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§ 1. Introduction

The object of this note is to give a trivial proof of the
following theorem and apply it to obtain slightly a sharper
version of Siegel’s Theorem on Lt1, X) for real characters X
mod k. See Theorem 2 at the end of this section.

Theorem |

Let aj, a4y, - be an infinite sequence of complex numbers

satisfying | 3% a,|< Cx¢, where C and ¢ are positive
n< x
constants satisfyingC >0, 0< o<1 Letp <s<1.

Then for x > 1,
11—

s (n° 3 = I — s
a m =
n<x x m 1-s
m<
+ (Y fs)+ 103 co E(l—f’)—w,
(v o)
where 10 < 1, fis) = 3 (a,n "),
n=1
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o Y 96 (1 —
andE = x 10 (ll60+ L 9

s—px* T A

192 (log (x + 3)) (1—¢)\
+

(S_¢)2xs—¢+>\ )

1
A being g—;f— el

This theorem will be proved in § 2 in a simple way. We
now state a lemma (to be proved in § 3 in a trivial way).

Lemma |: Let 3 < kl < k2 where kl and k2 are two
integers. Let X1 and X ) be two non-principal real characters
mod kl and mod k2 respectively such that the character
X3 = Xl X defined by X3 () =X, (n)‘)(2 (n) is non principal
(we can verify that X3 is actually a character mod k3 = kl k2).

Then for x > 1 we have,
| 3 Xl(")|<kl and
n<x  C
2
L3 X () Xy(m) Xa(n) | < 25 22 (K, k2.
lmn<xl 2 3 172

Remark. The lemma is true for complex characters as
well. Also the estimate can be improved by the use of the
Polya-Vinogradov inequality.

Lemma 2: We have, under the assumptions of Lemma 1,
1—s

L

—S
X ) mn) ) = 7L

mns< X
+ L(s) L(s, X)) + 1000k, £, @, 0 <s<D

and % X (hXy(m; Xyn) (Umnw, ™"
Imny <x 4

xl—s

= e— \L,
=5 L L Lt U LX)
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L(s, X;) L(s, X3) + 200000 (k, k,)* E, 8, (3 < s < 1),

oo -3
where L(s, Xj) = 3 (Xj(m) n~ °) and

n=1
L L) = 5 | = , 3).
(1, XJ) Lj,(J 1, 2, 3)
-3 X\ 96 192 log (x + 3))
b

Also E, =10 x (uso~+ = 4
l Sx* 32 x*

A, =1-3

96 758 1o +3
& g (x ))’

-5
and E, = 10 x>‘2(1160 + 2 1
(4s — 3 (45— 3)% xB

Proof: We have only to put ¢ = 0 and } in Theorem 1
and use Lemma 1. This proves the lemma.

From these two lemmas we can deduce in a simple way
the sharper version of Siegel’s theorem, as follows.

Lemma 3: Let P be the greatest real zero of Lf(s, XI). If

7
there is no real zero atallor if P < g e take s in the range

7
3 < s < | Inthe other case we take s in the range P < s < 1.

Put x = (10000 k‘ )4. Then we have
| I 1
— L(1, Xl) + (1C00 kl)'

x
l<l

Hence L (1, Xl) # 0.
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Proof : Follows from Lemma 2 on using { (s} L (s, Xl)<0‘

Lemma 4: LetL (1,X,) < (60000) %(log k) ~1. Then
there exist real zeros and their maximum P satisfies ], — P <
(16 log kl) 1 gnd further
LX),

1-°

% < (10000 k'1)4 1-#)

Hence 1 — P < 210000k, ) 4@ =P L1, % )
< 400 L (1, X, ).

Proof : Follows from lemma 3 on puttings =1 -

(16 log k) 1 gna assuming 1 — P > (16 log kl )—_l.” and

next putting § = P,

Lemma5: LerL(1,X,) <(60000) 5 (logk )~'. Then

if x2 is a non principal real character mod kz( I kl<k2 )

such that X3 =X 1 % is non principal, we must have
s

L(LX‘ )L(l»Xz ) L(LX‘XZ )

0

2 1-P
32 32 . )

where X, = (869000,”“ ( kl k2 )< and P is given by lemma 4,

Proof: In the second inequality of lemma 2 we take

x =x, and s =P. Plainly Cey L Px) L . X,)

L (P, X‘ X,) = 0. The term involving @ is easily seen to be

1
less than DI Hence lemma § is proved.

Lemma6: LetL(1,X,) < (60000) ~5 (tog k) ™1 and let

X, and X, be as in lemma 5. Then we have
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1 * 20000 L (1, X, ).
5 <4 (kl kz) | ( 1))
L@, %X)-LP, %, ) ~
(— =) LX) B %) -

Proof: Follows by lemma 5 on using

1-P 400L (1,%,)
xo < X, j

Using L(I,X‘X2) < 6 log (kl k2)«and

1 -P
state now our main result.

2
<40(logkl) andk1<k2we

Theorem 2.
- Let 3<k <k, where k, and kyare two integers, Let
X 1 and xz be two real non principal characters mod kl\ and

k, respectively such that there exists an integer n > 0 for

® e
whichX; @)X, (@) = — 1. Put Ly = 3 (X, (@n ),

= -1
L,= 3% (X,(@)n
2 .2 2
—40 -1
If Ll < 10 ( log kl ) ., then, we must have
necessarily, '

L, >(logky)~ ! {10” (logkl) 2 o4

BE

As acorollary we have immediately the following resuls
due to T. TATUZAWA, which is an 1mprovement of a resuls
of C,L. SIEGEL.
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Theorem 3.

Given any €, 0 < € < l? the inequality

Qo

2 (X 'n) a1 ) < k™€ where X is a real non principal
n=1
character mod k has only finitely many solutions. Moreover all
exceptions to this inequality ‘‘can be determined effectively”
with (essentially) at most one possible exception.

Remark : The first part of Theorem 3 is due to Siegel
and the second part due to Tatuzawa. We have not bothered
to economize the constants in Theorem 2.

§ 2. Proof of Theorem |. The proof is based on

IN
kemmal: |3 b ¢ |<
ney1 n1
n
3( max I 3 b 1) max te, 1)

I<n<N m=1" I<n<N
where { b, } is a finite sequence of complex numbers and
{cn } a finite monotonic sequence of real numbers. The

constant 3 can be improved to 2 if all the ¢, are of the same

sign.
. n
Proof: Writing Bo=0, annflbn we have
N N 5
3 c, = % (B - ) c
neyg M g n n—-1""n
N-1
— r 24 ~
- nlen('n n+l’ ' YN °N

This proves the lemma.
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Lemma2 Let 0<s <1 and x > 0. Then
- xl—s
p- n =] + T (s)+ E(x),
I<n<x =4
@ 1 1 n+1 du
whereg(s)=”i1un¢s‘—.un—ns —nj' s

([x]-}-l)l—s—xl-’

and E (x) = E(x,s) =

1 —=
— 3 u, . FurtherlE(x)l<2x—s.
n>[xl+1
Proof: LHS
n+1 p [x]+ld
1 u u
- S G- maegok
n’ u$ u’
I<ngx n 1

R

and here the first term is z u, = z u
n=1 n >[x] +1

i "

(Lx)+ 1)1 5 ol

Note that

)
[x]1+1~-
—8 —s
=f v dv < x and
x
S (Aot e
u A e S < x .
n Ry )
n>[x]+1 >+ o (nEl)

This proves the lemma.
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femmal3, Let $<s<1 and x> 1. Then, we have,

z a (mn)_s' =

mn<s x
M b a, °'i a, 4
-5 2wt 20 S+ 3 T,
n=1 n =1 n =1
| a
X -1 n
where T1 Sl P z P’
n>x
1

n<Xx
E (x) being defined inlemma 2 . Also | E(x)| <2x  °.

Proof: LHS = 3 (a,n° 3 m~ ")
n<x m<Xx/n
_ oy —s (7ot £(2))
- % n (l—s + L)+ n
n<x
by lemma 2
1—s - a a
x n n
- l-s( z n z “T
n=1 n>x
v o]
a, a
J”Z(S)(ZT_E—“)*'T‘;
=1 " n>xn
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1—s a L

Next, — 5 —=L() 3 —

1-s5,5% n>x n®
=T+ T, + T,

This proves lemma 3.

Lemma 4. We have

lTi<6c( — )(1-2’““” =t
\T,l < 12€ log {x + 3) x¢§s,

2 “_2¢~—s)2

IT|<6cx¢'_s

3 (1— 2¢ s

Proof: Follows from lemma 1 since

’

C(Z” I x
IT|<3(
c@*tl » n+1
|T|<—'—— f z 3 Mkt log(2+ x) du
Rews. (2" x)*
oy S‘ (n+1)log 2 + log (x+3)
(2" x)*~?
_.6C( log (x + 3) log 2 )¢ -5
(1-2%—% (1 ~2P-8y2
s ‘2n+lx)¢
1Ty <3C z s

n S
n=0 (2 Xy

33
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6Cx -8
(1-2#-9
Q@ o
LD R o Sbmer ) T
U < — = 1.
n=1 ” n=1 n? ("'H)s
Lemma 5. We have,
6 (1l + ¢~ 22
IT|<32(9+“—‘—_‘)Cx‘( $ ’
# 1-2—1
Proof 1 .
v - _Jg)
< 33 (anH)
2" <x 2m<n<2m+l

B z S‘(U) say, whereU = ;
" < x
We have trivially
: R 4 Y EAS
IS(U) < 3 (2(2U) cvu 2(27]) )
UK n<2U
—s 5 1
=4Cx 2 9 U +¢.
x x
Also E (’;) is monotonic except for these » for which [;‘]

-5 X
has a change. Hence 3 an E (—)
Uy <n<U, I 8

does not exceed

3 e [y W % e

U3 U1<"< U3<2U
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where Ul <n< U2

x
is an interval contained in U « n < 2U over which [-n_] does

not change. This in turn does not exceed (we have used lemma

1 above and we use it again)
x
6 max l E(*)IQC(ZU;%U"S
U< n<2U "
< 242?55 v?
Since there are not more than

X X
syt 1 = U + 1 intervals we have

IS(U)‘<(TD!DKUI+¢ Ullz ) )) C2 +¢

alx

Hence
1T4!<{'. p3 2m(l+¢)
m< (2 xt
+ 3 “"n—:—lz'_f*m“} 4C 2s+¢
M s a2t 2
149
J' (12 x) 2 s py—m(1+9)
l m=0
1+9
2
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1 1
<12 ¢ {1_2—(1+¢’ * 1_2"‘(1'-¢)}

x 4c25+P F (A + ¢~ 29)

. ¢+
- S+1+9+9-3, 2
- 32Cx%(1+¢ 2s) { 2 3
$+1
2s+2¢-2v3 2 }
l~~2.—(l—;¢)
Lemma 6. We have, '
9 (1 — @)
T +T +T. +T ‘< {1160+ Y W
177277374 (s—p) x5~ PFN
+ 192 (log (x+3)) (1—-9 } Cx

where \. =} (1 + ¢ — 2s).

Proof: We have only to verify that

T4 +6( 1= )(1 2—(1 ~9)

R2log(x+3) ¢-s 6579
(+22-5)2 -5
96 (1 — 9

(-9~ PFA

< {640+

192 (log (x+3)) (1-9)
3 b
(s—9) 5P E=®
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T, ( B ) -
where g = 32{9+ —~ PR g
1-2
X =10+9-29.
fien (sincex' ~ ¥ —1<1 -~ 5),
By ————— F

J_a—U=9) | = (=9

L M2loglean® ST gaP TS oA

(1-2? 52 1-20-5

, 192 log (x4
e ol e P b i S
This is true since

197 6 1160

283 <
B ate T c14e T

and

1 3
< .
ppf=F  F=P

This completes the proof of theorem 1 and its corollary,
viz. theorem 2 assuming the truth of Lemma 1.

§ 3. Proofoflemma 1:

k
|
{tis clear that | 3 X‘(n)izo and so
n=1
n
b2 X, < max | % X, (m|< gk,
n<x lgngklmzl

(it is well known, dueto 1. M. V. and G. P., that this sum is

in fact O(khog k) ). Next | p
mn < x
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familiar argument
b B+ F =0 3 X m)( = XM

-

mZyvx n<V n< Vx n<.vs

dsod a-= (k——~—l+k2)+g§’k k
and so does not excee 3 X 2 236 51 Ky

(Here Xl and XZ are any two non-principal characters.)

We can prove lemma 1 by an extension of this argument
as follows. We have

b3 X )Xy (m) Xy (m) |

Imn< x
= l z b + 2 e + z ...+¢”
9'_1_ » B _!_ v";L
l<x3 m<x3 ne<x3
where J = 2 - (..) + 2 - (...)
LI L
3 3 3 3

L 1
l<x3,m<13, n<x3,

1

(This is done by counting the (net) number of times a lattice
point (/, m, ny appears in these sums. For example a lattice
point with precisely one co-ordinate say [ satisfying

1

I < x3. Next two co-ordinates and next three co-ordinates)

and so a bound for the LHS of the second inequality of lemma I
is
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s 75 + 2 other
( ( ) ( 27 )t k% ) symmetric
: terms
i<z 3
b ]
+ = . Z | (z k3) + 2 other symmetric terms

l<x3 m<x3

125
+2!6klk2k3'
®
- du t
For x> I wehave 3 n <l+f—=2x—-l
5 Ja

and hence the bound above does not exceed
2

L5k k |
216 K1 ke k3t g kgt kgt kg)m
1

—

25 3
+ 3% «ki kz + k2 k3 + k3 kl) x
1 1

+£x~£(2x6—-l)(k + k. + k)
3 L 2 3
2 2
Py 2 125 — -1
3 L b % =,
x7 (k kz) { 26 * + (k k2)

25 — T -1 -1
= 3
+ 12 * kl + 10 (k1 k2) }

,prOVided 3 < kl < k2 and k3 = kl k2' Plainly this does
L
not exceed (2 kl kz ] 3)2. This proves lemma 1.

Hence the proof of our main theorem 2 is complete.
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