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Generating functions and congruences for 9-regular and

27-regular partitions in 3 colours

Nayandeep Deka Baruah and Hirakjyoti Das

In memory of the 100th anniversary of Srinivasa Ramanujan’s eternal rest.

Abstract. Let b`;3(n) denote the number of `-regular partitions of n in 3 colours. In this paper, we find some general generating

functions and new infinite families of congruences modulo arbitrary powers of 3 when ` ∈ {9, 27}. For instance, for positive integers

n and k, we have

b9;3
(

3k · n + 3k − 1
)
≡ 0

(
mod 32k

)
,

b27;3

(
32k+3 · n +

32k+4 − 13

4

)
≡ 0

(
mod 32k+5

)
.
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1. Introduction

For complex numbers a1, a2, a3,. . . , an, and q such that | q |< 1, we define

(a1, a2, a3, . . . , an; q)∞ :=
∞∏
j=0

(
1− a1q

j
)
·
(
1− a2q

j
)
·
(
1− a3q

j
)
· · ·
(
1− anqj

)
.

For brevity, we also set En := (qn; qn)∞.
For a positive integer ` > 1, a partition of a positive integer n is called an `-regular partition of n

if there is no part which is a multiple of `. Suppose that b`(n) counts the `-regular partitions of n,
then the generating function of b`(n) is given by

∞∑
n=0

b`(n)qn =
E`

E1
.

The divisibility properties of the `-regular partition function b`(n) have been quite widely studied
for many values of `. For example, see [AB16,CW14,DP09,Lin15,Web11]. For more studies on b`(n),
we refer to Hou et al. [HSZ15] and the references cited there.

Now, let b`;3(n) denote the number of `-regular partitions of n where a part can appear in 3
colours. The generating function for b`;3(n) is given by

∞∑
n=0

b`;3(n)qn =
E3

`

E3
1

.
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Recently, Gireesh and Naika [GN19] found an infinite family of congruences for b3;3(n) whereas
Saikia and Boruah [SB17] obtained some infinite families of arithmetic identities and congruences
modulo 2, 4, 5, and 9 for b`;3(n) when ` ∈ {2, 3, 4, 5}. Very recently, Chern, Tang, and Xia [CTX20]
found an infinite family of congruences for b7;3(n) modulo powers of 7. In this paper, we find some
generating functions for b9;3(n) and b27;3(n) and use those to prove new infinite families of congruences.
Using the Rogers-Ramanujan continued fraction, defined by

R(q) :=
q1/5

1 +

q

1 +

q2

1 +

q3

1 + · · · = q1/5 (q, q4; q5)∞
(q2, q3; q5)∞

, |q| < 1, (1.1)

and two modular equations of degree 7 and 13, we present some more congruences for b9;3(n) modulo
27. Finally, based on empirical evidences, we pose two conjectural congruences for b3k;3(n).

The paper is organised in three sections. Henceforth in this section, we state the main results.
In Section 2., we refer to some preliminary lemmas along with their proofs. Finally in Section 3., we
prove the following results.

Theorem 1.1. For integers k ≥ 1 and n ≥ 0, we have

∞∑
n=0

b9;3

(
3k · n+ 3k − 1

)
qn =

3k−1∑
j=1

xk,jq
j−1E

12j
3

E12j
1

, (1.2)

where

x1 := (x1,1, x1,2, x1,3, . . .) = (9, 0, 0, . . .),

xk+1 = xk ·A,
A := (ai,j)i,j≥1 , ai,j = m4i,i+j ,

and

M := (mi,j)i,j≥1 =



32 0 0 0 0 0 0 . . .
2 · 3 35 0 0 0 0 0 . . .

1 35 38 0 0 0 0 . . .
0 2 · 32 · 5 22 · 37 311 0 0 0 . . .
0 3 · 5 22 · 35 · 5 310 · 5 314 0 0 . . .
0 1 2 · 36 39 · 11 2 · 314 317 0 . . .
...

...
...

...
...

...
...

. . .


. (1.3)

Corollary 1.2. For integers k ≥ 1, m ≥ 1, and n ≥ 0, we have

b9;3

(
3k · n+ 3k − 1

)
≡ 0

(
mod 32k

)
, (1.4)

b9;3

(
3k+1 · n+ 2 · 3k − 1

)
≡ 0

(
mod 32k+1

)
, (1.5)

b9;3

(
3k+1 · 52m · n+ 3k · 52m−1 · (3r + 2)− 1

)
≡ 0

(
mod 32k+1

)
, (1.6)

where r ∈ {0, 2, 3, 4}.

Theorem 1.3. For integers k ≥ 0 and n ≥ 0, we have

∞∑
n=0

b27;3

(
32k+3 · n+

32k+4 − 13

4

)
qn =

∞∑
j=1

y2k,jq
j−1E

3(4j−1)
3

E
3(4j−1)
1

,

∞∑
n=0

b27;3

(
32k+4 · n+

32k+4 − 13

4

)
qn =

∞∑
j=1

y2k+1,jq
j−1E

3(4j−3)
3

E
3(4j−3)
1

,
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where the summations on the right hand sides terminate and

y0 := (y0,1, y0,2, y0,3, . . .)

= (90882, 1654060905, 2356143142059, 960546727776771,

169539908883715971, 15487542738423687078, 790448381019096370893,

22759149739354570715472, 345654586666447542741231,

2153693963075557766310747, 0, 0, 0, . . .),

yk+1 =

{
yk · U, when k is even,

yk · V, when k is odd,

where

U := (ui,j)i,j≥1 , ui,j = m4i−1,i+j−1, V := (vi,j)i,j≥1 , vi,j = m4i−3,i+j−1,

where mi,j are given by M defined in (1.3).

Corollary 1.4. For integers k ≥ 0, m ≥ 1, n ≥ 0, and ` ∈ {5, 7, 11}, we have

b27;3

(
32k+3 · n+

32k+4 − 13

4

)
≡ 0

(
mod 32k+5

)
, (1.7)

b27;3

(
32k+4 · n+

7 · 32k+3 − 13

4

)
≡ 0

(
mod 32k+7

)
, (1.8)

b27;3

(
32k+4 · n+

11 · 32k+3 − 13

4

)
≡ 0

(
mod 32k+7

)
, (1.9)

b27;3

(
32k+5 · n+

5 · 32k+4 − 13

4

)
≡ 0

(
mod 32k+6

)
, (1.10)

b27;3

(
32k+5 · `2m · n+ 32k+5 · `2m−1 · r +

32k+4 · `2m − 13

4

)
≡ 0

(
mod 32k+6

)
, (1.11)

where r ∈ {1, 2, 3, . . . , `− 1},

b27;3

(
32k+4 · 72m · n+ 32k+4 · 72m−1 · s+

32k+5 · 72m − 91

28

)
≡ 0

(
mod 32k+7

)
, (1.12)

where s ∈ {0, 2, 3, 4, 5, 6}.

Empirical evidences suggest that congruences (1.4), (1.5), (1.7), (1.8), and (1.10) are best possible.
Similar results may also be derived for b3k;3(n) when k ≥ 4 but with the cost of some very tedious
computations. Now, we present some more congruences for b9;3(n).

Theorem 1.5. For integers n ≥ 0, we have

b9;3 (75n+ r) ≡ 0 (mod 27), r ∈ {14, 29, 44, 59}, (1.13)

b9;3

(
3 · 52k(n+ 1)− 1

)
≡ b9;3(3n+ 2) (mod 27), (1.14)

b9;3 (147n+ 21r + 20) ≡ 2 b9;3 (21n+ 3r + 2) (mod 27), r ∈ {0, 1, 2, 3, 4, 5}, (1.15)

b9;3 (147n+ 146) ≡ 2 b9;3 (21n+ 20) + 2 b9;3 (3n+ 2) (mod 27), (1.16)

b9;3 (507n+ 39 · r + 38) ≡ 2 b9;3 (39n+ 3r + 2) (mod 27), r ∈ {0, 1, 2, . . . , 11}, (1.17)

b9;3 (507n+ 506) ≡ 2 b9;3 (39n+ 38) + 2 b9;3 (3n+ 2) (mod 27). (1.18)

It is likely that results similar to those in Theorem 1.5 exist for b3k;3(n), k ≥ 3. We leave those
results for the interested readers.
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2. Preliminary lemmas

For a power series
∞∑
n=0

P (n)qn and a positive integer k, we define the ‘huffing ’ operator Hk as

Hk

( ∞∑
n=0

P (n)qn

)
=
∞∑
n=0

P (kn)qkn.

The following lemma contains a recurrent modular equation of degree 3.

Lemma 2.1. [GN19, (2.10), (2.13), and (2.14)] If ζ :=
E3

1

qE3
9

and γ :=
E12

3

q3E12
9

, then for integers i ≥ 1,

we have

1

ζi
=

1

γ

(
27

ζi−1
+

9

ζi−2
+

1

ζi−3

)
, (2.19)

H3(ζ) = −3, and H3

(
ζ2
)

= 9.

Now, we construct the matrix M in (1.3). By (2.19), we have

H3

(
1

ζi

)
=

1

γ

(
H3

(
27

ζi−1

)
+H3

(
9

ζi−2

)
+H3

(
1

ζi−3

))
. (2.20)

The first four cases of the above identity are as follows.

H3

(
1

ζ

)
=

9

γ
, H3

(
1

ζ2

)
=

2 · 3
γ

+
35

γ2
, (2.21)

H3

(
1

ζ3

)
=

1

γ
+

35

γ
+

38

γ
, H3

(
1

ζ4

)
=

2 · 32 · 5
γ2

+
22 · 37

γ3
+

311

γ4
. (2.22)

Therefore, in general we write that

H3

(
1

ζi

)
=

i∑
j=1

mi,j

γj
. (2.23)

Using mi,j ’s from the above identity, we construct the matrix M such that M = (mi,j)i,j≥1.

Lemma 2.2. The following properties are satisfied by the entries of M defined in (1.3).

(i) m1,1 = 32, and m1,j = 0 for all j ≥ 2.

(ii) m2,1 = 2 · 3, m2,2 = 35, and m2,j = 0 for all j ≥ 3.

(iii) m3,1 = 1, m3,2 = 35, m3,3 = 38, and m3,j = 0 for all j ≥ 4.

(iv) mi,j = 0, for all j > i or i ≥ 3j + 1.

(v) mi,j = 27mi−1,j−1 + 9mi−2,j−1 +mi−3,j−1 for all i ≥ 4, j ≥ 2.

(vi) m3i,i = 1 for all i ≥ 1.

Proof. The properties (i)–(v) easily follow from (2.20)–(2.23) and property (vi) follows from properties
(iii) and (v).
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In the remaining lemmas of this section, we state and prove the main tools of the paper.

Lemma 2.3. For integers i ≥ 1 and j ≥ 1, we have

H3

(
qi
E12i

3

E12i
1

)
=

3i∑
j=1

ai,jq
3jE

12j
9

E12j
3

, (2.24)

where ai,j = m4i,i+j.

Proof. From property (iv) in Lemma 2.2, it is easy to see that m4i,j = 0 when i ≥ j. Therefore,

H3

(
1

ζ4i

)
=

4i∑
j=i+1

m4i,j

γj
=

3i∑
j=1

m4i,i+j

γi+j
,

which can be rewritten as

H3

(
q4iE

12i
9

E12i
1

)
=

3i∑
j=1

m4i,i+jq
3i+3jE

12i+12j
9

E12i+12j
3

,

that gives

H3

(
qi
E12i

3

E12i
1

)
=

3i∑
j=1

ai,jq
3jE

12j
9

E12j
3

,

where ai,j = m4i,i+j , which is (2.24).

Lemma 2.4. For integers i ≥ 1 and j ≥ 1, we have

H3

(
qi−3E

3(4i−3)
3

E
3(4i−3)
1

)
=

3i−2∑
j=1

ui,jq
3j−3E

3(4j−1)
9

E
3(4j−1)
3

,

H3

(
qi−1E

3(4j−1)
9

E
3(4j−1)
3

)
=

3i∑
j=1

vi,jq
3j−3E

3(4j−3)
9

E
3(4j−3)
3

,

where ui,j = m4i−1,i+j−1 and vi,j = m4i−3,i+j−1.

Proof. The proofs of the identities in the lemma are similar to that of Lemma 2.3 or one may see
in [GN19, (2.21)–(2.26)].

For the next two lemmas of this section, let ν(n) denote the largest power of 3 that divides n.

Lemma 2.5. For integers k ≥ 1 and j ≥ 1, we have

ν(xk,j) ≥ 2k + δj,1 +

⌊
9j − 10

2

⌋
, (2.25)

where xk,j are defined in Theorem 1.1 and δj,1 is the Kronecker delta function..

Proof. From [Tan19, Lemma 3.2, (3.7)], we recall that

ν(mi,j) ≥
⌊

9j − 3i− 1

2

⌋
(2.26)
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and so,

ν(ai,j) = ν(m4i,i+j) ≥
⌊

9j − 3i− 1

2

⌋
. (2.27)

In Theorem 1.1, it is defined that x1 = (9, 0, 0, . . .). So, ν(x1,1) = 2 which is in accordance with
(2.25) and since x1,j = 0 when j ≥ 2, (2.25) is true for k = 1 and j ≥ 1. We assume that (2.25) is
true for an integer k ≥ 1 and j ≥ 1. So, we have

ν(xk,j) ≥ 2k + δj,1 +

⌊
9j − 10

2

⌋
. (2.28)

We prove (2.25) dividing j into two cases.
Case 1: When j = 1,

ν(xk+1,1) = ν

3k−1∑
i=1

xk,iai,1

 .

Using Lemma 2.2, we have a1,1 = m4,2 = 90, a2,1 = m8,3 = 24, a3,1 = m12,4 = 1 and ai,1 = 0 when
i ≥ 4. Therefore, from the above identity, we have

ν (xk+1,1) ≥ min{ν (xk,1 · a1,1) , ν (xk,2 · a2,1) , ν (xk,3 · a3,1)}
≥ min{2k + 2, 2k + 5, 2k + 8} = 2(k + 1). (2.29)

Case 2: When j > 1,

ν(xk+1,j) = ν

3k−1∑
i=1

xk,iai,j

 ≥ min
1≤i≤3k−1

{ν(xk,i) + ν(ai,j)} .

Using (2.27) and (2.28) in the above inequality, we have

ν(xk+1,j) ≥ min
1≤i≤3k−1

{
2k + δi,1 +

⌊
9i− 10

2

⌋
+

⌊
9j − 3i− 1

2

⌋}
= 2k +

⌊
9j − 4

2

⌋
> 2(k + 2) +

⌊
9j − 10

2

⌋
. (2.30)

Therefore, by (2.29) and (2.30), (2.25) is true for k + 1 and j ≥ 1 also. Thus, by induction, (2.25) is
true for all k ≥ 1 and j ≥ 1.

Lemma 2.6. For integers k ≥ 0 and j ≥ 1, we have

ν(y2k,j) ≥ 2k + 5 + δj,1 +

⌊
9j − 10

2

⌋
, (2.31)

where yk,j are defined in Theorem 1.3.

Proof. By the definition of y0 in Theorem 1.3, (2.31) is true for k = 0 and j ≥ 1. We assume that
(2.31) is true for an integer k ≥ 0 and j ≥ 1. Then, we show that (2.31) is true for k + 1 and j ≥ 1.
Note that due to (2.26),

ν(ui,j) = ν(m4i−1,i+j−1) ≥
⌊

9j − 3i− 7

2

⌋
,

ν(vi,j) = ν(m4i−3,i+j−1) ≥
⌊

9j − 3i− 1

2

⌋
.
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We proceed separating j into two cases, when j = 1 and when j > 1.
Case 1: When j = 1,

ν (y2k+1,1) = ν

( ∞∑
i=1

y2k,i · ui,1

)
.

Since u1,1 = 1 and ui,1 = 0 when i ≥ 2, we have

ν (y2k+1,1) = ν (y2k,1) ≥ 2k + 5. (2.32)

Case 2: When j > 1,

ν (y2k+1,j) = ν

( ∞∑
i=1

y2k,i · ui,j

)
≥ min

i≥1
(ν (y2k,i) + ν (ui,j))

≥ min
i≥1

(
2k + 5 + δi,1 +

⌊
9i− 10

2

⌋
+

⌊
9j − 3i− 7

2

⌋)
= 2k + 5 +

⌊
9j − 10

2

⌋
. (2.33)

Therefore, by (2.32) and (2.33), we obtain

ν (y2k+1,j) ≥ 2k + 5 + δj,1 +

⌊
9j − 10

2

⌋
. (2.34)

Now, we again proceed with the two cases of j, when j = 1 and when j > 1.
Case 1: When j = 1,

ν (y2k+2,1) = ν

( ∞∑
i=1

y2k+1,i · vi,1

)
.

Using Lemma 2.2 and the definition of vi,j it is easy to check that v1,1 = 9, v2,1 = 15, v3,1 = 1 and
vi,1 = 0 when i ≥ 4. Therefore, from the above identity, we have

ν (y2k+2,1) ≥ min{ν (y2k+1,1 · v1,1) , ν (y2k+1,2 · v2,1) , ν (y2k+1,3 · v3,1)}
≥ min{2k + 7, 2k + 10, 2k + 13} = 2(k + 1) + 5. (2.35)

Case 2: When j > 1,

ν (y2k+2,j) = ν

( ∞∑
i=1

y2k+1,i · vi,j

)
≥ min

i≥1
(ν (y2k+1,i) + ν (vi,j))

≥ min
i≥1

(
2k + 5 + δi,1 +

⌊
9i− 10

2

⌋
+

⌊
9j − 3i− 1

2

⌋)
= 2k + 5 +

⌊
9j − 4

2

⌋
> 2k + 2 + 5 +

⌊
9j − 10

2

⌋
. (2.36)

Thus, (2.35) and (2.36) ensure that (2.31) is true for k+ 1 and j ≥ 1 also. So, by induction, (2.31) is
true for all k ≥ 0 and j ≥ 1. Thus, the lemma is proved.
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The following lemma states two identities that involve the Rogers-Ramanujan continued fraction.

Lemma 2.7. [Hir17a, p. 85, (8.1.1) and p. 89, (8.4.3)] If R(q) :=
q1/5

R(q)
, where R(q) is defined in

(1.1), then

E1 = E25

(
R
(
q5
)
− q − q2

R (q5)

)
, (2.37)

R5(q)− q2

R5(q)
= 11q +

E6
1

E6
5

. (2.38)

Lemma 2.8. We have

H5

(
q−2E2

1

)
= −E2

5 , (2.39)

H7

(
q−4E2

1

)
= E2

7 , (2.40)

H11

(
q−10E2

1

)
= E2

11, (2.41)

H7

(
q−5E6

1

)
= 49qE6

7 . (2.42)

Proof. From [Ber91, p. 274, Theorem 12.1], we recall the following n-dissection of E1 for n ≡
±1 (mod 6). Let n ≥ 5 be an integer such that n ≡ ±1 (mod 6). Let n = 6m+ 1, then, we have

E1 = En2 ·

(−1)mq(n
2−1)/24 +

(n−1)/2∑
j=1

(−1)j+mq(j−m)(3j−3m−1)/2

(
q2jn, qn

2−2jn; qn
2
)
∞(

qjn, qn2−jn; qn2
)
∞

 . (2.43)

Let n = 6m− 1, then, we have

E1 = En2 ·

(−1)mq(n
2−1)/24 +

(n−1)/2∑
j=1

(−1)j+mq(j−m)(3j−3m+1)/2

(
q2jn, qn

2−2jn; qn
2
)
∞(

qjn, qn2−jn; qn2
)
∞

 . (2.44)

Note that (2.37) is a special case of (2.44) when n = 5. Raising the 5-, 7-, and 11-dissections of
E1 obtained from (2.43) and (2.44) to the relevant power, we obtain (2.39)–(2.42) easily.

The next lemma contains a modular equation of degree 7.

Lemma 2.9. [Hir17a, p. 76] If α :=
E1

q2E49
and β :=

E4
7

q7E4
49

, then

α7 = β2 −
(
7α3 + 35α2 + 49α

)
β − 7α6 − 21α5 − 49α4 − 147α3 − 343α2 − 343α.

From the above lemma, we have

H7

(
αn+7

)
=β2H7 (αn)−

(
7H7

(
αn+3

)
+ 35H7

(
αn+2

)
+ 49H7

(
αn+1

))
β

− 7H7

(
αn+6

)
− 21H7

(
αn+5

)
− 49H7

(
αn+4

)
− 147H7

(
αn+3

)
− 343H7

(
αn+2

)
− 343H7

(
αn+1

)
(2.45)

and from [Hir17a, pp. 76–77], we have the the initial cases

H7(1) = 1, H7(α) = −1, H7

(
α2
)

= 1, H7

(
α3
)

= −7,

H7

(
α4
)

= −4β − 7, H7

(
α5
)

= 10β + 49, H7

(
α6
)

= 49.
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Using (2.45) along with the above initial cases, we find that

H7

(
α24
)

= −1977326743− 16744
E24

7

q42E24
49

, (2.46)

which is a key identity for proving Theorem 1.5.
Finally, we have another important modular equation of degree 13 in the following lemma.

Lemma 2.10. [Hir17b, pp. 323–325] If ε :=
E1

qE169

and ρ :=
E2

13

q13E2
169

, then

ε13 =13ε12 − (13ρ+ 91)ε11 + (169ρ+ 507)ε10 −
(
78ρ2 + 1183ρ+ 2535

)
ε9

+
(
962ρ2 + 6253ρ+ 10985

)
ε8 −

(
260ρ3 + 6422ρ2 + 28561ρ+ 41743

)
ε7

+
(
2886ρ3 + 31096ρ2 + 112047ρ+ 142805

)
ε6

−
(
494ρ4 + 17238ρ3 + 123032ρ2 + 371293ρ+ 428415

)
ε5

+
(
4498ρ4 + 71318ρ3 + 404248ρ2 + 1056757ρ+ 1113879

)
ε4

−
(
468ρ5 + 21294ρ4 + 224094ρ3 + 1085318ρ2 + 2599051ρ+ 2599051

)
ε3

+
(
2652ρ5 + 58474ρ4 + 487734ρ3 + 2113514ρ2 + 4826809ρ+ 4826809

)
ε2

−
(
143ρ6 + 6084ρ5 + 83486ρ4 + 571220ρ3 + 2227758ρ2 + 4826809ρ+ 4826809

)
ε+ ρ7.

Again, from the above lemma, by deriving a recurrence relation similar to the previous one, and using
the following initial cases from [Hir17b, pp. 323–325],

H13(1) = 1, H13(ε) = 1, H13

(
ε2
)

= −2ρ− 1, H13

(
ε3
)

= 13,

H13

(
ε4
)

= 2ρ2 − 13, H13

(
ε5
)

= −20ρ2 − 130ρ− 169,

H13

(
ε6
)

= 10ρ3 − 169, H13

(
ε7
)

= 98ρ3 + 364ρ2 − 169,

H13

(
ε8
)

= −70ρ4 − 2197,

H13

(
ε9
)

= −162ρ4 + 108 · 13ρ3 + 72 · 132ρ2 + 18 · 133ρ+ 134,

H13

(
ε10
)

= 238ρ5 − 134,

H13

(
ε11
)

= −902ρ5 − 1672 · 13ρ4 − 792 · 132ρ3 − 198 · 133ρ2 − 22 · 134ρ− 135,

H13

(
ε12
)

= −418ρ6 − 135,

we obtain

H13

(
ε24
)

= −1792160394037− 577738
E24

13

q156E24
169

,

which is another key identity in order to prove Theorem 1.5.
We are now ready to prove the results of this paper.

3. Proofs of the main results

Proof of Theorem 1.1. We have

∞∑
n=0

b9;3(n)qn+1 = q
E3

9

E3
1

=
1

ζ
.
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Applying H3 in the above, we find that

∞∑
m=1

b9;3(3m− 1)q3m = H3

(
1

ζ

)
=

9

γ
= 9q3E

12
9

E12
3

.

Since m ≥ 1, replacing m by n+ 1, n ≥ 0, and then replacing q3 by q, we have

∞∑
n=0

b9;3(3n+ 2)qn = 9
E12

3

E12
1

,

which is the case k = 1 of (1.2). We prove (1.2) by employing induction on k. Suppose that (1.2) is
true for an integer k ≥ 1. Therefore, we have

∞∑
n=0

b9;3

(
3k · n+ 3k − 1

)
qn =

3k−1∑
i=1

xk,iq
i−1E

12i
3

E12i
1

,

which on rearranging gives

∞∑
n=0

b9;3

(
3k · n+ 3k − 1

)
qn+1 =

3k−1∑
i=1

xk,iq
iE

12i
3

E12i
1

.

Extracting the terms involving q3r for integers r ≥ 1, from the above, we obtain

∞∑
r=1

b9;3

(
3k · (3r − 1) + 3k − 1

)
q3r =

3k−1∑
i=1

xk,iH3

(
qi
E12i

3

E12i
1

)
.

By employing (2.24) in the above, we have

∞∑
r=1

b9;3

(
3k · (3r − 1) + 3k − 1

)
q3r =

3k−1∑
i=1

xk,i

3i∑
j=1

ai,jq
3jE

12j
9

E12j
3

=
3k∑
j=1

3k−1∑
i=1

xk,iai,j

 q3jE
12j
9

E12j
3

=
3k∑
j=1

xk+1,jq
3jE

12j
9

E12j
3

.

Replacing q3 by q and then replacing r by n+ 1, n ≥ 0 in the above, we have

∞∑
n=0

b9;3

(
3k+1 · n+ 3k+1 − 1

)
qn+1 =

3k∑
j=1

xk+1,jq
jE

12j
3

E12j
1

.

On rearranging the above, we finally obtain

∞∑
n=0

b9;3

(
3k+1 · n+ 3k+1 − 1

)
qn =

3k∑
j=1

xk+1,jq
j−1E

12j
3

E12j
1

.

So, (1.2) is true for k + 1 also. Therefore, by induction (1.2) is true for all k ≥ 1.
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Proof of Corollary 1.2. By (1.2) and (2.25), the infinite family of congruences (1.4) follows evidently.
Now, we prove (1.5) and (1.6). From (1.2), we have

∞∑
n=0

b9;3

(
3k · n+ 3k − 1

)
qn ≡

3k−1∑
j=1

xk,jq
j−1E

12j
3

E12j
1

(
mod 32k+1

)
. (3.47)

Due to (2.25), for all j ≥ 2, we have

ν(xk,j) > 2k + 1.

Therefore, with the aid of the above inequality, (3.47) reduces to

∞∑
n=0

b9;3

(
3k · n+ 3k − 1

)
qn ≡ xk,1

E12
3

E12
1

≡ xk,1
E12

3

E4
3

≡ xk,1E8
3

(
mod 32k+1

)
. (3.48)

Since, there is no term that involves q3n+1 in the right side of the above identity, (1.5) is obtained
extracting the terms involving q3n+1 from both sides of (3.48).

To prove (1.6), we first show that

∞∑
n=0

b9;3

(
3k+1 · 52m−1 · n+ 2 · 3k · 52m−1 − 1

)
qn ≡ xk,1qE8

5

(
mod 32k+1

)
, (3.49)

from which (1.6) is evident.
Extracting the terms that involve q3n from both sides of (3.48), we find that

∞∑
n=0

b9;3

(
3k+1 · n+ 3k − 1

)
qn ≡ xk,1E8

1

(
mod 32k+1

)
. (3.50)

Using (2.37), we obtain

H5

(
q−3E8

1

)
= −125q5f8

25.

Multiplying both sides of (3.50) by q−3 and then applying the above identity, we find that

∞∑
n=0

b9;3

(
3k+1 · (5n+ 3) + 3k − 1

)
qn ≡ −125xk,1qE

8
5 ≡ xk,1qE8

5

(
mod 32k+1

)
,

which shows that (3.49) is true for m = 1. Now, we assume that (3.49) is true for an integer m ≥ 1.
Therefore, extracting the terms involving q5n+1 from both sides of (3.49), we have

∞∑
n=0

b9;3

(
3k+1 · 52m · n+ 3k · 52m − 1

)
qn ≡ xk,1E8

1

(
mod 32k+1

)
.

Again, multiplying both sides of the above identity by q−3 and then extracting the terms that involve
q5n+3, we obtain

∞∑
n=0

b9;3

(
3k+1 · 52m+1 · n+ 2 · 3k · 52m+1 − 1

)
qn ≡ xk,1qE8

5

(
mod 32k+1

)
.

So, (3.49) is true for m+ 1 also. Thus, by induction (3.49) is true for all m ≥ 1.

Proof of Theorem 1.3. The proof is similar to the proof of Theorem 1.1 which can be accomplished
using Lemma 2.4. Therefore, we avoid the detail.
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Proof of Corollary 1.4. Congruence (1.7) is evident from Theorem 1.3 and Lemma 2.6.
Using the fact that ν(y2k,j) > 2k+ 7 for all j ≥ 2, which follows from (2.31) and Theorem 1.3, we

have

∞∑
n=0

b27;3

(
32k+3 · n+

32k+4 − 13

4

)
qn ≡ y2k,1

E9
3

E9
1

≡ y2k,1
E9

3

E3
3

≡ y2k,1E
6
3

(
mod 32k+7

)
. (3.51)

from which extracting the terms that involve q3n+1 and q3n+2, we obtain (1.8) and (1.9), respectively.
Using (2.34) with similar arguments, we can also find that

∞∑
n=0

b27;3

(
32k+4 · n+

32k+4 − 13

4

)
qn ≡ y2k+1,1

E3
3

E3
1

≡ y2k+1,1
E3

3

E3

≡ y2k+1,1E
2
3

(
mod 32k+6

)
, (3.52)

which gives (1.10) since there is no term involving q3n+1 in the right side of the above identity.
Proofs of (1.11) and (1.12), which are similar to that of (1.6), can be achieved using (3.52) and

(3.51), respectively, and Lemma 2.8.

Proof of Theorem 1.5. First, we prove (1.13) and (1.14). We have

∞∑
n=0

b9;3(3n+ 2)qn = 9
E12

3

E12
1

≡ 9E24
1 (mod 27).

Using (2.37) in the above identity, extracting the terms involving q5n+4, dividing both the resulting
sides by q4, and finally replacing q5 by q, we find that

∞∑
n=0

b9;3(15n+ 14)qn ≡ 9E24
5

(
4830

(
R20(q) +

q8

R20(q)

)
− 212520q

(
R15(q)− q6

R15(q)

)
+ 3487260q2

(
R10(q) +

q4

R10(q)

)
− 25077360q3

(
R5(q)− q2

R5(q)

)
+ 14903725q4

)
(mod 27).

Invoking (2.38) in the above identity, we have

∞∑
n=0

b9;3(15n+ 14)qn ≡ 43470E24
1 − 439453125q4E24

5 (mod 27)

≡ 9q4E24
5 (mod 27).

Extracting the terms that involve q5n+r, r ∈ {0, 1, 2, 3} from the above identity, we readily obtain
(1.13). On the other hand, extraction of the terms involving q5n+4 from the above will give rise to
the following recurrence

b9;3(75n+ 74) ≡ b9;3(3n+ 2) (mod 27),

which by induction implies (1.14).
Now, we prove the remaining congruences. Proofs of (1.15) and (1.16) and that of (1.17) and

(1.18) are similar. Therefore, we prove (1.15) and (1.16) only. We have

∞∑
n=0

b9;3(3n+ 2)qn+1 = 9q
E12

3

E12
1

≡ 9qE24
1 ≡ 9q49E24

49α
24 (mod 27).
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Applying H7 and then using (2.46) in the above identity, we find that

∞∑
m=1

b9;3(3(7m− 1) + 2)q7m ≡ 9q49E24
49H7

(
α24
)

≡ 18
(
q7E24

7 + q49E24
49

)
(mod 27).

Since m ≥ 1, replacing m by n+ 1, n ≥ 0, and then replacing q7 by q, we have

∞∑
n=0

b9;3(3(7n+ 6) + 2)qn ≡ 18
(
E24

1 + q6E24
7

)
(mod 27),

which can be written as

∞∑
n=0

b9;3(21n+ 20)qn ≡ 2
∞∑
n=0

b9;3(3n+ 2)qn + 2
∞∑
n=0

b9;3(3n+ 2)q7n+6 (mod 27).

Extracting the terms involving q7n+r, r ∈ {0, 1, 2, 3, 4, 5} and q7n+6 from the above, we deduce (1.15)
and (1.16), respectively.

4. Concluding remarks

Based on computational evidences, we present the following conjectures.

Conjecture 4.1. If k ≥ 1 is an even integer, then for integers ` ≥ 0 and n ≥ 0, we have

b3k;3

(
3`+k−1 · n+ 3`+k−1 − 3k − 1

8

)
≡ 0

(
mod 33k/2+2`−1

)
.

Conjecture 4.2. If k ≥ 1 is an odd integer, then for integers ` ≥ 0 and n ≥ 0, we have

b3k;3

(
32`+k · n+

2 · 32`+k+1 − 3k + 1

8

)
≡ 0

(
mod 33(k−1)/2+2`+2

)
.
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