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A survey on t-core partitions
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In memory of Srinivasa Ramanujan

Abstract. t-core partitions have played important roles in the theory of partitions and related areas. In this survey, we briefly

summarize interesting and important results on t-cores from classical results like how to obtain a generating function to recent
results like simultaneous cores. Since there have been numerous studies on t-cores, it is infeasible to survey all the interesting

results. Thus, we mainly focus on the roles of t-cores in number theoretic aspects of partition theory. This includes the modularity
of t-core partition generating functions, the existence of t-core partitions, asymptotic formulas and arithmetic properties of t-core

partitions, and combinatorial and number theoretic aspects of simultaneous core partitions. We also explain some applications

of t-core partitions, which include relations between core partitions and self-conjugate core partitions, a t-core crank explaining
Ramanujan’s partition congruences, and relations with class numbers.
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1. Introduction

A partition λ = (λ1, λ2, . . . , λ`) of n is a non-increasing sequence of natural numbers whose sum is n.
Let |λ| denote the size of λ,

∑
λi. Each λi is called a part of λ. Partitions are represented as Ferrers

graphs (or Young diagrams), where the summands in the partition are arranged in rows. For example,
the below Ferrers graph is for λ = (8, 6, 2, 1) of 17 (see Figure 1). The conjugate of a partition λ,
denoted by λc, is the partition whose Ferrers graph is the reflection of the Ferrers graph of λ along
the diagonal. A partition λ is called self-conjugate if λ = λc.

6

Figure 1: The Ferrers graph of the partition (8, 6, 2, 1) and a hook length

For a given partition λ, a box at (i, j) in the Ferrers diagram of λ is the box in the ith row
from the top and the jth column from the left. The hook of a box at (i, j) contains the boxes at
{(k, j) | k ≥ i} ∪ {(i, k) | k ≥ j}. The hook length hi,j of a box at (i, j) is the number of boxes in the
hook containing that box. In other words, the hook length is the number of boxes directly right and
directly below the box, plus 1 for the box itself.

For a positive integer t, a partition is called a t-core if none of the hook lengths are multiples of
t. The name t-core comes from that it is the remaining part after deleting t-rim hooks as we will see
in Section 2.A. soon.
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It is doubtful that Ramanujan knew the notion of t-core partitions, but the study of t-core par-
titions is deeply related with the works of Ramanujan. Let p(n) be the number of partitions of n.
Ramanujan’s striking three congruences

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11)

are arguably some of the most impactful results in the theory of partitions [And88]. In particular,
“Ramanujan’s most beautiful identity” (in the words of G.H. Hardy [Ram00, p. xxxv]) states that

∑
n≥0

p(5n+ 4)qn = 5
(q5; q5)5

∞
(q; q)6

∞
,

where here and in the sequel, we will use the following standard q-series notation:

(a; q)0 := 1,

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1), n ≥ 1,

(a; q)∞ := lim
n→∞

(a; q)n, |q| < 1.

The “Ramanujan’s most beautiful identity” can be proven from the fact that a generating function
for 5-core partitions is a Hecke eigenform. More specifically, let f5(q) be a generating function for the
number of 5-core partitions of n, c5(n),

f5(q) :=
∑
n≥0

c5(n)qn+1 = q
(q5; q5)5

∞
(q; q)∞

and Up be an operator defined by the q-expansion f |Up =
∑
a(pn)qn for f =

∑
a(n)qn. In Section 2,

we give more details on how to obtain a generating function. We also introduce modular forms and
operators on them. The theory of modular forms implies that f5|U5 = 5f5 which is equivalent to

q
(q5; q5)5

∞
(q; q)∞

∣∣U5 = 5q
(q5; q5)5

∞
(q; q)∞

,(q5; q5)5
∞
∑
n≥0

p(n)qn+1

∣∣U5 = 5q
(q5; q5)5

∞
(q; q)∞

,

(q; q)5
∞
∑
n≥1

p(5n− 1)qn = 5q
(q5; q5)5

∞
(q; q)∞

,

∑
n≥0

p(5n+ 4)qn = 5
(q5; q5)5

∞
(q; q)6

∞
.

In this sense, Ramanujan’s partition congruence p(5n+ 4) ≡ 0 (mod 5) follows from the fact that
c5(5n+ 4) ≡ 0 (mod 5) and this connection plays an important role to construct the t-core crank in
Garvan, Kim, and Stanton’s work [GKS90].

Moreover, Ramanujan’s modular equations imply many relations among t-core partitions. For
example, Baruah and Berndt [BaBe07, Theorem 4.1] obtained a linear relation between the number
of 3-core partitions of n, c3(n),

c3(4n+ 1) = c3(n)
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from Ramanujan’s modular equation [Ber91, Entry 5(i), p. 230](
(1− β)3

1− α

)1/8

−
(
β3

α

)1/8

= 1,

where β has degree 3 over α. (See Section 3.B. for the definition of a modular equation, α, β, and
the degree.)

Core partitions significantly contribute in various areas of mathematics. In this survey, we will
focus on partition theoretic aspects of t-core partitions and connections with other number theoretic
objects. For other aspects of t-core partitions, one may see representation theory of the symmetric
group [GrOn96, JaKe81, Ols93] and symmetric functions [Sta99].

The paper is organized as follows. In Section 2, we explain how to obtain a generating function
for the number of t-core partitions and the modularity of a generating function. In Section 3, we
survey results on t-core partitions. These include the existence of t-core partitions, linear relations
among t-cores from Ramanujan’s modular equations, asymptotic formulas to estimate the growth of
t-core partitions, and arithmetic properties of t-cores. In Section 4, we introduce simultaneous core
partitions, which have recently investigated extensively. In Section 5, we give some applications of t-
cores in the theory of partitions and number theory. Among many, we choose a relation between core
partitions and self-conjugate core partitions, Ramanujan’s partition congruences for t-core cranks,
and class numbers of quadratic forms. We conclude the survey with some remarks in Section 6.

2. Generating function and modularity

In this section, we explain how to find a generating function for t-core partitions and the modularity
of a generating function.

2.A. Generating function

For a partition λ, it is clear that if λ has a hook length t, then λ is not a t-core partition. Therefore,
we construct a t-core partition from λ by removing boxes of hook length t. From [JaKe81, Section
2.7], it is known that we can remove a box of hook length t by deleting a rim hook of that box. A rim
hook of a box is determined from boxes of the rim in the Ferrers graph of λ between the two ends of
the hook of that box.

Example 2.1. Let λ = (8, 6, 2, 1). In Figure 2, shaded areas are the hook and the corresponding rim
hook of a box at (1, 4) in λ.

11 9 7 6 5 4 2 1

8 6 4 3 2 1

3 1

1

11 9 7 6 5 4 2 1

8 6 4 3 2 1

3 1

1

Figure 2: The hook and the corresponding rim hook of the partition (8, 6, 2, 1)

To construct a t-core partition from λ, it may be necessary to remove multiple rim hooks. We call
the resulting partition λ(t), the t-core of λ.

Example 2.2. Let λ = (8, 6, 2, 1). Since the partition λ has a box of hook length 6, we remove a rim
hook of length 6 from λ. There are two ways of removing a rim hook of length 6 from λ as shown
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in Figure 3. The new partition obtained by deleting a rim hook of length 6 from λ still has a box
of hook length 6, so we proceed the same procedure until we remove all rim hooks of length 6. As
one can see, the order in which one removes rim hooks does not change the resulting core partition
λ(6) = (2, 1, 1, 1).

11 9 7 6 5 4 2 1

8 6 4 3 2 1

3 1

1

8 6 4 2 1

5 3 1

3 1

1

5 1

3

2

1

11 9 7 6 5 4 2 1

8 6 4 3 2 1

3 1

1

11 7 6 5 4 3 2 1

3

2

1

5 1

3

2

1

Figure 3: The process of obtaining the 6-core of the partition (8, 6, 2, 1)

To simplify the removing process, we use the abacus diagram from James [Jam78]. The t-abacus
diagram is a diagram with infinitely many rows labeled by 0, 1, 2, . . . and t columns labeled by
0, 1, . . . , t − 1. We label the positions by 0, 1, 2, . . . from left to right and from bottom to top. For
a partition λ = (λ1, λ2, . . . , λ`), we denote the beta-set of λ, β(λ) = {β1, β2, . . . , β`}, the set of the
first column hook lengths of λ. We now define the t-abacus of λ, which is obtained from the t-abacus
diagram by placing a bead on each position labeled by the elements in β(λ). A position without bead
is called a spacer.

Example 2.3. Let λ = (11, 10, 9, 6, 4) and β(λ) = {15, 13, 11, 7, 4}. The 6-abacus of λ is given in
Figure 4.

15 14 13 12 10 9 7 6 5 3 1

13 12 11 10 8 7 5 4 3 1

11 10 9 8 6 5 3 2 1

7 6 5 4 2 1

4 3 2 1
0 1 2 3 4 5
6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23

...

Figure 4: The 6-abacus of the partition (11, 10, 9, 6, 4)

The following lemma is a key to find λ(t).

Lemma 2.4. [JaKe81, Lemma 2.7.13] For a partition λ = (λ1, λ2, . . . , λ`), there exists a hook of
length t in λ if and only if there exists βi ∈ β(λ) such that βi > t and βi − t /∈ β(λ). Furthermore,
β(λ) ∪ {βi − t} \ {βi} is the beta-set of µ, where µ is a partition which is constructed from λ by
removing a rim hook of length t.

By Lemma 2.4, the action to remove a rim hook of length t in the Ferrers graph of λ is equivalent
to the action to slide down a bead in the t-abacus of λ. Moreover, if there is no βi ∈ β(λ) such
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that βi > t and βi − t /∈ β(λ), λ is a t-core partition. Therefore, λ(t) is determined by sliding down
all beads in the t-abacus of λ. In the above example, β(λ(6)) is given by {7, 5, 4, 3, 1} and then
λ(6) = (3, 2, 2, 2, 1).

Let (λ(0), λ(1), . . . , λ(t−1)) be the t-quotient of λ, where λ(i) is the partition whose jth part is k

if there are k spacers below the jth bead from the bottom in column i. We note that
∑t−1

i=0 |λ(i)| is
the number of removed rim hooks in the Ferrers graph of λ. In the above example, λ(1) = (1, 1),
λ(3) = (2), λ(5) = (1), and λ(0) = λ(2) = λ(4) = ∅.

From [JaKe81, Theorem 2.7.30], a partition λ is uniquely determined by its t-core λ(t) and its
t-quotient (λ(0), λ(1), . . . , λ(t−1)). Therefore, there exists a bijection φ : P → Pt × Pt by φ(λ) =

{λ(t), (λ(0), λ(1), . . . , λ(t−1))} with |λ| = |λ(t)| + t
∑t−1

i=0 |λ(i)|. The injectivity of the map φ comes im-
mediately from the definition. However, it takes time to check the surjectivity of this map thoroughly.
We leave it to readers (see [JaKe81, Section 2.7]).

This bijection can be expressed as the following generating function identity. Let ct(n) be the
number of t-core partitions of n, then a generating function of ct(n) is

∞∑
n=0

ct(n)qn =
(qt; qt)t∞
(q; q)∞

. (2.1)

In [GKS90, Section 2], Garvan, Kim, and Stanton gave an alternative proof of (2.1). They also
found a generating function of self-conjugate t-core partitions (see [GKS90, Section 7]).

Let sct(n) be the number of self-conjugate t-core partitions of n. Then,

∞∑
n=0

sc2t(n)qn = (−q; q2)∞(q4t; q4t)t∞ and
∞∑
n=0

sc2t+1(n)qn =
(−q; q2)∞(q4t+2; q4t+2)t∞

(−q2t+1; q4t+2)∞
. (2.2)

2.B. Modularity

Most arithmetic properties of t-core partitions follow from the modularity of a generating function.
To see this, we first let δt = t2−1

24 and η(z) be the Dedekind’s eta function defined by η(z) = q
1
24 (q; q)∞,

where q = exp(2πiz) and z ∈ H, the upper half-plane. Then, we can rewrite a generating function
for t-cores as an eta-quotient ∑

n≥0

ct(n)qn+δt =
ηt(tz)

η(z)
.

The Dedekind’s eta function is an example of weight 1/2 modular form and the modularity of eta-
quotients has been studied extensively. Once we establish the modularity of a generating function,
one employs various systematic techniques from the theory of modular forms. For the sake of brevity,
we only briefly introduce modular forms of integral weight. For additional basic properties of modular
forms, see [Ono04, Chaps. 1, 2, and 3].

Define Γ = SL2(Z), Γ0(N) :=

{(
a b
c d

)
∈ Γ : c ≡ 0 (mod N)

}
. Let Mk(Γ) (resp. Sk(Γ)) denote

the vector space of holomorphic forms (resp. cusp forms) of weight k. Let Mk(Γ0(N), χ) (resp.
Sk(Γ0(N), χ)) denote the vector space of holomorphic forms (resp. cusp forms) on Γ0(N) with a
character χ.

For a prime p, we need to define the Up-operator and the Hecke operator Tp onMk(Γ0(N), χ). If
f(q) has the Fourier expansion f(q) =

∑
a(n)qn, then

Upf :=
∑

a(pn)qn and Tpf :=
∑(

a(pn) + a(n/p)χ(p)pk−1
)
qn.

It is a standard fact that Tpf ∈ Mk(Γ0(N), χ) (resp. Sk(Γ0(N), χ)) if f ∈ Mk(Γ0(N), χ) (resp.
Sk(Γ0(N), χ)). We say that f(z) is an eigenform of Tp if there is a λp ∈ C such that Tpf = λpf . We
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call f(z) ∈ Mk(Γ0(N), χ) a Hecke eigenform if f(z) is an eigenform of Tp for all primes p - N . The
space of cusp forms Sk(Γ0(N), χ) has a subspace Snewk (Γ0(N), χ) and we call the Hecke eigenforms in
Snewk (Γ0(N), χ) newforms. Throughout this paper, we assume that each newform g(z) is normalized
so that the Fourier coefficient of q is 1 in g(z). It is well-known that Snewk (Γ0(N), χ) has a basis
consisting of newforms, and if g(z) ∈ Snewk (Γ0(N), χ) is a newform and g(z) has a Fourier expansion

of the form g(z) =
∑∞

n=1 b(n)qn, then |b(p)| ≤ 2p
k−1
2 for all primes p. A special case of this bound

was first proposed by Ramanujan [Ram1916], which claims that |τ(p)| ≤ 2p11/2, where τ(n) is the
Ramanujan’s tau function. A general bound was first proved by P. Deligne [Del75]. For t-core
partition generating functions, one can check that (see [Ono04, Section 1.4] for example),

fp =
ηp(pz)

η(z)
∈M p−1

2
(Γ0(p), χp)

for a prime p > 3 and χp =
(
·
p

)
is a Legendre symbol. For a non-prime t, one needs some extra

works to see the modularity. For example, a 4-core partition generating function∑
n≥0

c4(n)q8n+5 =
η4(32z)

η(8z)

is a modular form of weight 3/2 and c4(n) can be written in terms of a class number [OnSz97]. As we
will see later, the modularity of generating functions is a crucial object to learn asymptotic behaviors
of core partitions, linear relations, and more.

3. Results on t-cores

In this section, we start with the discussion on the existence of t-core partitions. In Section 3.2, we
give relations among t-core partitions derived from Ramanujan’s modular equations. In Sections 3.3
and 3.4, we discuss how fast the number ct(n) grows and investigate some arithmetic properties of
them.

3.A. Existence of t-cores

Due to a connection to representation theory (see [GrOn96, JaKe81]), it is natural to ask whether
there is a t-core partitions of n. The positivity of ct(n) is not clear at all from its generating function.
For t = 2, from the Gauss identity, we find that∑

n≥0

c2(n)qn =
(q2; q2)2

∞
(q; q)∞

=
∑
n≥0

qn(n+1)/2,

which says that c2(n) > 0 if and only if n is a triangular number. For t = 3, a generating function is
essentially an Eisenstein series [GrOn96, Section 3, p. 340],∑

n≥0

c3(n)q3n+1 =
η3(9z)

η(3z)
=
∑
n≥0

σ3(n)qn,

where σ3(n) is defined by

σ3(n) =

{
0, if n ≡ 0 (mod 3)∑

d|n
(
d
3

)
, otherwise.

This implies that c3(n) = σ3(3n+ 1), which gives that c3(n) > 0 if and only if there is no prime p ≡ 2
(mod 3) with odd ordp(3n + 1), where ordp(3n + 1) is the exponent of the largest power of p that
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divides 3n+ 1. While c2(n) and c3(n) might be zero, it had been conjectured that ct(n) > 0 for t ≥ 4.
The first few cases were proven by Erdmann and Michler [ErMi77] and by Ono [Ono94, Ono95] case
by case. Finally, Granville and Ono [GrOn96, Theorem 1] succeeded to prove the positivity conjecture
for the number of t-core partitions.

Theorem 3.1. If t ≥ 4, then ct(n) > 0 for every nonnegative integer n.

The key ingredient of the proof is a new generating function of Garvan, Kim, and Stanton [GKS90],
which gives

ct(n) =

∣∣∣∣∣
{

(x0, x1, . . . , xt−1) ∈ Zt : n =
t

2

t−1∑
i=0

x2
i +

t−1∑
i=0

ixi with x0 + x1 + · · ·+ xt−1 = 0

}∣∣∣∣∣ .
For t ≥ 17, they proved the positivity by finding a solution for the above quadratic equation. For
t < 17, they proved the positivity by employing the theory of modular forms.

In the case of self-conjugate t-cores, Baldwin, Depweg, Ford, Kunin, and Sze [BDFKS06, Theorem
1] proved the existence.

Theorem 3.2. For t = 8 or t ≥ 10, sct(n) > 0 for all integers n > 2.

When t ≤ 7 or t = 9, there is a positive integer n such that sct(n) = 0. For example, one can

check that sc9(n) = 0 for a positive integer k and n = 4k−10
3 [BDFKS06, Proposition 14].

3.B. Modular equation and t-cores

Ramanujan recorded lots of modular equations in his notebooks and lost notebook (see [Ber91,
Ram88]). Various relations on t-cores follow from Ramanujan’s modular equations. Before stat-
ing t-core partition results, we first give a definition of modular equations briefly. We recommend
Berndt’s book [Ber06, Chapter 6] for an introduction to the theory of modular equations. The com-
plete elliptic integral of the first kind associated with the modulus k, 0 < k < 1, is defined by

K := K(k) :=

∫ π/2

0

dθ√
1− k2 sin2 θ

.

The complementary modulus k′ is defined by k′ :=
√

1− k2 and we set K ′ := K(k′). Let K, K ′, L,
and L′ be the complete elliptic integrals of the first kind associated with the moduli k, k′, `, and `′,
respectively. If

n
K ′

K
=
L′

L
(3.3)

holds for a positive integer n, then a modular equation of degree n is a relation between the moduli k
and ` that is implied by (3.3). Ramanujan recorded modular equations using α = k2 and β = `2. We
say β has degree n over α. Modular equations are deeply related with q-series and many important
q-series can be expressed in terms of modular equations. For example, if q = exp(−πK ′/K), f(−q) =
(q; q)∞, zα := 2F1(1/2, 1/2; 1;α), β has degree n over α, and zβ := 2F1(1/2, 1/2; 1;β), then

f(−q) =

√
zαα

1/24(1− α)1/6

21/6q1/24
=

√
zββ

1/24(1− β)1/6

21/6q1/24
,

where 2F1(a, b; c; z) is the hypergeometric series defined by

2F1(a, b; c; z) =
∑
n≥0

a(a+ 1) · · · (a+ n− 1)b(b+ 1) · · · (b+ n− 1)

n!c(c+ 1) · · · (c+ n− 1)
zn.
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Baruah and Berndt [BaBe07] obtained several core partition identities from Ramanujan’s modular
equations. Beside the one in the introduction, we give one more example. Baruah and Berndt
[BaBe07, Theorem 4.2] proved that

c5(4n+ 3) = c5(2n+ 1) + 2c5(n) (3.4)

from modular equations of degree 5 [Ber91, p. 280]. We remark that Golze [Gol16] combinatorially
proved that

c3(n) = c3

(
pkn+

pk − 1

3

)
for every prime p ≡ 2 (mod 3) and positive even integers k.

On the other hand, Berkovich and Yesilyurt [BeYe08, Theorem 1.1] proved that

c7(2n+ 2) > 2c7(n) (3.5)

from modular equations of degree 7 [Ber91, Entry 19, p. 314]:(
1

2
(1 + (αβ)1/2 + [(1− α)(1− β)]1/2)

)1/2

= 1− (αβ(1− α)(1− β))1/2,(
(1− β)7

1− α

)1/8

−
(
β7

α

)1/8

=
zα
zβ

(
1

2
(1 + (αβ)1/2 + [(1− α)(1− β)]1/2)

)1/2

.

Linear relations and the above inequality follow also from the theory of modular forms. In partic-
ular, when t is small, the dimensions of the spaces of modular forms containing the t-core partition
generating function are small and thus one can easily find the image of Hecke operators which is
very helpful to obtain these type of relations. For example, f5 = η5(5z)/η(z) ∈ M2(Γ0(5), χ5) and
dimM2(Γ0(5), χ5) = 1, therefore one can readily find that T2(f5) = f5 by matching the first coeffi-
cient of q-expansions. Therefore, T2(T2f5) = f5 which implies (3.4). Similarly, f7 = η7(7z)/η(z) ∈
M3(Γ0(7), χ7) and dimM3(Γ0(7), χ7) = 3. Moreover one can find that{

η7(z)

η(7z)
, η3(z)η3(7z),

η7(7z)

η(z)

}
is a basis for M3(Γ0(7), χ7). Since η7(z)

η(7z) is an Eisenstein series and η3(z)η3(7z) is a CM form, one

can find the exact formulas from the literature, which leads the inequality (3.5) and more. For more
details, one may see [GKS90, GrOn96, Kim10, KiRo14]. One can also systematically obtain modular
equations involving core partition generating functions using the theory of modular functions. For
this direction, one may consult with Park [Par14] for instance.

3.C. Asymptotic results

Since Hardy and Ramanujan obtained an asymptotic formula for the partition function, there have
been numerous studies on how fast partition functions grow. The growth of t-core partitions is
particularly interesting in the sense that the existence of t-core partitions and inequalities among core
partitions have been notoriously hard to prove. Using the circle method, Anderson [And08, Theorem
2] obtained an asymptotic formula: for t ≥ 6,

ct(n) =
(2π)(t−1)/2At(n)

tt/2Γ((t− 1)/2)
(n+ (t2 − 1)/24)(t−3)/2 +O(n(t−1)/4),

where Γ(x) is the gamma function and At(n) is an explicit sum involving 24th roots of unity coming
from the transformation formula for the Dedekind eta function. For precise definition, see [And08].
One of her goals was to prove Stanton’s conjecture of which general case remain open until now.
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Conjecture 3.3. [Sta99] If t ≥ 4 and n 6= t+ 1, then ct+1(n) ≥ ct(n).

Anderson’s asymptotic formula implies that Stanton’s conjecture is true asymptotically.

Theorem 3.4. [And08, Theorem 1] If 4 ≤ t1 ≤ t2, then ct1(n) < ct2(n) for sufficiently large n.

Granville and Ono [GrOn96] used the fact that

fp =
ηp(pz)

η(z)
= epEp(z) +

∑
aigi(z),

where ep is the constant defined by

1

ep
=

(
p−3

2

)
!p

p
2

(2π)
p−1
2

L

(
p− 1

2
, χp

)
,

Ep(z) is an Eisenstein series, and gi(z) are newforms in the space Snew(p−1)/2(Γ0(p), χp). As Fourier

coefficients of Eisenstein series Ep(z) is known and the coefficients of newforms are bounded by the
result of Deligne, the above decomposition gives the following formula

cp(n− (p2 − 1)/24) = ap
∑
d|n

(
n

p

)(n
d

)
d(p−3)/2 +O(n(p−1)/4+ε).

Later, Kim and Rouse [KiRo14, Theorem 1.1] made the above estimate effective. They also obtained
an effective version of Anderson’s asymptotic formula and confirmed that Stanton’s conjecture is true
up to t = 198 [KiRo14, Corollary 1.6].

For self-conjugate partitions, Hanusa and Nath made an analogous conjecture corresponding to
Stanton’s conjecture.

Conjecture 3.5. [HaNa13, Conjectures 1.1 and 1.2] Let t ≥ 9 or t = 6, 8, then sct+2(n) ≥ sct(n)
for all n ≥ 20 (resp. 56) if t is even (resp. odd).

Alpoge [Alp14, Theorem 3] obtained an asymptotic formula for the number of self-conjugate t-core
partitions by employing the circle method.

sct(n) =
(2π)t/4B(t)

(2t)t/4Γ(t/4)
(n+ (t2 − 1)/24)t/4−1 +O(nt/8), if t is even,

sct(n) =
(2π)(t−1)/4C(t)

(2t)(t−1)/4Γ((t− 1)/4)
(n+ (t2 − 1)/24)(t−1)/4−1 +O(n(t−1)/8), if t is odd.

Using the above asymptotic formulas, Alpoge [Alp14, Theorem 2] confirmed that Hanusa and
Nath’s conjecture holds for sufficiently large n.

3.D. Arithmetic of t-cores

Inspired by Ramanujan’s three congruences, congruence properties of ct(n) have been established.
Garvan, Kim, and Stanton [GKS90, Corollary 1] showed that, for a positive integer a, a nonnegative
integer n, and for each ` = 5, 7, 11,

c`(`
an− δ`) ≡ 0 (mod `a)
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with δ` = `2−1
24 . Granville and Ono [GrOn96, Proposition 3] found similar congruence relations using

Ramanujan’s congruences. With the same setting that Garvan, Kim, and Stanton had, they proved
that

c5a(5an− δ5,a) ≡ 0 (mod 5a),

c7a(7an− δ7,a) ≡ 0 (mod 7b
a
2
c+1),

c11a(11an− δ11,a) ≡ 0 (mod 11a),

where δ`,a ≡ 1
24 (mod `a). Using the technique that Ono [Ono00] developed, Chen [Che09, Theorem

2] proved that, for all two coprime integers m and n,

c2t

(
mn− 4t−1

3

8

)
≡ 0 (mod 2`),

where t and ` are positive integers and m is a square-free odd integer that has at least `(4t−1)
3 prime

divisors.
Hirschhorn and Sellers [HiSe99] conjectured that, for positive integers t ≥ 2, k = 0, 2, and all

positive integers n,

c2t

(
32t−1−1(24n+ 8k + 7)− 4t−1

3

8

)
≡ 0 (mod 2).

The conjecture was proved by Hirschhorn, Kolitsch, and Sellers [HiSe96, HiSe99, KoSe99] when t =
2, 3, 4 and fully proved by Chen [Che13, Theorem 2]. Applying Hecke operators on some space of
modular forms, Boylan [Boy02, Theorem 1.1] proved that, for any positive integer t and distinct odd
primes p1, p2, . . . , p 4t−1

3

such that gcd(n,
∏
pi) = 1,

c2t

p1p2 · · · p 4t−1
3

n− 4t−1
3

8

 ≡ 0 (mod 2).

Moreover, Boylan [Boy02, Theorem 1.2] also proved that for all positive integers n and for any odd
prime p such that gcd(n, p) = 1,

c2t

(
p22t−j−1n− 4t−1

3

8

)
≡ 0 (mod 2),

where j = 1, 2, 3, or 4 depending on p and t. Chen [Che13, Theorem 3] improved Boylan’s congruence
equation: for a positive integer t and distinct odd primes p1, p2, . . . , p2t−1 with gcd(n,

∏
pi) = 1,

c2t

(
p1p2 · · · p2t−1 n− 4t−1

3

8

)
≡ 0 (mod 2).

4. Simultaneous cores

For positive integers t1, t2, . . . , tp, a partition is called a (t1, t2, . . . , tp)-core partition if it is a t1-core, a
t2-core, . . . , and a tp-core simultaneously. Since (k(t− 1) + 1, . . . , 2(t− 1) + 1, (t− 1) + 1, 1) is a t-core
partition for all positive integers k, the number of t-core partitions is infinite. However, it is known
that, for gcd(t1, t2, . . . , tp) = 1, the number of (t1, t2, . . . , tp)-core partitions is finite. Otherwise, the
number of (t1, t2, . . . , tp)-cores is infinite since gcd(t1, t2, . . . , tp)-cores are also (t1, t2, . . . , tp)-cores.

In Section 4.A., we list results regarding simultaneous (s, t)-core partitions for two coprime integers
s and t, and Section 4.B. contains more general results on simultaneous core partitions.
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4.A. Results on (s, t)-cores

When gcd(s, t) = 1, Anderson proved that the number of (s, t)-core partitions is finite and it is a
rational Catalan number.

Theorem 4.1. [And02, Theorem 1] For two coprime positive integers s and t, the number of (s, t)-
core partitions is

Cats,t =
1

s+ t

(
s+ t

s

)
.

Since the number of (s, t)-core partitions is finite, we now restrict the set of (s, t)-core partitions
by certain conditions and count them. It is natural to consider how many (s, t)-core partitions with
additional restrictions are. The first restriction is allowing only “distinct” parts in the partition.
A partition is called distinct if all the parts are different. Amdeberhan [Amd12, Conjecture 11.10]
proposed two interesting conjectures. The first conjecture is that the number of (t, t+1)-core partitions
into distinct parts is Ft+1, the (t+1)st Fibonacci number. The second one is that, for an odd number
t, the number of (t, t + 2)-core partitions into distinct parts is 2t−1. Straub [Str16, Theorem 2.1]
and Xiong [Xio18, Theorem 1.2] independently proved the first conjecture. Moreover, Straub [Str16,
Theorem 1.4] found a recurrence relation of the number E−d (t) of (t, dt−1)-core partitions into distinct
parts:

E−d (1) = 1, E−d (2) = d, and, for t ≥ 3, E−d (t) = E−d (t− 1) + dE−d (t− 2).

Also, Nath and Sellers [NaSe17, Theorem 15] gave the result on the number E+
d (t) of (t, dt+1)-core

partitions into distinct parts:

E+
d (1) = 1, E+

d (2) = d+ 1, and, for t ≥ 3, E+
d (t) = E+

d (t− 1) + dE+
d (t− 2).

The second conjecture was proved in three different ways by Yan, Qin, Jin, and Zhou [YQJZ17,
Conjecture 1.1], by Zaleski and Zeilberger [ZaZe17, Theorem 0], and by Baek, Nam, and Yu [BNY18,
Corollary 1.2]. To prove the conjecture, Yan, Qin, Jin, and Zhou manipulated formulas involving
binomials and Catalan numbers by combining bijection arguments, and Zaleski and Zeilberger used
their symbolic-computational algorithms to compute the number of (t, t+ 2)-cores into distinct parts
and the first 22 moments of the distribution of sizes of the (t, t+ 2)-cores into distinct parts. Inspired
by Yan, Qin, Jin, and Zhou’s bijective arguments, Baek, Nam, and Yu found the first direct bijective
proof of the result.

We say that a partition λ = (λ1, λ2, . . . , λ`) has d-distinct parts if λi−λi+1 ≥ d for each i. For any
positive integer d, let Nd,r(t) be the number of (t, t + r)-core partitions with d-distinct parts. Sahin
[Sah18, Theorem 2.2] showed the following recurrence relation:

Nd,1(t) =

{
t if 1 ≤ t ≤ d+ 1,

Nd,1(t− 1) +Nd,1(t− d− 1) if t ≥ d+ 2.

Kravitz [Kra19, Theorem 2.9] found a general version of Sahin’s result for any positive integers
r ≤ d and any positive integer t. We have

Nd,r(t) =

d t−1
d+1e∑
i=0

(
t+ d− di− 1

i

)
+ (r − 1)

d t−2d−1
d+1 e∑
i=0

(
t− d− di− 1

i

)
.

Now we count the number of self-conjugate core partitions. Ford, Mai, and Sze [FMS09, Theorem
1] proved that, for two coprime positive integers s and t, the number of self-conjugate (s, t)-core
partitions is (

b s2c+ b t2c
b s2c

)
.
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In addition to counting the number of simultaneous core partitions, mathematicians observed
the size of simultaneous core partitions. The study of the size of core partitions was initiated by
Armstrong, Hanusa, and Jones. They conjectured that,

Conjecture 4.2. [AHJ14, Conjecture 2.6] For two coprime positive integers s and t, the average size
of an (s, t)-core partition is

1

24
(s+ t+ 1)(s− 1)(t− 1).

The average size of a self-conjugate (s, t)-core partition is also the same as above.

In the aspect of an (s, t)-core partition, this conjecture was partially proved by Stanley and Zanello
[StZa15, Theorem 2.3] when t = s + 1. Aggarwal [Agg15, Theorem 1.2] generalized the proof to
the case when t ≡ 1 (mod s). Later, Johnson [Joh18, Theorem 7] gave the full proof using Ehrhart
theory. The self-conjugate part of the conjecture was proved by Chen, Huang, and Wang [CHW16,
Theorem 2.1].

Next topic is about the largest size of simultaneous core partitions. Since there are only finite
number of simultaneous core partitions, one may ask how large the size could be. Olsson and Stanton
[OlSt07, Theorem 4.1] showed that, when s and t are coprime, there is a unique largest (s, t)-core
partition of size

1

24
(s2 − 1)(t2 − 1),

which turns out to be self-conjugate. Adding a condition to be distinct, Yan, Qin, Jin, and Zhou
[YQJZ17, Conjecture 1.2] evaluated the largest size of a (t, t + 2)-core partition into distinct parts,
which is

1

384
(t2 − 1)(t+ 3)(5t+ 17).

Nam and Yu [NaYu21, Theorem 1.1] considered the parity of the parts of a partition. They proved
that the largest size of a (t, t+ 1)-core partition which all of its parts are odd is{

1
96(t4 + 4t3 + 26t2 + 44t− 75) if t is odd,
1
96(t4 + 4t3 + 20t2 + 32t− 96) if t is even,

and the largest size of a (t, t+ 1)-core partition which all of its parts are even is{
1
96(t4 + 4t3 + 2t2 − 4t− 3) if t is odd,
1
96(t4 + 4t3 − 4t2 − 16t) if t is even.

4.B. More on simultaneous cores

After the various results on (s, t)-core partitions, many people have examined simultaneous core
partitions with at least three cores. However, it seems to be infeasible unless there is a pattern
on cores. Therefore, researchers first dealt with simultaneous core partitions whose cores form an
arithmetic progression.

Amdeberhan [Amd12, Conjectures 11.1–11.3] posed three conjectures about (t, t + 1, t + 2)-core
partitions which were proved by Yang, Zhong, and Zhou [YZZ15, Conjectures 1.1–1.3]. By considering
the order ideals in a poset structure, they counted the number, the largest size, and the sum of sizes
of (t, t+ 1, t+ 2)-core partitions. The number of (t, t+ 1, t+ 2)-core partitions is

∑
k≥0

(
t

2k

)
Ck, where

Ck = 1
k+1

(
2k
k

)
is the kth Catalan number, the largest size of a (t, t+ 1, t+ 2)-core partition is{

n
(
n+1

3

)
if t = 2n− 1,

(n+ 1)
(
n+1

3

)
+
(
n+2

3

)
if t = 2n,
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and the sum of the sizes of all (t, t+ 1, t+ 2)-core partitions equals

t−2∑
j=0

(
j + 3

3

) b j2 c∑
i=0

(
j

2i

)
Ci.

The first two results have been generalized individually by Amdeberhan and Leven and by Xiong.
Amdeberhan and Leven [AmLe15, Section 4] gave a path interpretation and a recurrence formula for
(t, t+ 1, . . . , t+ p)-core partitions using the definition of generalized Dyck path. For more details, see
[AmLe15].

On the other hand, Xiong [Xio16, Theorem 1.1] generalized a result of Yang, Zhong, and Zhou.
Let t and p be positive integers such that t = pd+ n, where 1 ≤ d ≤ p and n ≥ 0. Then, the largest
size of a (t, t+ 1, . . . , t+ p)-core partition is

max

{(
n+ 2

2

)⌊
d

2

⌋(
d−

⌊
d

2

⌋)
+

(
n+ 2

3

)
(p2n+ pd− p2)− 3

(
n+ 2

4

)
p2,(

n+ 1

2

)(
p−

⌊
p− d

2

⌋)(
d+

⌊
p− d

2

⌋)
+

(
n+ 1

3

)
(p2n+ pd− p2)− 3

(
n+ 1

4

)
p2

}
.

Amdeberhan [Amd12, Conjecture 11.5] also conjectured that the number of (t, t+ d, t+ 2d)-core
partitions is

1

t+ d

∑
i≥0

(
t+ d

i, i+ d, t− 2i

)
,

for coprime positive integers t and d. It was proved by V. Wang [Wan16, Theorem 1.6].
Baek, Nam, and Yu [BNY19, Corollary 5.6 and Theorem 5.7] found the number of (t, t+d, t+2d)-

core partitions alternatively and gave an explicit formula for the number of (t, t+d, t+2d, t+3d)-core
partitions, for relatively prime positive integers t and d, which is

1

t+ d

bt/2c∑
k=0

{(
t+ d− k

k

)
+

(
t+ d− k − 1

k − 1

)}(
t+ d− k
s− 2k

)
.

The overall generalization of arithmetic progression cases of core partitions was given by Cho,
Huh, and Sohn.

Theorem 4.3. [CHS20a, Theorem 1.5] Let t and d be relatively prime positive integers. For p ≥ 2,
the number of (t, t+ d, . . . , t+ pd)-cores is

1

t+ d

(
t+ d

d

)
+

b t
2
c∑

k=1

r∑
`=0

1

k + d

(
k + d

k − `

)(
k − 1

`

)(
t+ d− `(p− 2)− 1

2k + d− 1

)
,

where r = min(k − 1, b(s− 2k)/(p− 2)c).

From now on, we deal with results on self-conjugate simultaneous core partitions. Cho, Huh,
and Sohn [CHS21, Theorem 4] showed that, for a positive integer t, the number of self-conjugate
(t, t+ 1, t+ 2)-core partitions is ∑

i≥0

(
b t2c
i

)(
i

b i2c

)
.
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Baek, Nam, and Yu [BNY19, Theorem 3.3] found the largest size of a self-conjugate (t, t+1, t+2)-
core partition, which is 

n(2n+1)(4n2+2n+1)
3 if t = 4n,

n2(8n2−6n+1)
3 if t = 4n− 1,

n(2n−1)(4n2−2n+1)
3 if t = 4n− 2,

(n−1)(2n−1)(4n2−5n+3)
3 if t = 4n− 3.

Moreover, they proved that there is a unique self-conjugate (t, t+ 1, t+ 2)-core partition having the
largest size.

Yan, Yu, and Zhou [YYZ20, Theorems 2.14, 2.19, and 2.22] gave a bijection between the set of
(t, t+ 1, . . . , t+ p)-core partitions and that of symmetric (t, p)-generalized Dyck paths.

Cho, Huh, and Sohn [CHS20a, Theorem 3.9] showed that the number of self-conjugate (t, t +
1, . . . , t+ p)-core partitions is

1 +

bt/2c∑
k=1

r∑
`=0

(bk−1
2 c
b `2c

)( bk2c
b `+1

2 c

)(
b t−`(p−2)

2 c
k

)
,

where p ≥ 2 and r = min(k − 1, b(t− 2k)/(p− 2)c).
Recently, Cho and Huh [ChHu, Theorems 3.3 and 3.4] enumerated the number of self-conjugate

(t, t+d, t+2d)-core partitions and the number of self-conjugate (t, t+d, t+2d, t+3d)-core partitions.
Let t and d be relatively prime positive integers. The number of self-conjugate (t, t+d, t+2d)-core

partitions is given by

b t
4
c∑

i=0

( t+d−1
2

i, d2 + i, t−1
2 − 2i

)
, if d is even,

b t
2
c∑

i=0

( b t+d−1
2 c

b i2c, b
d+i

2 c, b
t
2c − i

)
, if d is odd,

and the number of self-conjugate (t, t+ d, t+ 2d, t+ 3d)-core partitions is given by

b t
4
c∑

i=0

( t+d−1
2 − i

t−1
2 − 2i

)( t+d−1
2 − i
i

)
, if d is even,

b t
2
c∑

i=0

(b t+d−1
2 c − b i2c
b t2c − i

)(b t+d2 c − b
i+1

2 c
b i2c

)
, if d is odd.

Only a few results on simultaneous core partitions with at least three cores are known when those
cores do not form an arithmetic progression. The following is a result proved by Baek, Nam, and Yu.

Theorem 4.4. [BNY19, Theorem 5.4] Let s, t0, t1, . . . , tn be positive integers, where none of ti is
a multiple of s. Suppose that s and t0 are relatively prime. For 1 ≤ i ≤ n, let li be such that
1 ≤ li ≤ s− 1 and s | t0li + ti. Then, the number of (s, t0, t1, . . . , tn)-core partitions is

1

s

∣∣∣∣∣∣
{

(z0, . . . , zs−1) ∈ Ns :

s−1∑
m=0

zm = t0 and

j+li−1∑
m=j

zm ≤
t0li + ti

s
for all i, j

}∣∣∣∣∣∣ .
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5. Applications of t-cores

In this section, we describe roles of t-core partitions in the theory of partitions and in number theory.
We start with a relation between self-conjugate core partitions and ordinary core partitions. In Section
5.2, we introduce a 5-core crank which combinatorially explains Ramanujan’s partition congruence
modulo 5. In the last subsection, we explain how class numbers are related with 4-cores and self-
conjugate 7-cores.

5.A. t-cores and self-conjugate t-cores

In this subsection, we give an identity between self-conjugate 2t-core partitions and ordinary t-core
partitions. First, we recall generating functions of ct(n) and sc2t(n).

∞∑
n=0

ct(n)qn =
(qt; qt)t∞
(q; q)∞

. (5.6)

∞∑
n=0

sc2t(n)qn = (−q; q2)∞(q4t; q4t)t∞. (5.7)

By combining (5.6), (5.7), and the Gauss identity, we have the following identity.

∞∑
n=0

sc2t(n)qn =

( ∞∑
n=0

ct(n)q4n

)( ∞∑
n=0

q
n(n+1)

2

)
for |q| < 1. (5.8)

Cho, Huh, and Sohn [CHS20b, Corollary 1.4] gave a combinatorial proof of (5.8) by using the
bijection of Wright for the Jacobi triple product identity (see [Pak06, Wri65]). They also gave a
generalization of (5.8).

Theorem 5.1. [CHS20b, Theorem 1.3] Let c(t1,...,tp)(n) be the number of (t1, . . . , tp)-core partitions
of n and sc(t1,...,tp)(n) be the number of self-conjugate (t1, . . . , tp)-core partitions of n. For |q| < 1,

∞∑
n=0

sc(2t1,...,2tp)(n)qn =

( ∞∑
n=0

c(t1,...,tp)(n)q4n

)( ∞∑
n=0

q
n(n+1)

2

)
.

5.B. t-core crank

To explain Ramanujan’s striking partition congruences, several partition statistics have been pro-
posed. In number theoretic aspect, Dyson’s rank [Dys44] and Andrews-Garvan’s crank [AnGa88,
Gar88] are very interesting since Dyson’s rank generating function is deeply related with mock mod-
ular forms [BFOR17, Zag10] and Andrews-Garvan’s crank generating function can be understood via
Jacobi forms [EiZa85, Mah05]. In combinatorial aspect, Garvan, Kim, and Stanton’s t-core crank is
arguably most interesting. By constructing explicit statistics on t-cores of ordinary partitions, they
gave a unifying approach to explain Ramanujan’s three congruences modulo 5, 7, and 11, and the
congruence p(25n + 24) ≡ 0 (mod 25). For the sake of brevity, here we only give the crank for the
congruence p(5n+ 4) ≡ 0 (mod 5).

Garvan, Kim, and Stanton first constructed a bijection implying∑
n≥0

p(n)qn =
1

(qt; qt)∞

∑
~n·~1=0
~n∈Zt

q‖~n‖
2+~b·~n,
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where ~b = (0, 1, 2, . . . , t− 1). One can find a generating function for p(5n+ 4) by gathering the terms
‖~n‖2 +~b ·~n ≡ 4 (mod 5). To see an automorphism group for the quadratic form in the exponent more
naturally, they changed the variable properly and proved that [GKS90, Theorem 1],∑

n≥0

p(5n+ 4)qn+1 =
1

(q; q)5
∞

∑
~α·~1=1
~α∈Z5

qQ(~α),

where Q(~α) = ‖~α‖2−(α0α1 +α1α2 +α2α3 +α3α4 +α4α0). One can immediately see that the dihedral
group D5 is the automorphism group for Q(~α) and there is no fixed point under the rotation. This
gives a combinatorial explanation how one can divide partitions of 5n + 4 into five equinumerous
classes. Surprisingly, the same idea works for p(7n + 5) and p(11n + 6), and gives a generating
function in a uniform fashion (see [GKS90, Theorem 1]). Moreover, this idea can be extended to
p(25n + 24) ≡ 0 (mod 25) [GKS90, Theorem 6] and p(49n + 47) ≡ 0 (mod 49) [Gar01]. While this
is combinatorially beautiful, it is not immediate how to calculate crank from the part sizes of the
partition directly. Thus, they derived a crank, which in this paper it refers as a t-core crank to avoid
the ambiguity, using the part sizes as follows [GKS90, Theorem 3].

Theorem 5.2. For a partition λ, let

5−core crank(λ) :=
∑̀
i=1

((λi − i− 2)2 − (i− 3)2),

where ` is the number of parts. Then, there are the same number of partitions of 5n + 4 with the
5-core crank congruent to i modulo 5 for all integers 0 ≤ i ≤ 4.

Here we give a table to show how Dyson’s ranks, Andrews-Garvan’s cranks, and t-core cranks divide
5 partitions of 4 into five classes.

Partitions of 4 rank (mod 5) crank (mod 5) 5-core crank (mod 5)

4 3 4 2
3+1 1 0 4
2+2 0 2 0

2+1+1 4 3 1
1+1+1+1 2 1 3

Table 1: Partitions of 4 and their rank, crank, and 5-core crank.

5.C. Class numbers

In the previous subsection, we have seen that there is a natural connection between core partitions
and quadratic forms. This connection is particularly interesting when a generating function for core
partitions is essentially a modular form of weight 3/2. Let h(D) denote the discriminant D class
number, i.e., the order of the class group of the discriminant D binary quadratic forms.1 For more
details on quadratic forms and its class numbers, see [IrRo90, Jon50, O’Me00]. Ono and Sze [OnSz97,
Theorem 2] proved that

c4(n) =
1

2
h(−32n− 20)

1Some authors use H(D) or H(|D|) instead of h(D).
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if 8n+ 5 is square-free. The proof follows from the fact that a generating function for 4-cores can be
expressed as a product of three theta functions, which leads that c4(n) is essentially the number of
representations of 8n+ 5 as x2 + 2y2 + 2z2 with x, y, z > 0 since∑

n≥0

c4(n)q8n+5 = q5 (q32; q32)4
∞

(q8; q8)∞

= q5 (q16; q16)2
∞

(q8; q8)∞

(q32; q32)4
∞

(q16; q16)2
∞

=
∑
k≥0

q(2k+1)2

∑
k≥0

q2(2k+1)2

2

=
∑
n≥0

|{(x, y, z) ∈ N3 : 8n+ 5 = x2 + 2y2 + 2z2}| q8n+5.

From the genus theory of quadratic forms and arithmetic properties of c4(n), one can find that
|{(x, y, z) ∈ N3 : 8n + 5 = x2 + 2y2 + 2z2}| = 1

2h(−32n − 20). For instance, Ono and Sze [OnSz97,
Corollary 3] proved the congruence

c4(n) ≡ 0 (mod 2k)

provided that 8n + 5 is a square-free integer with k prime divisors. More recently, Ono and Raji
[OnRa21, Theorem 1] obtained a connection between self-conjugate 7-core partitions and class num-
bers, namely, for a positive odd integer n 6≡ 5 (mod 7),

sc7(n) =


1
4h(−28n− 56) if n ≡ 1 (mod 4),
1
2h(−7n− 14) if n ≡ 3 (mod 8),

0 if n ≡ 7 (mod 8).

This follows again from the fact that a generating function, namely, S(q) =
∑

n≥0 sc7(n)qn+2 =
η2(2z)η(14z)η(28z)

η(4z)η(z) is a holomorphic modular form of weight 3/2 on Γ0(28) with the Kronecker character

(7/n).
Bringmann, Kane, and Males [BKM21, Equation (1.1)] observed that the above two expressions

involving class numbers imply that

2sc7(8n+ 1) = c4(7n+ 2) (5.9)

provided that n 6≡ 4 (mod 7) and 56n + 21 is square-free. Based on this observation, they tried to
find more linear relations between t-core partitions and self-conjugate (2t − 1)-core partitions like
(5.9), but they found that there is no such a linear relation for t = 2, 3, or 5 and based on this, they
conjectured that there is no linear relation like (5.9) for t 6= 4.

6. Concluding Remarks

Even though we have focused on the roles of t-cores in the theory of partitions and its number theoretic
aspects, it is infeasible to introduce all interesting results in this short survey. Here we mention a
short list of interesting results. There have been an extensive study on the role of hook lengths.
For example, one may see the papers [BeHan09, Han10, HaJi11, HaOn11, HaXi17] of Han and his
collaborators. More recently, Bringmann, Ono, and Wagner [BOW20] found a new connection between
the modularity and the hook length. There are also many interesting results on the simultaneous core
partitions with additional conditions. For example, Zhou and Yan [ZY17] showed that the number of
(t, t + 1)-core partitions with parts that are multiples of p is related with the Fuss-Catalan number,
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and Huang and Wang [HuWa18] found the number of (t, t+ 1)-core partitions with m corners, which
is the Narayana number N(t,m+1) = 1

t

(
t

m+1

)(
t
m

)
. There are also combinatorial interpretations using

paths for the number of simultaneous core partitions. See [AmLe15, And02, AHJ14, ChHu, CHS20a,
FMS09, YYZ20] for more details. It is also possible to think t-cores in the random partition [AySi19].

Another interesting object that is related to core partitions is a numerical set. One can see that
there is a bijection between the set of t-core partitions and the set of numerical sets. Moreover, there
is a bijection between the set of (t1, t2, . . . , tk)-core partitions and the set of integer points in a certain
polytope. For more details, see [CHK17].

Surely there are many further interesting results on t-cores we haven’t mentioned. This is not
because the results are not interesting but because the authors’ short scope.

While there have been much progresses on the study of t-cores, there are still many open questions
and identities waiting for further investigations. We have already introduced several open questions
like Stanton’s conjecture, and Hanusa and Nath’s conjecture. Most linear relations among t-cores and
self-conjugate t-cores are still combinatorially mysterious.
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