-functions attached to quadratic characters. For the family of
quadratic Dirichlet L-functions, this is initiated by A. E. Özlük and C. Snyder in [ÖS99], who studied
the 1-level density of low-lying zeros of the family. Subsequent investigations were carried out in
[Ga14, Ru01, Mi08], in which the cardinalities of families considered all have positive densities in the
set of all such L-functions. For these families, the density conjecture is verified when the Fourier
transforms of the test functions are supported in (−2, 2) if one assumes the Generalized Riemann
Hypothesis (GRH) and the underlying symmetry of such families is unitary symplectic (USp).

Recently, J. C. Andrade and S. Baluyot [AB20] studied the 1-level density of quadratic Dirichlet
L-functions over prime moduli. This is a sparse family in the sense that its cardinality has density 0
in the set of all such L-functions. It is shown in [AB20] that the symmetry of this family is also USp
and their result supports the density conjecture when the Fourier transforms of the test functions are
supported in (−1, 1) under GRH.

It is then interesting to study the 1-level density of various families of L-functions of sparse sets.
Motivated by the above result of Andrade and Baluyot, we investigate in this paper the 1-level density
of quadratic Hecke L-functions in the Gaussian field Q(i) over prime moduli. Previously, we studied
in [GZ20] the same family but over a set of positive density in the set of all such L-functions.

Throughout the paper, we denote by K = Q(i) the Gaussian field and OK = Z[i] the ring of
integers in K. Note that in OK , every ideal co-prime to 2 has a unique generator congruent to 1
modulo (1 + i)3. Such a generator is called primary.
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The quadratic symbol
( ·
·
)

is defined in [GZ20, Sect. 2.1] and we shall write χn for
(
n
·
)
. It is also

shown in [GZ20, Section 2.1] that the symbol χ(1+i)5c defines a primitive quadratic Hecke character
modulo (1 + i)5c of trivial infinite type when c ∈ OK is odd and square-free. Here we recall that a
Hecke character χ of K is said to be of trivial infinite type if its component at infinite places of K
is trivial and we say that any c ∈ OK is odd if (c, 2) = 1 and c is square-free if the ideal (c) is not
divisible by the square of any prime ideal.

Throughout the paper, we reserve the symbol $ for primes with ($, 1 + i) = 1. This means that
($) is a prime ideal in OK . We would like to consider the family of L-functions consisting of L(s, χ$)
for $ being prime . Even though this is a natural choice, we consider instead in this paper the family

F =
{
L(s, χ(1+i)5$) : $ primary

}
(1.1)

since the modulus of χ(1+i)5$ is easier to describe. We remark here that our treatment for the above
family certainly carries over to the family {L(s, χ$)} as well.

Let χ = χn for some n ∈ OK , we write L(s, χ) for the corresponding Hecke L-function and denote
the non-trivial zeroes of L(s, χ) by 1

2 + iγχ,j . Without assuming GRH (so that γχ,j is not necessarily
real), we order them as

. . . ≤ <γχ,−2 ≤ <γχ,−1 < 0 ≤ <γχ,1 ≤ <γχ,2 ≤ . . . .

We further normalize the zeros by letting

γ̃χ,j =
γχ,j
2π

logX

and define, for an even Schwartz class function φ, the 1-level density for the single L-function L(s, χ)
as the sum

S(χ, φ) =
∑
j

φ(γ̃χ,j).

Fix a non-negative and not identically zero Schwartz function w(t) which is compactly supported
when restricted to (0,∞). The 1-level density of the family F is the limit, as X →∞, of the sum

D(φ;w,X) =
1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
S(χ(1+i)5$, φ), (1.2)

where we use the expression $ ≡ 1 mod (1 + i)3 to indicate that ω ∈ OK is primary and we denote
by N(n) the norm of any element n ∈ OK . Moreover W (X) is the corresponding total weight given
by

W (X) =
∑

$≡1 mod (1+i)3

w

(
N($)

X

)
. (1.3)

We point out here that our formulation of the 1-level density is the more commonly used one in
the literature, while in [AB20], the 1-level density is formed using a form factor, as initially used by
Özlük and Snyder in [ÖS99]. Now we state our result on the one level density as follows.

Theorem 1.1. Assume the truth of GRH for all the L-functions in F . Let w(t) be a not identically
zero and non-negative Schwartz function. Suppose that when restricted to (0,∞), w has compact
support. Further, let φ(x) be an even Schwartz function whose Fourier transform φ̂(u) has compact
support in (−1, 1). Then,

lim
X→+∞

D(φ;w,X) =

∫
R

φ(x)WUSp(x)dx, where WUSp(x) = 1− sin(2πx)

2πx
. (1.4)
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First we note that the compact support of w on (0,∞) is required for technical ease (see, among
other things, the discussion around (2.17)). Moreover, this condition enables us to use Lemma 2.1
directly.

We further remark here that the kernel of the integral WUSp in (1.4) shows that the symmetry
type of this family of quadratic Hecke L-functions is unitary symplectic and Theorem 1.1 implies that
under GRH, the density conjecture is valid for this family when the Fourier transforms of the test
functions are supported in (−1, 1). The reason that our result only holds for φ̂(u) being supported in
(−1, 1) in contrast to (−2, 2) obtained in [Ga14, GZ20] for families of quadratic L-functions having
positive densities in the set of all such L-functions is that one is not able to apply Poisson summation
to convert certain character sums to dual sums to obtain a better estimate. We are therefore bound
to deploy only classical methods to estimate these sums which leads to a smaller admissible range of
support for φ̂. Assuming the truth of GRH meanwhile helps us better control the error terms coming
from certain sums over primes.

The density conjecture can be regarded as an assertion on the main term behavior of the n-
level density of low-lying zeros of families of L-functions for all n. Besides the main term, one can
also study the lower order terms of these n-level densities and computations as such are done in
[Yo05b, RR10, Mi09]. In this direction, the L-functions ratios conjecture of J. B. Conrey, D. W.
Farmer and M. R. Zirnbauer in [CFZ08, Section 5] has been shown to be a very useful tool. For var-
ious families of quadratic Dirichlet L-functions, ratios conjecture has been applied to predict precise
lower order terms of the one level density in [CS07, FPS17, AB20].

In Section 4., we apply the ratios conjecture to investigate the lower-order terms of the one level
density of low-lying zeros for the family F given in (1.1). To state our result, we define for α, γ ∈ C,

A(α, γ) =
21+α+γ − 2γ−α

21+α+γ − 1
and Aα(r, r) =

∂

∂α
A(α, γ)

∣∣∣∣
α=γ=r

. (1.5)

Then we have the following asymptotic expression for D(φ;w,X).

Theorem 1.2. Assume the truth of GRH and Conjecture 4.B. (the ratios conjecture) for F . Let
w(t) and φ(x) be as in Theorem 1.1. Then for any ε > 0,

D(φ;w,X) =
1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
I($) +Oε

(
X−1/2+ε

)
, (1.6)

where

I($) =
1

2π

∫
R

(
2
ζ ′K(1 + 2it)

ζK(1 + 2it)
+ 2Aα(it, it) + log

(
32N($)

π2

)
+

Γ′

Γ

(
1

2
− it

)
+

Γ′

Γ

(
1

2
+ it

)

− 8

π
X$

(
1

2
+ it

)
ζK(1− 2it)A(−it, it)

)
φ

(
t logX

2π

)
dt.

One certainly expects that the result given in Theorem 1.2 implies the assertion of Theorem 1.1.
We show this indeed is the case in Section 4. by adapting the approach in [FPS18].

One important application of the density conjecture is to obtain a non-vanishing result for the
families of L-functions at the central point. It is a conjecture that goes back to S. Chowla [Ch65]
that L(1/2, χ) 6= 0 for all primitive Dirichlet characters χ. It is shown in [AB20, Theorem 3] that
at least 75% of the family of quadratic Dirichlet L-functions to prime moduli does not vanish at the
central point. Analogous to this, the following corollary shows that exactly the same percentage of
the family of quadratic Hecke L-functions to prime moduli does not vanish at the central point.
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Corollary 1.3. Assume GRH and that 1/2 is a zero of L
(
s, χ(1+i)5$

)
of order m$ ≥ 0. As X →∞,

∑
$≡1 mod (1+i)3

m$w

(
N($)

X

)
≤
(

1

4
+ oX(1)

)
W (X). (1.7)

Moreover, as X →∞

#{N($) ≤ X : L
(
1/2, χ(1+i)5$

)
6= 0} ≥

(
3

4
+ oX(1)

)
X

logX
. (1.8)

As the proof of (1.7) is standard (see that of [BF18, Corollary 2.1]), we omit it here and we note
that (1.7) implies that ∑

$≡1 mod (1+i)3

L
(

1/2,χ(1+i)5$

)
6=0

w

(
N($)

X

)
≥
(

3

4
+ oX(1)

)
W (X).

By taking w(t) to be any even Schwarz function whose support is in (0, 1) when restricted on the
positive real axis such that 0 ≤ w(t) ≤ 1 and w(t) = 1 for t ∈ (ε, 1 − ε) and applying (2.14) below,
we deduce from the above that

#{N($) ≤ X : L
(
1/2, χ(1+i)5$

)
6= 0} ≥

(
3

4
+ oX(1)

)
(1− 2ε)

X

logX
.

Letting ε→ 0+ on both sides above, we see that (1.8) follows.

2. Preliminaries

2.A. The Explicit Formula

Our proof of Theorem 1.1 starts with the following explicit formula, which converts a sum over zeros
of an L-function to a sum over primes. Note that our weight function w is compactly supported on
(0,∞). Thus the following lemma is sufficient for our purpose.

Lemma 2.1. Let φ(x) be an even Schwartz function whose Fourier transform φ̂(u) is compactly
supported. For any square-free c ∈ OK , N(c) ≤ X,

S(χc, φ) = φ̂(0)
logN(c)

logX
− 1

2

∞∫
−∞

φ̂(u)du− 2S(χc, X; φ̂) +O

(
log log 3X

logX

)
,

with the implicit constant depending on φ. Here

S(χc, X; φ̂) =
∑

$≡1 mod (1+i)3

N($)≤X

χc($) logN($)√
N($)

φ̂

(
logN($)

logX

)
.

We omit the proof of Lemma 2.1 here since it is standard and follows by combining the proof of
[Gü05b, Lemma 4.1] and [GZ20, Lemma 2.4].
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2.B. Conditional Estimates on GRH

In this section, we include two lemmas that are obtained by assuming the truth of GRH. The first is
about sums over primes.

Lemma 2.2. Assume the truth of GRH for L(s, χ) with Hecke character χ (mod m) of trivial infinite
type. Then for y ≥ 1,

S(y, χ) =
∑

$≡1 mod (1+i)3

N($)≤y

χ($) logN($) = δχy +O
(
y1/2 log2(2y) log(2N(m))

)
, (2.9)

where δχ = 1 if and only if χ is principal and δχ = 0 otherwise. Moreover,∑
$≡1 mod (1+i)3

N($)≤y

logN($)

N($)
= log y +O(1). (2.10)

Proof. The formula in (2.9) follows directly from [IK04, Theorem 5.15] and (2.10) follows from (2.9)
by taking χ to be the principal character and using partial summation.

We recall that the Mellin transform of w is given by

w̃(s) =

∞∫
0

w(t)ts
dt

t
. (2.11)

Integrating by parts implies that for <(s) < 1 and any integer ν ≥ 1,

w̃(s)�ν
1

|s||s− 1|ν−1
. (2.12)

Let ζK(s) denote the Dedekind zeta function of K and ΛK(n) the von Mangoldt function on
K, which is the coefficient of N(n)−s in the Dirichlet series of ζ

′
K(s)/ζK(s). Our next result gives

estimates of various sums needed in this paper.

Lemma 2.3. Assume GRH. For any even, not identically zero and non-negative Schwartz function
w which is compactly supported when restricted to (0,∞), let W (X) be given as in (1.3) for X ≥ 1.
Let z ∈ C be such that |z| ≤ 1 and that 0 ≤ <(z) ≤ 1

2 . Then for any ε > 0,∑
$≡1 mod (1+i)3

w

(
N($)

X

)
logN($) = w̃(1)X +O

(
X1/2+ε

)
, (2.13)

W (X) = w̃(1)
X

logX
+O

(
X

(logX)2

)
, (2.14)

and
1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
N($)−z = X−z +O

(
|z|2 logX +

1

logX

)
. (2.15)

Proof. We prove (2.13) first. Due to the rapid decay of w given in (2.12), we have that

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
logN($) =

∑
(n)

w

(
N(n)

X

)
ΛK(n) +O

 ∑
($)

N($)j≤X1+ε, j≥2

w

(
N($j)

X

)
logN($)

 ,
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where we write
∑

(n) and
∑

($) for the sum over non-zero integral and prime ideals of OK , respectively.

Note that ∑
($), j≥2

N($)j≤X1+ε

w

(
N($j)

X

)
logN($)� Xε

∑
($)

N($)≤X1/2+ε

logN($)� X1/2+ε, (2.16)

where we have used the bound w(u)� u−ε, as w is a Schwartz function.

Now we apply Mellin inversion to get∑
(n)

w

(
N(n)

X

)
ΛK(n) =− 1

2πi

∫
(2)

ζ ′K(s)

ζK(s)
w̃(s)Xsds.

We evaluate the above integral by shifting the line of integration to <(s) = 1/2+ε. The only pole
we encounter is at s = 1 with residue −w̃(1)X. The integration on <(s) = 1/2 + ε can be estimated
to be O(X1/2+ε) using (2.12) and the following estimate (see [IK04, Theorem 5.17]) for ζ ′K(s)/ζK(s)
when <(s) ≥ 1/2 + ε:

ζ ′K(s)

ζK(s)
� log(1 + |s|).

The expression given in (2.13) now follows.

Next, to obtain (2.14), we may assume that X is large and apply (2.9) and partial summation to
see that

W (X) =

∞∫
2−

w
( u
X

) 1

log u
d
( ∑
$≡1 mod (1+i)3

N($)≤u

logN($)
)

=

∞∫
2−

w
( u
X

) 1

log u
d
(
u+O

(
u1/2 log2(2u)

))

=

∞∫
2−

w
( u
X

) 1

log u
du+O(X1/2+ε) =

∞∫
(2/X)−

w (u)
X

log u+ logX
du+O(X1/2+ε)

=

M∫
m

w (u)
X

log u+ logX
du+O(X1/2+ε),

(2.17)

where [m,M ] ⊂ (0,∞) is the support of w. Note that m and M are independent of X. Now we use
the Taylor expansion of 1/(log u+ logX) and then extend the range of integration to (0,∞) to get

W (X) = w̃(1)
X

logX
+O

(
X

(logX)2

)
.

It therefore remains to establish (2.15). For this, we set

f(z) =
∑

$≡1 mod (1+i)3

w

(
N($)

X

)
N($)−z.

Then we have

f ′(z) = −
∑

$≡1 mod (1+i)3

w

(
N($)

X

)
(logN($))N($)−z = −

∑
(n)

w

(
N(n)

X

)
ΛK(n)N(n)−z +O(X1/2+ε),
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where the last estimation above follows from (2.16), uniformly for z with <z ≥ 0.

Now we apply Mellin inversion to get∑
(n)

w

(
N(n)

X

)
ΛK(n)N(n)−z =− 1

2πi

∫
(2)

ζ ′K(s+ z)

ζK(s+ z)
w̃(s)Xsds.

We evaluate the above integral by shifting the line of integration to <(s) = 1/2− <(z) + ε. The
only pole we encounter is at s = 1− z with residue w̃(1− z)X1−z. Thus we obtain that

f ′(z) = w̃(1− z)X1−z +O
(
X1/2+ε

)
.

Note that we have

w̃(1− z)− w̃(1) =

−z∫
0

w̃′(1 + s)ds,

where the integral takes the path being the line segment connecting 0 and −z. Based on our conditions
on z and the definition of w̃, one sees that the function w̃′(1 + s) is uniformly bounded on the path
so that we deduce that w̃(1− z) = w̃(1) +O(|z|). As X1−z � X for <z ≥ 0, we conclude that

f ′(z) = w̃(1)X1−z +O
(
|z|X +X1/2+ε

)
.

It follows from this that

f(z)− f(0) =

z∫
0

f ′(v)dv = w̃(1)
X1−z

logX
− w̃(1)

X

logX
+O

(
|z|2X +X1/2+ε

)
.

Note that we have f(0) = W (X) so that we deduce from the above and (2.14) that

f(z) = w̃(1)
X1−z

logX
+O

(
|z|2X +

X

(logX)2
+X1/2+ε

)
.

Combining this with (2.14) again for the evaluation of W (X), we readily deduce (2.15) and this
completes the proof of the lemma.

2.C. The approximate functional equation

Let χ be a primitive quadratic Hecke character modulo m of trivial infinite type defined on OK .
As shown by E. Hecke, L(s, χ) admits analytic continuation to an entire function and satisfies the
functional equation ([IK04, Theorem 3.8])

Λ(s, χ) = W (χ)(N(m))−1/2Λ(1− s, χ), (2.18)

where |W (χ)| = (N(m))1/2 and

Λ(s, χ) = (|DK |N(m))s/2(2π)−sΓ(s)L(s, χ).

Let G(s) be any even function which is holomorphic and bounded in the strip −4 < <(s) < 4
satisfying G(0) = 1. For s ∈ C, we evaluate the integral

1

2πi

∫
(2)

Λ(u+ s, χ)G(u)
( x√
|DK |N(m)

)udu

u
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by shifting the line of integration to <s = −2 and proceed in a manner similar to [Ga20a, Section
2.5] to see that if

W (χ) = N(m)1/2, (2.19)

then for any x > 1,

L(s, χ) =
∑

06=A⊂OK

χ(A)

N(A)s
Vs

(
2πN(A)

x

)

+

(
(2π)2

|DK |N(m)

)s−1/2
Γ(1− s)

Γ(s)

∑
0 6=A⊂OK

χ(A)

N(A)1−sV1−s

(
2πN(A)x

|DK |N(m)

)
.

(2.20)

where

Vs (x) =
1

2πi

∫
(2)

Γ(s+ u)

Γ(s)

x−u

u
G(u) du. (2.21)

We note that it is shown in [Ga20b, Lemma 2.2] that (2.19) holds if χ = χ(1+i)5c for any odd,
square-free c ∈ OK . Thus the approximate functional equation (2.20) is valid for L(s, χ(1+i)5c).

3. Proof of Theorem 1.1

Note that φ̂(u) is smooth with support contained in (−1 + ε, 1 − ε) for some 0 < ε < 1. We set
Y = X1−ε so that φ̂ (logN($)/ logX) 6= 0 only when N($) ≤ Y . Now we apply Lemma 2.1 to sum
S(χ(1+i)5$, X; φ̂) over the primary primes $ against the weight function w to arrive at

D(φ;w,X) =
φ̂(0)

W (X) logX

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
logN($)

− 1

2

∞∫
−∞

φ̂(u)du− 2

W (X)
S(X,Y ;φ,w) +O

(
log log 3X

logX

)

=

∞∫
−∞

φ(t)dt− 1

2

∞∫
−∞

φ̂(u)du− 2

W (X)
S(X,Y ;φ,w) +O

(
log log 3X

logX

)
,

(3.22)

where the last estimate follows from (2.13), (2.14) and

S(X,Y ;φ,w) =
∑

$≡1 mod (1+i)3

∑
$′≡1 mod (1+i)3

N($′)≤Y

χ(1+i)5$($′) logN($′)√
N($′)

φ̂

(
logN($′)

logX

)
w

(
N($)

X

)
.

We note that by the quadratic reciprocity ([GZ20, (2.1)]) for Hecke characters, we have χ$($′) =
χ$′($) when $,$′ are both primary. As it is shown in [GZ19, Sect. 2.1] that χ$′ is a Hecke
character modulo 16$′ of trivial infinite type, we can apply (2.9) and partial summation by noting
that logN($′)� logX to see that∑

$≡1 mod (1+i)3

χ$($′)w

(
N($)

X

)
� X1/2+ε/4.
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It follows that

S(X,Y ;φ,w) =
∑

$′≡1 mod (1+i)3

N($′)≤Y

logN($′)χ(1+i)5($′)√
N($′)

φ̂

(
logN($′)

logX

) ∑
$≡1 mod (1+i)3

χ$($′)w

(
N($)

X

)

�X1/2+ε/4
∑

$′≡1 mod (1+i)3

N($′)≤Y

logN($′)√
N($′)

� X1/2+ε/4Y 1/2 log Y,

where the last bound follows from (2.10) and partial summation.

We then deduce that when Y = X1−ε, S(X,Y ;φ,w) = O(X1−ε) = o(W (X)) by Lemma 2.3. By
taking X →∞ on both sides of (3.22), we obtain (1.4) and this completes the proof of Theorem 1.1.

4. One level density via ratios conjecture

4.A. The Ratios Conjecture for F

In this section, we follow the recipe described in [CFZ08] to develop heuristically the appropriate
statement of the ratios conjecture for the family F given in (1.1). More precisely, we want to study
the asymptotic behavior of

R(α, γ) =
1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
L
(
1/2 + α, χ(1+i)5$

)
L
(
1/2 + γ, χ(1+i)5$

) . (4.23)

Consider the approximate functional equation (2.20). Note that the function Vs(t) given in (2.21)
is essentially 1 when |t| ≤ 1 and decreases exponentially when |t| > 1 for fixed s satisfying <(s) ≥ 1/4
(this can be shown similar to [So00, Lemma 2.1]). Thus it stands to reason that for any odd, square-
free c ∈ OK ,

L
(
s, χ(1+i)5c

)
≈

∑
N(n)≤x

χ(1+i)5c(n)

N(n)s
+Xc(s)

∑
N(n)≤y

χ(1+i)5c(n)

N(n)1−s , (4.24)

where xy = N((1 + i)5c) and

Xc(s) =
Γ (1− s)

Γ (s)

(
π2

32N(c)

)s−1/2

. (4.25)

On the other hand, by writing µK for the Möbius function on K, we have for <(s) > 1,

1

L(s, χ(1+i)5c)
=
∑
m6=0

µK(m)χ(1+i)5c(m)

N(m)s
, (4.26)

where the summation above is over all non-zero ideals m of OK .

Substituting both (4.24) and (4.26) into (4.23), we see that

R(α, γ) ∼ R1(α, γ) +R2(α, γ),

where

R1(α, γ) =
1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)∑
m,n

µK(m)χ(1+i)5$(nm)

N(m)1/2+γN(n)1/2+α
,
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and

R2(α, γ) =
1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
X$

(
1

2
+ α

)∑
m,n

µK(m)χ(1+i)5$(nm)

N(m)1/2+γN(n)1/2−α .

We expect to get the main contributions to R1, R2 when nm is an odd square. In that case, we
have

1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
χ(1+i)5$(nm) ∼ 1.

It follows that

R1(α, γ) ∼ R̃1(α, γ) =
∑

nm=odd �

µK(m)

N(m)1/2+γN(n)1/2+α
,

where we write � for a perfect square. We deduce by computing Euler products that

R̃1(α, γ) =
ζK(1 + 2α)

ζK(1 + α+ γ)
A(α, γ),

where A(α, γ) is given in (1.5).

Similarly, we have

R2(α, γ) ∼ R̃2(α, γ) =
1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
X$

(
1

2
+ α

)
R̃1(−α, γ).

We now summarize our discussions above in the following version of the ratios conjecture.

Conjecture 4.B.. Let ε > 0 and let w be an even and nonnegative Schwartz test function on R
which is not identically zero. Suppose that the complex numbers α and γ satisfy |<(α)| < 1/4,
(logX)−1 � <(γ) < 1/4 and =(α), =(γ)� X1−ε. Then we have that

1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
L(1/2 + α, χ(1+i)5$)

L(1/2 + γ, χ(1+i)5$)
=

ζK(1 + 2α)

ζK(1 + α+ γ)
A(α, γ)

+
1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
X$

(
1

2
+ α

)
ζK(1− 2α)

ζK(1− α+ γ)
A(−α, γ)

+Oε
(
X−1/2+ε

)
,

(4.27)

where A(α, γ) is defined in (1.5) and X$(s) is defined in (4.25).

By taking derivatives with respect to α on both sides of (4.27) and noting that the residue of the
simple pole of ζK(s) at s = 1 equals π/4, we deduce from Conjecture 4.B. the following result.

Lemma 4.1. Assuming the truth of Conjecture 4.B., we have for any ε > 0, (logX)−1 � <(r) < 1/4
and =(r)� X1−ε,

1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
L′(1/2 + r, χ(1+i)5$)

L(1/2 + r, χ(1+i)5$)
=
ζ ′K(1 + 2r)

ζK(1 + 2r)
+Aα(r, r)

− 4

π

1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
X$

(
1

2
+ r

)
ζK(1− 2r)A(−r, r) +Oε

(
X−1/2+ε

)
.

(4.28)
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4.C. Derivation of the one level density from the ratios conjecture

In this section we prove Theorem 1.2 using the ratios conjecture and GRH. We recall the definition
of D(φ;w,X) from (1.2) and we note that GRH implies that the non-trivial zeros of the L-functions
all have real parts equal to 1/2. Thus by setting L = logX, we can recast D(φ;w,X) as being equal
to

=
1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
1

2πi

 ∫
(a)

−
∫

(1−a)

L′(s, χ(1+i)5$)

L(s, χ(1+i)5$)
φ

(
−iL
2π

(
s− 1

2

))
ds

=
1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
1

2πi

∫
(a)

(
L′(s, χ(1+i)5$)

L(s, χ(1+i)5$)
−
L′(1− s, χ(1+i)5$)

L(1− s, χ(1+i)5$)

)
φ

(
−iL
2π

(
s− 1

2

))
ds,

(4.29)

where 1/2 + 1/ logX < a < 3/4 and the fact that φ is even is used in the derivation of the late
equality above.

We note that the functional equation (2.18) implies that

L′(s, χ(1+i)5$)

L(s, χ(1+i)5$)
=
X ′$(s)

X$(s)
−
L′(1− s, χ(1+i)5$)

L(1− s, χ(1+i)5$)
.

Inserting the above into (4.29), we obtain that D(φ;w,X) is equal to

=
1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
1

2πi

∫
(a−1/2)

(
2
L′
(
1/2 + r, χ(1+i)5$

)
L
(
1/2 + r, χ(1+i)5$

) − X ′$ (1/2 + r)

X$ (1/2 + r)

)
φ

(
iLr
2π

)
dr.

(4.30)

Substituting (4.28) in (4.30), we deduce by noting the rapid decay of φ that

D(φ;w,X) =
1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
1

2πi

∫
(a−1

2 )

(
2
ζ ′K(1 + 2r)

ζK(1 + 2r)
+ 2Aα(r, r)− X ′$ (1/2 + r)

X$ (1/2 + r)

− 8

π
X$ (1/2 + r) ζK(1− 2r)A(−r, r)

)
φ

(
iLr
2π

)
dr +Oε

(
X−1/2+ε

)
.

(4.31)

As the function

2
ζ ′K(1 + 2r)

ζK(1 + 2r)
+ 2Aα(r, r)− X ′$ (1/2 + r)

X$ (1/2 + r)
− 8

π
X$

(
1

2
+ r

)
ζK(1− 2r)A(−r, r)

is analytic in the region <(r) ≥ 0 (in particular it is analytic at r = 0), we can now shift the line of
integration in (4.31) to <(r) = 0 to deduce readily the assertion of Theorem 1.2.

4.D. Proof of Theorem 1.1 using the ratios conjecture

In this section, we give another proof of Theorem 1.1 by assuming the ratios conjecture. To achieve
this, we recall that we set L = logX and we first apply Lemma 2.3 to see that

1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
1

2π

∫
R

log

(
32N($)

π2

)
φ

(
tL
2π

)
dt = φ̂(0) +O

(
1

L

)
. (4.32)
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Moreover, by [MV07, Lemma 12.14], we have that

1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
1

2π

∫
R

(
Γ′

Γ

(
1

2
− it

)
+

Γ′

Γ

(
1

2
+ it

))
φ

(
tL
2π

)
dt

=2
Γ′

Γ

(
1

2

)
φ̂(0)

L
+

2

L

∞∫
0

e−t/2

1− e−t

(
φ̂(0)− φ̂

(
t

L

))
dt = O

(
1

L

)
.

(4.33)

We then deduce from (1.6), (4.32), (4.33) that

D(φ;w,X) = φ̂(0) +
1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
1

2π

∫
R

(
2
ζ ′K(1 + 2it)

ζK(1 + 2it)
+ 2Aα(it, it)

− 8

π
X$

(
1

2
+ it

)
ζK(1− 2it)A(−it, it)

)
φ

(
tL
2π

)
dt+O

(
1

L

)
.

In view of (4.31) and the above expression for D(φ;w,X), we see that we can recast it as

D(φ;w,X) = φ̂(0) +
1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
1

2πi

∫
(a′)

(
2
ζ ′K(1 + 2r)

ζK(1 + 2r)
+ 2Aα(r, r)

− 8

π
X$

(
1

2
+ r

)
ζK(1− 2r)A(−r, r)

)
φ

(
iLr
2π

)
dr +O

(
1

L

)
,

(4.34)

where 1/ logX < a′ < 1/4. By a straightforward computation we see that for 1/ logX < <(r) < 1/4,
we have

Aα(r, r) +
ζ ′K(1 + 2r)

ζK(1 + 2r)
= −

∑
($)

logN($)

N($)1+2r − 1
.

It follows from this and treatment similar to [FPS18, Lemma 4.1] and [FPS17, Lemma 3.7] that we
have

1

2πi

∫
(a′)

(
2
ζ ′K(1 + 2r)

ζK(1 + 2r)
+2Aα(r, r)

)
φ

(
iLr
2π

)
dr = − 2

L
∑
($)
j≥1

logN($)

N($)j
φ̂

(
2j logN($)

L

)
= −φ(0)

2
+O

(
1

L

)
.

(4.35)
It now remains to treat the expression

I = − 8

π

1

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
1

2πi

∫
(a′)

X$

(
1

2
+ r

)
ζK(1− 2r)A(−r, r)φ

(
iLr
2π

)
dr.

Note that it follows from (1.5) that

A(−γ, γ) = 2− 22r.

Combining this with the definition of X$ given in (4.25) and a change of variable r = 2πiτ/L, we
deduce that

I =

∫
C

− 8

π

1

L
Γ (1/2− 2πiτ/L)

Γ (1/2 + 2πiτ/L)

(
π2

32

)2πiτ/L (
2− 24πiτ/L

)
ζK

(
1− 4πiτ

L

)

× φ (τ)

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
N($)−2πiτ/Ldτ,



P. Gao and L. Zhao, One level density of low-lying zeros of quadratic Hecke L-functions to prime modulus 185P. Gao and L. Zhao, One level density of low-lying zeros of quadratic Hecke L-functions to prime modulus 185

where C stands for the horizontal line =(τ) = −La′/(2π).

We now deform C to the path C ′ = C0 ∪C1 ∪C2, where C0 = {τ : =(τ) = 0, |<(τ)| ≥ Lε}, C1 =
{τ : =(τ) = 0, η ≤ |<(τ)| ≤ Lε} and C2 = {τ : |τ | = η,=(τ) ≤ 0}, for some small ε, η > 0.

The integration of I over C0 can be estimated trivially by making use of the rapid decay of φ to
be of O(L−1). Using Taylor expansions, we see that on C1 ∪ C2,

− 8

π

1

L
Γ (1/2− 2πiτ/L)

Γ (1/2 + 2πiτ/L)

(
π2

32

)2πiτ/L (
2− 24πiτ/L

)
ζK

(
1− 4πiτ

L

)
=

1

2πiτ
+O

(
|τ |+ 1

L

)
.

It follows from (2.15) that the integrand of I on C1 ∪ C2 equals(
1

2πiτ
+O

(
|τ |+ 1

L

))
φ (τ)

W (X)

∑
$≡1 mod (1+i)3

w

(
N($)

X

)
N($)−2πiτ/L

=

(
1

2πiτ
+O

(
|τ |+ 1

L

))(
X−2πiτ/L +O

(
|τ |2

L
+

1

L

))
φ (τ)

=
φ(τ)e−2πiτ

2πiτ
+O

(
1 + |τ |+ |τ |2

L|τ |
φ(τ)

)
.

(4.36)

Now the integrals of the above main term and O-term over C1 ∪ C2 are treated separately and in-
dependently. In dealing with integral of the main term in (4.36), we shall take η to zero, while the
integral of O-term in (4.36) is estimated directly for a fixed η. This treatment is similar to that for
the analogous expressions in [FPS18].

To deal with the O-term in (4.36), it suffices to consider the integral∫
C1∪C2

φ(τ)

L|τ |
dτ.

Because of the rapid decay of φ, we easily get that the above is� L−1, upon fixing a value of η. Now
for ∫

C1∪C2

φ(τ)e−2πiτ

2πiτ
dτ,

we take η to zero and get that the above is,

φ(0)

2
− 1

2

∫
R

sin(2πτ)

2πτ
φ(τ)dτ +O(L−1),

which absorbs the integral of the O-term in (4.36).

The assertion of Theorem 1.1 now follows by combining (4.34), (4.35) with the above expression.
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