ONE MORE PROOF OF SIEGEL'S THEOREM

By K. RAMACHANDRA

To the Academician Ivan Matveevich Vinogradov A Humble Dedication on his Ninetieth Birthday

§ I. Introduction

The object of this note is to give a trivial proof of the following theorem and apply it to obtain slightly a sharper version of Siegel's Theorem on $L(1, X)$ for real characters X $\bmod k$. See Theorem 2 at the end of this section.

Theorem I

Let a_{1}, a_{2}, \ldots be an infinite sequence of complex numbers satisfying $\left|{ }_{n} \sum_{x} a_{n}\right| \leqslant C x^{\phi}$, where C and ϕ are positive constants satisfy ing $\mathbf{C}>0,0<\phi<1$ Let $\phi<s<1$.

Then for $x>1$,

$$
\begin{aligned}
& \left.\sum_{n \leqslant x} \sum^{n^{-s}} \sum_{m \leqslant \frac{x}{n}} a_{m} m^{-s}\right)=\frac{x^{1-s}}{1-s} f(1) \\
& \\
& +\zeta(s) f s)+10^{3} c \theta E(1-\phi)^{-1}
\end{aligned}
$$

where $\mid 0: \leqslant 1, f(s)=\sum_{n=1}^{\infty}\left(a_{n} n^{-s}\right)$,

$$
\zeta(s)=\sum_{n=1}^{\infty}\left(n^{-s}-\int_{n}^{n+1} \frac{d u}{u^{s}}\right)+\frac{1}{s-1}
$$

and $\mathrm{E}=x^{\lambda} 10^{-3}\left(1160+\frac{96(1-\phi)}{(s-\phi) x^{s-\phi+\lambda}}\right.$

$$
\left.+\frac{192(\log (x+3))(1-\phi)}{(s-\phi)^{2} x^{s-\phi+\lambda}}\right)
$$

λ being $\frac{\phi+1}{2}-s$.
This theorem will be proved in § 2 in a simple way. We now state a lemma (to be proved in § 3 in a trivial way).

Lemma I: Let $3 \leqslant k_{1} \leqslant k_{2}$ where k_{1} and k_{2} are two integers. Let X_{1} and X_{2} be two non-principal real characters $\bmod k_{1}$ and $\bmod k_{2}$ respectively such that the character $X_{3}=X_{1} X_{2}$ defined by $X_{3}(n)=X_{1}(n) X_{2}(n)$ is non principal (we can verify that X_{3} is actually a character $\bmod k_{3}=k_{1} k_{2}$).

Then for $x \geqslant 1$ we have,

$$
\begin{aligned}
& \text { । } n \stackrel{\sum}{\sum} X_{1}(n) \mid<k_{1} \text { and } \\
& \operatorname{l}_{\operatorname{lm} n<x}^{\sum} X_{1}(l) X_{2}(m) X_{3}(n) \left\lvert\,<25 x^{\frac{3}{4}}\left(k_{1} k_{2}\right)^{2} .\right.
\end{aligned}
$$

Remark. The lemma is true for complex characters as well. Also the estimate can be improved by the use of the Polya-Vinogradov inequality.

Lemma 2: We have, under the assumptions of Lemma 1,

$$
\begin{aligned}
& \quad \begin{array}{l}
\Sigma \\
m
\end{array} \quad\left(X_{1}(n)(m n)^{-s}\right)=\frac{x^{1-s}}{1-s} L_{1} \\
& \quad+\zeta(s) L\left(s, X_{1}\right)+1000 k_{1} E_{1} 0,(0<s<1)
\end{aligned}
$$

and $\underset{l m n \nu}{\Sigma} \leqslant x X_{\Delta}(l) X_{2}(m) X_{3}(n)(l m n \nu)^{-s}$

$$
=\frac{x^{1-s}}{1-s} L_{1} L_{2} L_{3}+\zeta s, L\left(s, X_{1}\right)
$$

$$
L\left(s ; \chi_{2}\right) L\left(s, \chi_{3}\right)+200000\left(k_{1} k_{2}\right)^{2} E_{2} \theta,\left(\frac{3}{4}<s<1\right)
$$

where $L\left(s, \chi_{j}\right)=\sum_{n=1}^{\infty}\left(\chi_{j}(m) n^{-s}\right)$ and

$$
L\left(1, \chi_{j}\right)=L_{j},(j=1,2,3)
$$

Also $E_{1}=10^{-3} x^{\lambda_{1}}\left(1160+\frac{96}{s x^{\frac{1}{2}}}+\frac{192 \log (x+3)}{s^{2} x^{\frac{1}{2}}}\right)$,

$$
\lambda_{1}=\frac{1}{2}-s
$$

and $E_{2}=10^{-3} x^{\lambda_{2}}\left(1160+\frac{96}{(4 s-3) x^{\frac{1}{8}}}+\frac{768 \log (x+3)}{(4 s-3)^{2} x^{\frac{1}{8}}}\right)$,

$$
\lambda_{2}=\frac{7}{8}-s
$$

Proof: We have only to put $\phi=0$ and $\frac{3}{4}$ in Theorem 1 and use Lemma 1. This proves the lemma.

From these two lemmas we can deduce in a simple way the sharper version of Siegel's theorem, as follows.

Lemma 3: Let P be the greatest real zero of $L\left(s, X_{1}\right)$. If there is no real zero at all or if $\rho \leqslant \frac{7}{8}$ we take s in the range $\frac{7}{8} \leqslant \mathrm{~s}<1$ In the other case we take s in the range $\rho<\mathrm{s}<1$.

Put $x=\left(10000 k_{1}\right)^{4}$. Then we have

$$
1 \leqslant \frac{x^{1-s}}{1-s} L\left(1, \chi_{1}\right)+\left(1000 k_{1}\right)^{-\frac{1}{8}} .
$$

Hence $L\left(1, X_{1}\right) \neq 0$.

Proof: Follows from Lemma 2 on using $\zeta(s) L\left(s, X_{1}\right) \leqslant 0$. Lemma 4: Let $\mathrm{L}\left(1, \chi_{1}\right)<(60000)^{-8}\left(\log k_{1}\right)^{-1}$. Then there exist real zeros and their maximum ρ satisfies $1-\rho<$ $\left(16 \log k_{1}\right)^{-1}$ and further

$$
\frac{1}{2}<\left(10000 k_{1}\right)^{4(1-P)} \frac{L\left(1, X_{1}\right)}{1-P}
$$

Hence $1-\rho \leqslant 2\left(10000 k_{1}\right)^{4(1-\rho)} L\left(1, \chi_{1}\right)$

$$
\leqslant 400 L\left(1, X_{1}\right)
$$

Proof: Follows from lemma 3 on putting $s=1$ $(16 \log k)^{-1}$ and assuming $1-\rho>\left(16 \log k_{1}\right)^{-1}$, and next putting $s=P$.

Lemma 5: Let $\mathrm{L}\left(1, X_{1}\right)<(60000)^{-8}\left(\log k_{1}\right)^{-1}$. Then if X_{2} is a non principal real character $\bmod \mathrm{k}_{2}\left(3 \leqslant \mathrm{k}_{1} \leqslant \mathrm{k}_{2}\right)$ such that $X_{3}=X_{1} X_{2}$ is non principal, we must have

$$
\frac{1}{2} \leqslant{\frac{x_{o}}{1-P}}_{1-p} L\left(1, \chi_{1}\right) L\left(1, \chi_{2}\right) L\left(1, \chi_{1} \chi_{2}\right)
$$

where $x_{0}=\left(860000,^{32}\left(k_{1} k_{2}\right)^{32}\right.$ and ρ is given by lemma 4 .
Proof: In the second inequality of lemma 2 we take $x=x_{0}$ and $s=\rho$. Plainly $\zeta(\rho) L\left(\rho, X_{1}\right) L\left(\rho, \chi_{2}\right)$ $L\left(\rho, X_{1} X_{2}\right)=0$. The term involving 0 is easily seen to be less than $\frac{1}{2}$. Hence lemma 5 is proved.
Lemma 6: Let $\mathrm{L}\left(1, X_{1}\right) \leqslant(60000)^{-8}\left(\log \mathrm{k}_{1}\right)^{-1}$ and let X_{1} and X, be as in lemma 5. Then we have

$$
\begin{aligned}
& \frac{1}{2}<\left(4\left(k_{1} k_{2}\right)^{20000 L\left(1, \chi_{1}\right)}\right. \\
& \quad\left(\frac{L\left(1, \chi_{1}\right)-L\left(P, \chi_{1}\right)}{1-P}\right) L\left(1, \chi_{2}\right) L\left(1, \chi_{1} \chi_{2}\right)
\end{aligned}
$$

Proof: Follows by lemma 5 on using

$$
x_{0}^{1-P} \leqslant x_{0}^{400 L}\left(1, \chi_{1}\right)
$$

Using $L\left(1, X_{1} X_{2}\right) \leqslant 6 \log \left(k_{1} k_{2}\right)$ and $\frac{L\left(1, X_{1}\right)-L\left(P, X_{1}\right)}{1-P}<40\left(\log k_{1}\right)^{2}$ and $k_{1} \leqslant k_{2}$ we state now our main result.

Theorem 2.

Let $3 \leqslant \mathrm{k}_{1}<\mathrm{k}_{2}$ where k_{1} and k_{2} are two integers. Let X_{1} and X_{2} be two real non principal characters $\bmod \mathrm{k}_{1}$ and k_{2} respectively such that there exists an integer $\mathrm{n}>0$ for which $X_{1}(n) X_{2}(n)=-1$. Put $L_{1}=\sum_{n=1}^{\infty}\left(X_{1}(n) n^{-1}\right)$

$$
L_{2}=\sum_{n=1}^{\infty}\left(X_{2}(n) n^{-1}\right)
$$

If $\mathrm{L}_{\mathrm{I}} \leqslant 10^{-40}\left(\log \mathrm{k}_{\mathrm{1}}\right)^{-1}$, then, we must have necessarily,
$L_{2}>\left(\log k_{2}\right)^{-1}\left\{10^{-4}\left(\log k_{1}\right)^{-2} k_{2}^{-40000 L_{1}}\right\}$.
As a corollary we have immediately the following result due to T. TATUZAWA, which is an improvement of a resuld of C. L. SIEGEL.

Theorem 3.

Given any $\varepsilon, 0<\varepsilon<\frac{1}{2}$ the inequality
$\sum_{i}^{\infty}\left(X(n) n^{-1}\right)<k^{-\varepsilon}$ where X is a real non principal $\mathrm{n}=1$
character mod k has only finitely many solutions. Moreover all exceptions to this inequality "can be determined effectively" with (essentially) at most one possible exception.

Remark: The first part of Theorem 3 is due to Siegel and the second part due to Tatuzawa. We have not bothered to economize the constants in Theorem 2.
§ 2. Proof of Theorem I. The proof is based on
Lemma 1: $\quad \sum_{n=1}^{N} \sum_{n}^{N} c_{n} \mid \leqslant$

$$
3\left(\left.\max _{1<n \leqslant N}\right|_{m=1} ^{n} b_{m} \mid\right)_{1 \leqslant n<N}^{\max }\left|c_{n}\right|
$$

where $\left\{b_{n}\right\}$ is a finite sequence of complex numbers and $\left\{c_{n}\right\}$ a finite monotonic sequence of real numbers. The constant 3 can be improved to 2 if all the c_{n} are of the same sign.

$$
\text { Proof: Writing } B_{o}=0, B_{n}=\sum_{n=1}^{n} b_{n} \quad \text { we have }
$$

$$
\begin{aligned}
\stackrel{N}{\sum=1} b_{n} c_{n} & =\stackrel{\sum_{n=1}^{N}}{N}\left(B_{n}-B_{n-1}\right) c_{n} \\
& ={\underset{n=1}{N-1} \mathbb{R}_{n}\left(c_{n}-c_{n+1}\right): D_{N} c_{N} .}^{n=1} .
\end{aligned}
$$

This proves the lemma.

Lemma 2 Let $0<s<1$ and $x>0$. Then
$1 \leqslant n \leqslant x n^{n^{-s}}=\frac{x^{1-s}}{1-s}+\zeta(s)+E(x)$,
where $\zeta(s)=\sum_{n=1}^{\infty} u_{n}+\frac{1}{s-1}, u_{n}=\frac{1}{n^{s}}-f_{n}^{n+1} \frac{d u}{u^{s}}$
and $E(x)=E(x, s)=\frac{([x]+1)^{1-s}-x^{1-s}}{1-s}$

$$
-{ }_{n>[\boldsymbol{x}]+1}^{u_{n} . \text { Further }|E(x)| \leqslant 2 x^{-s} .}
$$

Proof: LHS

$$
=\sum_{1 \leqslant n \leqslant x}\left(\frac{1}{n^{s}}-\int_{n}^{n+1} \frac{d u}{u^{s}}\right)+\int_{1}^{[x]+1} \frac{d u}{u^{s}}
$$

and here the first term is $\sum_{n=1}^{\infty} u_{n}-\sum_{n \geqslant[x]+1} u_{n}$.
Note that $\frac{([x]+1)^{1-s}-x^{1-s}}{1-s}$

$$
=\int_{x}^{[x]+1} v^{-s} d v \leqslant x^{-s} \text { and }
$$

$\sum_{n>[x]+1} u_{n}<\sum_{n>[x]+1}\left(\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\right) \leqslant x^{-s}$.
This proves the lemma.

Lemma 3. Let $\phi<s<1$ and $x \geqslant 1$. Then, we have,

$$
\sum_{m n<x} a_{n}(m n)^{-s}=
$$

$\frac{x^{1-s}}{1-s} \sum_{n=1}^{\infty} \frac{a_{n}}{n}+\zeta(s) \sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}+\sum_{n=1}^{4} T_{n}$,
where $T_{1}=\frac{x^{1-s}-1}{s-1} \sum_{n>x} \frac{a_{n}}{n}$,

$$
\begin{aligned}
T_{2} & =\frac{1}{s-1} \int_{s}^{1}\left(\sum_{n>x}-\frac{a_{n} \log n}{n^{u}}\right) d u, \\
T_{3} & =\left(-\zeta(s)+\frac{1}{s-1}\right) \sum_{n>x}\left(a_{n} n^{-s}\right) \\
\text { and } \quad T_{4} & =\sum_{n<x} a_{n} n^{-s} E\left(\frac{x}{n}\right),
\end{aligned}
$$

$E(x)$ being defined in lemma 2. Also $|E(x)|<2 x^{-s}$.

$$
\begin{aligned}
& \text { Proof: LHS }=\sum_{n<x} \quad\left(a_{n} n^{-s} \sum_{m \leqslant x / n} m^{-s}\right) \\
& =\sum_{n \leqslant x} a_{n} n^{-s}\left(\frac{\left(n^{-1} x\right)^{1-s}}{1-s}+\zeta(s)+E\left(\frac{x}{n}\right)\right) \\
& \text { by lemma } 2 \\
& =\frac{x^{1-s}}{1-s}\left(\sum_{n=1}^{\infty} \frac{a_{n}}{n}-\sum_{n>x} \frac{a_{n}}{n}\right) \\
& +\zeta(s)\left(\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}-\sum_{n>x} \frac{a_{n}}{n^{s}}\right)+T_{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Next, }-\frac{x^{1-s}}{1-s} \sum_{n>x}^{\Sigma} \frac{a_{n}}{n}-\zeta(s) \underset{n>x}{\Sigma} \frac{a_{n}}{n^{s}} \\
& =T_{1}+T_{2}+T_{3} .
\end{aligned}
$$

This proves lemma 3.
Lemma 4. We have,

$$
\begin{aligned}
& \left|T_{1}\right| \leqslant 6 C\left(\frac{x^{1-s}-1}{1-s}\right)\left(1-2^{-(1-\phi)}\right) x^{\phi-1}, \\
& \left|T_{2}\right| \leqslant \frac{12 C \log (x+3)}{\left(1-2^{\phi-s}\right)^{2}} x^{\phi-s}, \\
& \left|T_{3}\right|<\frac{6 C x^{\phi-s}}{\left(1-2^{\phi-s}\right)} .
\end{aligned}
$$

Proof: Follows from lemma 1 since

$$
\begin{aligned}
\left|T_{1}\right| & \leqslant 3\left(\frac{x^{1-s} 1}{1-s}\right) \sum_{n=0}^{\infty} \frac{C\left(2^{n-1} x\right)^{\phi}}{2^{n} x} \\
\left|T_{2}\right| & \leqslant \frac{3}{1-s} \int_{s}^{1} \sum_{n=0}^{\infty} \frac{C\left(2^{n+1} x\right)^{\phi}}{\left(2^{n} x\right)^{u}} \log \left(2^{n+1} x\right) d u \\
& \leqslant 6 C \sum_{n=0}^{\infty} \frac{(n+1) \log 2+\log (x+3)}{\left(2^{n} x\right)^{s-\phi}} \\
& =6 C\left(\frac{\log (x+3)}{\left(1-2^{\phi-s}\right)}+\frac{\log 2}{\left(1-2^{\phi-s}\right)^{2}}\right) x^{\phi-s} \\
\left|T_{3}\right| & \leqslant 3 C \sum_{n=0}^{\infty} \frac{\left(2^{n+1} x\right)^{\phi}}{\left(2^{n} x x^{s}\right.}
\end{aligned}
$$

$$
\begin{gathered}
<\frac{6 C x^{\phi-s}}{\left(1-2^{\phi-s)}\right.} \\
\sum_{n=1}^{\infty} u_{n}<\sum_{n=1}^{\infty}\left(\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\right)=1
\end{gathered}
$$

Lemma 5. We have,

$$
\left|T_{4}\right| \leqslant 32\left(9+\frac{6}{1-2^{\phi-1}}\right) C x^{\frac{1}{2}(1+\phi-2 z)}
$$

Proof 1

$$
\begin{aligned}
\left|T_{4}\right|< & \sum_{2^{m}<x} \sum_{2^{m}<n<2^{m+1}}\left(a_{n} n^{-s} E\left(\frac{x}{n}\right)\right) \\
= & \sum_{2^{m}<x} S(U) \text { say, where } U=2^{m}
\end{aligned}
$$

We have trivially

$$
\begin{aligned}
|S(U)| & <\sum_{U<n<2 U}\left(2(2 U)^{\phi} C U^{-s} 2\left(\frac{x}{2 U}\right)^{-s}\right) \\
& =4 C x_{2}^{-s+\phi} U^{1+\phi}
\end{aligned}
$$

Also $E\left(\frac{x}{n}\right)$ is monotonic except for those n for which $\left[\frac{x}{n}\right]$ has a change. Hence $\left.\left.\right|_{U_{1}<n<U_{2}} a_{n} n^{-s} E\left(\frac{x}{n}\right) \right\rvert\,$ does not exceed $3\left(\left.\max _{U_{1}<n<U_{2}}\left|E\left(\frac{x}{n}\right)\right| \max _{U_{3}} \right\rvert\, U_{U_{1}<n<U_{3}<2 U} a_{n} n^{-s} 1\right)$
where $U_{1} \leqslant n<U_{2}$
is an interval contained in $U \leq n<2 U$ over which $\left[\frac{x}{n}\right]$ does not change. This in turn does not exceed (we have used lemma 1 above and we use it again)

$$
\begin{aligned}
{ }^{6} & \max _{U}
\end{aligned}\left|E\left(\frac{x}{n}\right)\right|\left(2 C\left(2 U,{ }^{\phi}\right) U^{-s} .\right.
$$

Since there are not more than

$$
\begin{gathered}
\frac{x}{U}-\frac{x}{2 U}+1=\frac{x}{2 U}+1 \text { intervals we have } \\
|S(U)|<\left(\min \left(U^{1+\phi} \cdot \frac{12 x}{U^{1-\phi}}\right)\right) 4 C 2^{s+\phi} x^{-s}
\end{gathered}
$$

Heace

$$
\begin{aligned}
& T_{4}!<\left\{\begin{array}{l}
\sum_{2^{m}<(12 x)^{\frac{1}{2}}} \quad 2^{m(1+\phi)}, ~
\end{array}\right. \\
& \left.+\quad 2^{m} \geqslant(12 x)^{\frac{1}{2}} \frac{12 x}{2^{m(1-\phi)}}\right\} 4 C 2^{\mathrm{s}+\phi_{x}-S} \\
& \leqslant\left\{(12 x)^{\frac{1+\phi}{2}} \sum_{m=0}^{\infty} 2^{-m(1+\phi)}\right. \\
& \left.+(12 x)^{\frac{1+\phi}{2}} \sum_{m=0}^{\infty} 2^{-m(1-\phi)}\right\} 4 C 2^{s+\phi} x_{x}^{-s}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant(12)^{\frac{\phi+1}{2}} C\left\{\frac{1}{1-2^{-(1+\phi)}}+\frac{1}{\left.1-2^{-(1-\phi)}\right\}}\right. \\
& \times 4 C 2^{s+\phi} x^{\frac{1}{2}(1+\phi-2 s)} \\
& =32 C x^{\frac{1}{2}(1+\phi-2 s)}\left\{\frac{2^{s+1+\phi+\phi-3^{\frac{~}{2}}} \frac{\phi+1}{2}}{1-2^{-(1+\phi)}}\right. \\
& \\
& \left.+\frac{2^{s+2 \phi-2} \frac{\phi+1}{2}}{1-2^{-(1-\phi)}}\right\}
\end{aligned}
$$

Lemma 6. We have,

$$
\begin{aligned}
\left|T_{1}+T_{2}+T_{3}+T_{4}\right| & \leqslant\left\{1160+\frac{96(1-\phi)}{(s-\phi) x^{s-\phi+\lambda}}\right. \\
& \left.+\frac{192(\log (x+3))(1-\phi)}{(s-\phi)^{2} x^{s-\phi}+\lambda}\right\} \frac{C x}{1-\phi^{\prime}}
\end{aligned}
$$

where $\lambda=\frac{1}{2}(1+\phi-2 s)$.
Proof: We have only to verify that

$$
\begin{aligned}
& T_{4}^{\prime}+ 6\left(\frac{x^{1-s}-1}{1-s}\right)\left(\frac{x^{\phi-1}}{1-2^{-(1-\phi)}}\right) \\
&+\frac{12 \log (x+3)}{\left(1+2^{\phi-s}\right)^{2}} x^{\phi-s}+\frac{6 x^{\phi-s}}{\left(1-2^{\phi-s}\right)} \\
& \leqslant\left\{640+\frac{96(1-\phi)}{(s-\phi) x^{s-\phi+\lambda}}\right. \\
&\left.\quad+\frac{192(\log (x+3))(1-\phi)}{(s-\phi)^{2} s-\phi+\lambda}\right\} \frac{x^{\lambda}}{1-\phi},
\end{aligned}
$$

where $T_{4}^{\prime}=32\left(9+\frac{6}{1-2(1-\phi)}\right) x^{\lambda}$ and

$$
\lambda=\frac{1}{2}(1+\phi-2 s) .
$$

(ie:) (since $\left.x^{1-s}-1 \leqslant 1-s\right)$.

$$
\begin{aligned}
& 288+\frac{192}{1-2^{-(1-\phi)}}+\frac{6 x^{\phi-1-\lambda}}{1-2^{-(1-\phi)}} \\
& \quad+\frac{12 \log (x+3) x^{\phi-s-\lambda}}{\left(1-2^{\phi-s}\right)^{2}}+\frac{61^{\phi-s-\lambda}}{1-2^{\phi-s}} \\
& <\frac{1160}{1-\phi}+\frac{96}{(s-\phi) x^{s-\phi+\lambda}}+\frac{192 \log (x+31}{s-\phi^{2} x^{s-\phi+\lambda}} .
\end{aligned}
$$

This is true since

$$
\begin{gathered}
283+\frac{19 ?}{1-2^{-(1-\phi)}}+\frac{6}{1-2^{-1+\phi}} \leqslant \frac{1160}{1-\phi} \text { and } \\
\frac{1}{1-2^{\phi-s}}<\frac{3}{s-\phi} .
\end{gathered}
$$

This completes the proof of theorem 1 and its corollary, viz. theorem 2 assuming the truth of Lemma 1.
§ 3. Proof of lemma 1 :

$$
\begin{aligned}
& \text { It is clear that }\left|\sum_{n=1}^{k_{1}} X_{1}(n)\right|=0 \quad \text { and so } \\
& \sum_{n \leqslant x} X_{1}(n) \left\lvert\,<\max _{1 \leqslant n \leqslant k_{1}} \sum_{m=1}^{n} X_{1}\left(m \left\lvert\,<\frac{5}{6} k_{1}\right.\right.\right.
\end{aligned}
$$

(it is well known, due to I. M. V. and G. P., that this sum is in fact $O\left(k^{\frac{1}{8}} \log k\right)$). Next $\left|\underset{m n}{\Sigma}<x X_{1}(m) X_{2}(n)\right|$ is by a
familiar argument
and so does not exceed $\frac{5}{3} x^{\frac{1}{2}}\left(\frac{k_{1}+k_{2}}{2}\right)+\frac{25}{36} k_{1} k_{2}$
(Here X_{1} and X_{2} are any two non-principal characters.)
We can prove lemma 1 by an extension of this argument as follows. We have
where $J=$

$$
l \leqslant x^{\frac{1}{3}}, m \leqslant x^{\frac{1}{3}}+m \leqslant x^{\frac{1}{3}}, n \leqslant x^{\frac{1}{3}}
$$

$$
+\quad \sum_{n \leqslant x^{\frac{1}{3}}, l \leqslant x^{\frac{1}{3}}}
$$

$$
+\sum_{l \leqslant x^{\frac{1}{3}}, m \leqslant x^{\frac{1}{3}}, n \leqslant x^{\frac{1}{3}}}
$$

(This is done by counting the (net) number of times a lattice point (l, m, n) appears in these sums. For example a lattice point with precisely one co-ordinate say l satisfying $l \leqslant x^{\frac{1}{3}}$. Next two co-ordinates and next three co-ordinates)
and so a bound for the LHS of the second inequality of lemma I
is

$$
\begin{aligned}
& \left.\right|_{l m n \leqslant x} ^{\Sigma} X_{1}(l) X_{2}(m) X_{3}(n) \mid
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{I \leqslant x^{\frac{1}{3}}}\left(\frac{5}{3}\left(\frac{x}{l}\right)^{\frac{1}{2}}\left(\frac{k_{2}+k_{3}}{2}\right)+\frac{25}{36} k_{2} k_{3}\right) \begin{array}{c}
\text { symmetric } \\
\text { terms }
\end{array} \\
& +\sum_{i \leqslant x^{\frac{1}{3}} \quad m \leqslant x^{\frac{1}{3}}\left(\frac{9}{6} k_{3}\right)+2 \text { other symmetric terms }} \\
& +\frac{125}{216} k_{1} k_{2} k_{3} \text {. }
\end{aligned}
$$

For $x>1$ we have $\sum_{n \leqslant x} n^{-\frac{1}{2}}<1+\int_{1}^{\frac{d u}{4}} \frac{u^{\frac{1}{2}}}{n^{\frac{1}{2}}-1}$ and hence the bound above does not exceed

$$
\begin{aligned}
& \frac{125}{216} k_{1} k_{2} k_{3}+\frac{5}{6}\left(k_{1}+k_{2}+k_{3}\right) x^{\frac{2}{3}} \\
& \left.+\frac{25}{36}, k_{1} k_{2}+k_{2} k_{3}+k_{3} k_{1}\right) x^{\frac{1}{3}} \\
& +\frac{5}{3} x^{\frac{1}{2}}\left(2 x^{6}-1\right)\left(k_{1}+k_{2}+k_{3}\right) \\
& \leqslant x^{\frac{2}{3}}\left(k_{1} k_{2}\right)^{2}\left\{\frac{125}{216} x^{-\frac{2}{3}}+\frac{5}{2}\left(k_{1} k_{2}\right)^{-1}\right. \\
& \left.\quad+\frac{25}{12} x^{-\frac{1}{3}} k_{1}^{-1}+10\left(k_{1} k_{2}\right)^{-1}\right\}
\end{aligned}
$$

provided $3 \leqslant k_{1} \leqslant k_{2}$ and $k_{3}=k_{1} k_{2}$. Plainly this does not exceed $\left(2 k_{1} k_{2} v^{\frac{1}{3}}\right)^{2}$. This proves lemma 1.

Hence the proof of our main theorem 2 is complete.

References

4. S. D. Chowla, : A new proof of a thesem of Siegel, Ann. of Math. 51 (1950), 120-122.
R. C. L. Siegel,: Uber die Classenzahl quadratischer Zahlkorper, Acta Arith., I(1936), 83-86.
5. K, Ramachandra, : Oa a theorem of Siegel, Nachrichten Akad. Gottingen, Nr. 5 April (1975), 43-47.
6. T. Tatuzawa, : On a theorem of Siegel, Jap. Journ. Math., 21 (1951), 163-178.
(The results of this paper were known to the author by 1975-1976, but due to some reasons it was not possible to publish them earlier. In the meanwhile J. Pintz has published results which "are somewhit weaker then ours by nearly the same method.)

School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabhs Roxd, Bombay 400005
(India).

