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Further Variations on the Six Exponentials
Theorem

Michel Waldschmidt

Abstract. Let £ denote the set of linear combinations, with algebraic
coefficients, of 1 and logarithms of algebraic numbers. The Strong Six
Exponentials Theorem of D. Roy gives sufficient conditions for a 2 x 3

matrix
Ain A Agg
M =
(A21 Ao Azs)

whose entries are in £ to have rank 2.

Here we give sufficient conditions so that one at least of the three
2 x 2 determinants
Ain A
Ao1 Ao

A12 AIS
A22 A23

AIS All
A23 A21

) )

is not in £

1. Main result

We denote by Q the field of rational numbers, by Q the field of algebraic
numbers (algebraic closure of Q in C), by L the Q-vector space of logarithms
of algebraic numbers:

L={AeC;eeQ }={loga; aeQ '} =exp~ (Q")

and by £ the Q-vector subspace of C spanned by {1} U L. Hence L is the
set of linear combinations of 1 and logarithms of algebraic numbers with
algebraic coefficients:

L= {ﬁ0+ B1logai + - -+ 4 B log oy
n > Oa (ala-" 7an) € (@X)n’ (/805161"" 7:8n) € @n+1}'

Here is the so-called strong six exponentials Theorem of D. Roy ( ([5]
Corollary 2 §4 p. 38; see also [7] Corollary 11.16):
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2 MICHEL WALDSCHMIDT

THEOREM 1.1. Let M be a 2 x 3 matriz with entries in L

Air Ay A13>
M = .
(A21 Ags Ags

Assume that the two rows of M are linearly independent over Q and also
that the three columns are linearly independent over Q. Then M has rank
2.

Consider the three 2 x 2 determinants
A1 = A12Ao3 — AigAag, Ag = Ai3Aar — A11Ao3, Az = A11A2e — Ai2A9.
From the relation
A (ti) + Ay (tz) + A (ti) =0,
it follows from the assumptions of Theorem 1.1 that one at least of the three
numbers A, Ay, Ag is transcendental. We want to prove that one at least

of these three numbers is not in L.

If the five rows of the matrix JIM (where I3 is the 3 x 3 identity matrix)
3

are linearly dependent over Q, which means that there exists (71,72) €
@2 \ {0} such that the three numbers

0j =1 + 1Ay (1 =1,2,3)

are algebraic, then the three numbers A1, Ay, A are in £. Indeed, if (4, h, k)
denotes any of the triples (1,2,3), (2,3,1), (3,1,2), then

MAj; = 0pMop — OpAgp, and Yo Aj = A1y — OpAik-
Here is the main result of this paper.

THEOREM 1.2. Let M be a 2 x 3 matriz with entries in L:

A A Agg
M= -
(A21 Ao Ags

Assume that the five rows of the matriz

A1 Ag Ags

Aoi Ago Ags
-
3 0 1 0

0 0 1
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are linearly independent over Q and that the five columns of the matriz

({1 0 A A2 Ags
(IQ’M)_(O 1 Ay Ao A23)

are linearly independent over Q. Then one at least of the three numbers

A2 Ags Az An _‘An Ao

A = = —
T Mg Agg|? TP ‘A23 Ag|” T2 7 A Ag

is not in L.

B If M is d x £ matrix of rank 1, with d > 2 and £ > 2, whose columns are
Q-linearly independent, then the d + £ columns of the matrix (Id M ) are
also Q-linearly independent. Hence on the one hand Theorem 1.2 generalizes
Theorem 1.1. On the other hand, as noticed by G. Diaz, when one of the

six numbers A;; is algebraic, Theorem 1.2 reduces to the next consequence
of Theorem 1.1 (further related results are given in [1] and [8]).

COROLLARY 1.3. Let A1, Ag, A3 be three elements of L Assume that
A1 is transcendental and that the three numbers 1, Ao, A3 are Q—linear@
independent. Then one at least of the two numbers Aq1As, A1As is not in L.

(0 Ay Aj
Al_(Al() 0)'
shows that the assumptions of Theorem 1.2 are not sufficient to ensure that
none of the three determinants is in L.
Here is a simple result which follows from Theorem 1.2: Let Ay, Az, A3

be three elements in L such that 1, Ay, Ao, A3 are linearly independent over
Q. Then one at least of the three numbers

A2 AjAs, AZ—AgAy, AZ— AN,

The simple example

is mot in L.
In §3 we shall deduce from Theorem 1.2 the following corollary.

COROLLARY 1.4. Let M be a 2 x 3 matriz with entries in L:

A1l A2 Ag
M = .
()\21 A22 )\23>

Assume that the two rows of M are linearly independent over Q and also
that the three columns of M are linearly independent over Q. Then one at
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least of the three numbers
(1.5) A11d22 — Ad12A21,  A12de3 — A1zAa2,  AwzAor — AurAes
is not in L.

The six exponentials Theorem of S. Lang ([3], Chap. II § 1) and K. Ra-
machandra ([4] II § 4) states that, under the assumptions of Corollary 1.4,
one at least of the three numbers (1.5) is not zero.

It is expected that a result similar to Theorem 1.2 holds when M is
replaced by a 2 X 2 matrix:

CONJECTURE 1.6. Let M be a 2 x 2 matriz with entries in L:
A1 Agp
M = .
<A21 Ao

Assume that the four rows of the matriz

Air A

(M ) _ | A2 A
I 1 0
0 1

are linearly independent over Q and that the four columns of the matriz

i 10 A11 A12
(IQ’M)_<0 1 Ay A22>

are linearly independent over Q. Then the number

A1 Ao
A1 Ao

is not in L.
Conjecture 1.6 follows from the conjecture (see for instance [3], Historical
Note of Chapter III, [2], Chap. 6 p. 259 and [7], Conjecture 1.15 and [8]

Conjecture 1.1) that Q-linearly independent logarithms of algebraic numbers
are algebraically independent.

2. A consequence of the Linear Subgroup Theorem

Let n be a positive integer and Y a Q-vector subspace of C*. We define
dims(Y/Y NV
WY€) = i Smell/Y0Y)
vcer  dime (Cr/V)

where V runs over the set of C-vector subspaces of C* with V # C".
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For z = (z1,...,2,) € C* and y = (y1,--.,Yn) € C* we denote by z -y
the scalar product

Ty =T1yY1 + -+ TpYn.

For X and Y two subsets of C", we denote by X -Y the set of scalar products
z -y where z ranges over the set X and y over Y.

THEOREM 2.1. Let X and Y be two Q-vector subspaces of C*. Assume
X has dimension d with d > n. Assume further

d
d—n
Then the set X - Y is not contained in L.

p(y,C") >

PRrOOF. This is essentially Proposition 6.1 of [6], where Q is replaced
by Q and the Q-vector space £ by the Q-vector space L. Henceforth the
proof runs as follows.

Like in Lemme 5.2 of [6], one checks that if X and Y are two vector
subspaces of C" over Q, of dimensions d and /£ respectively, then there exist
a positive integer n’ < n and two vector subspaces X’ and Y’ of C", of
dimensions d' and #' respectively, such that

R d _d - 4
U(X,C ):;253 M(Y,C )ZEZU(Y’CH)
and
(2.2) X'Y'cX-v.

This shows that for the proof of Theorem 2.1, there is no loss of generality
to assume pu(X,C") = d/n and p(Y,C") = £/n. The assumption pu(Y,C") >
d/(d — n) reduces to ¢d > n(£+ d).

Following the argument of Lemme 5.4 in [6], one proves that if X and YV’
are two vector subspaces of C" over Q, of dimensions d and £ respectively,
X1 a subspace of X of dimension d; and Y7 a subspace of Y of dimension
£, such that X; -Y; = {0}, then

(2'3) (d - dl)M(Y, Cn) + (@ - el)lj'(Xa (Cn) > nU(Xa (Cn)U(Y’ Cn)
In Lemme 5.4 in [6] an extra assumption is required, namely
p(X, CM)p(Y,C*) > u(X,C") + u(Y,C"),

but we do not need it here, since our assumption X; - Y; = {0} is stronger
than the assumption in Lemme 5.4 of [6] that X - Y7 has rank < 1.
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Next we introduce the coefficient #(M) attached to a d x £ matrix M
with entries in C. It is defined as follows:

el
6(M) = min 7’
where (d',£') ranges over the set of pairs of integers satisfying 0 < ¢/ < /£,
1 < d' < d, such that there exist a d x d regular matrix P and a regular £ x £

regular matrix @, both with entries in Q, with

a-(t ) 1
v v
From (2.3) with dy = d' and £; = £* it follows that if
X=Qz1+-+Qzy and Y =Qu; +---+ Que

are again two vector subspaces of C* over Q, of dimensions d and / respec-
tively, satisfying u(X,C") = d/n, then the matrix

(24) M = (IZ : yj)1§igd, 1<5<e
has

6(M) > = - u(Y,C").
In particular if u(X,C") = d/n and u(Y,C*) = £/n, then §(M) = £¢/d.
Finally Theorem 4 in [5] (which is Proposition 11.19 or Theorem 12.19 in
[7]) shows that the rank r of a d x £ matrix M with entries in £ satisfies

de
1+6
where § = 0(M). Using this result for the matrix M given by (2.4) whose
rank r is < n, one concludes that if u(X,C") = d/n and pu(Y,C") = £¢/n
with X - Y C L, then

>

1

+
Theorem 2.1 follows. O

SH

n >

(S
ISH

REMARK. Theorem 1.1 is equivalent with the case n = 1 of Theorem
2.1.
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3. Proof of the main results
In this section we prove Theorem 1.2 and Corollary 1.4.

PROOF OF THEOREM 1.2. Assume that the hypotheses of Theorem 1.2
are satisfied. Define elements v1,...,vs in £? by

v = €1, V2 =€y, V2+j5 = (AljaAQj)a (.7 = 15253)5
where e; = (1,0) and ey = (0,1). For v = (z,y) € C2, set v' = (~y,z), so
that v’ - v = 0. Consider the 5 X 5 matrix

A = (v} - vj)
From its very definition, it is plain that A has rank 2. Explicitly one has

0 1 Agi Agp Agg

-1 0 —An —Ap —Ag

A= |—-Au An 0 Az —Ao

—Ag Az —Ag 0 Ay

—Agz Az A Ay 0

1<4,j<5°

Let X be the Q-vector space spanned by v1,...,vs in C? and similarly let
Y be the subspace of C? spanned by v, ...,v% over Q. We claim

(3.1) w(X,C?) = p(Y,C) > 2.
The equality p(X,C?) = u(Y,C?) follows from the fact that the map (z,y)
(—y, ) is an automorphism of C2. _

Since the five columns of (Ig M ) are linearly independent over Q,
dim@X = b.

Let V is a vector subspace of C? of dimension 1 and let ¢,z + tozo = 0
be an equation of V' in C?, with (¢1,%5) € C?\ {0} . Consider the linear map

p: C? - C
(Zl, ZQ) —> tlzl + tQZQ

whose kernel is V. Since the five rows of ( ) are Q-linearly independent,

I3
dimg((X NV)/V) = dimgp(X) > 2.

This completes the proof of (3.1).

From (3.1) we deduce that the hypothesis (Y, C?) > d/(d — n) of The-
orem 2.1 is szitisﬁed with d = 5 and n = 2 , hence the set X -Y is not
contained in £. Consequently one at least of the three numbers Aj, Ag, Ag
is not in L.
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This completes the proof of the Main Theorem 1.2. O

REMARK. In (3.1) we may have equality: for instance if Agg = Agg =0
then u(X,C?) = u(Y,C?) = 2.

However the proof of Theorem 2.1 shows that in the case p(X,C?) =
u(Y,C?) < 5/2, Theorem 1.2 should follow from Theorem 1.1. Indeed after
a change of variables rational over Q one needs only to consider a matrix

(0 A Az
M_(A21 0 0 )

which is the situation of Corollary 1.3. If X is the Q-subspace of C? spanned
by
U1 = (170)7 V2 = (Oa 1)1 U3 = (07A21)7 Vg = (A1250)a V4 = (A1350)
and Y the subspace spanned by
Ull = (0’ 1)’ ’Ué = (_1a0)’ Uili = (_A2130)a 'Uzll = (07A12)7 'Ufl = (0’A13)a
then o B o
X' =Q+ QA2 +QA13 and Y'=Q+ QAn

are Q-subspaces of C satisfying (2.2). Here pu(X’,C) =3 > d/n = 5/2 and
p(Y',0) =2 = u(y,C).

PROOF OF COROLLARY 1.4. From Baker’s Theorem it follows that if
Yy is a Q-vector subspace of L™ of dimension £, then the Q-vector subspace
of L spanned by Q" U Y, has dimension £ + n (see Exercise 1.5 (iii) of
[7]). Taking firstly n = 2, £ = 3, and secondly n = 3, £ = 2, we deduce
that the matrix M of corollary 1.4 satisfies the assumptions of Theorem 1.2.
Corollary 1.4 follows. O

4. Erratum to [8]

We take the opportunity of this paper to point out a mistake in the
statement of Corollary 2.12 p. 347 of [8]: the assumption that Ag; is not
zero and A11/A21 is transcendental should be replaced by the assumption
that the three numbers 1, A1 and Aoy are linearly independent over the field
of algebraic numbers. Otherwise a counterexample is obtained for instance
WithAzlzla.ndAQjZOfOI‘QSj35.
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