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Power partitions and a generalized

eta transformation property

Don Zagier

Dedicated to the memory of Srinivasa Ramanujan

Abstract. In their famous paper on partitions, Hardy and Ramanujan also raised the question of the behaviour of the number

ps(n) of partitions of a positive integer n into s-th powers and gave some preliminary results. We give first an asymptotic formula to

all orders, and then an exact formula, describing the behaviour of the corresponding generating function Ps(q) =
∏∞
n=1

(
1−qns)−1

near any root of unity, generalizing the modular transformation behaviour of the Dedekind eta-function in the case s = 1. This is

then combined with the Hardy-Ramanujan circle method to give a rather precise formula for ps(n) of the same general type of the
one that they gave for s = 1. There are several new features, the most striking being that the contributions coming from various

roots of unity behave very erratically rather than decreasing uniformly as in their situation. Thus in their famous calculation of

p(200) the contributions from arcs of the circle near roots of unity of order 1, 2, 3, 4 and 5 have 13, 5, 2, 1 and 1 digits, respectively,
but in the corresponding calculation for p2(100000) these contributions have 60, 27, 4, 33, and 16 digits, respectively, of wildly

varying sizes.
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1. Introduction

In their famous paper “Asymptotic formulæ in combinatory analysis” [2], Hardy and Ramanujan
generalized the classical Euler partition function by considering the “square partition function” p2(n)
defined by the generating function

P2(q) :=
∞∏
m=1

(
1− qm2)−1

=:
∞∑
n=0

p2(n) qn , (1)

and more generally the “s-th power partition function” ps(n) defined by the generating function

Ps(q) :=
∞∏
m=1

(
1− qms

)−1
=:

∞∑
n=0

ps(n) qn , (2)

for any positive integer s, where q is a variable in the complex unit disk |q| < 1. In order to study
the asymptotics of ps(n) for large n, one needs to understand the asymptotic behaviour of Ps(q)
for q near to 1, and also, for more detailed asymptotic information including lower-order oscillatory
contributions, for q near any root of unity. Hardy and Ramanujan carried out the first step in their
paper and gave in particular the asymptotic formula

log ps(n) ∼ (s+ 1)
{1

s
Γ
(
1 +

1

s

)
ζ
(
1 +

1

s

)}s/(s+1)
n1/(s+1) (3)

for the growth of log ps(n) as n tends to infinity.
The function P1(q) is related to the Dedekind eta-function η(τ) (τ ∈ H = complex upper half-

plane) by η(τ) = e(τ/24)P1(e(τ))−1, where e(z) = e2πiz as usual, and Hardy and Ramanujan could
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obtain their famous very precise formula for the partition function (later refined by Rademacher to
give an exact formula) by exploiting the modular transformation properties of the latter. For integers
s > 1, however, the generalized eta-function ηs(τ) defined by

ηs(τ) = e
(
−1

2
ζ(−s) τ

) ∞∏
m=1

(
1− e(msτ)

) (
τ ∈ H, s ∈ R>0

)
(4)

does not transform in any way under the modular group, so that here one can a priori use only
the Euler-Maclaurin formula or its variants to obtain approximate information about its behaviour
near rational arguments, thus obtaining only much weaker asymptotic formulas like (3). However,
it turns out that the functions ηs also satisfy exact identities for all integral values of s > 1 that
give a complete description of their behaviour near rational arguments (and hence in principle the
possibility of finding very precise or even exact formulas for ps(n), although we do not carry this out
completely in this paper). For instance, we will show that in analogy with the modular functional
equation η(−1/τ) =

√
τ/i η(τ) of the Dedekind eta-function, we have

η2(−1/τ) =
√

2πτ/i η1/2

(√
τ
)
η1/2

(
i
√
τ
)

(5)

(notice that the definition (4) makes sense even when the index s is non-integral), and similarly

ηs(−1/τ) = (2π)(s−1)/2
√
τ/i

∏
z∈H
zs=±τ

η1/s(z) (6)

for all positive integers s, now with s terms in the product rather than only two as in (5).
More generally, the transformation behaviour of η(τ) under arbitrary elements of the modular

group implies that η(κ+i/T )/
√
T for a fixed rational number κ and T tending to infinity is expressible

as a convergent infinite sum of pure exponentials in T , i.e., as a sum of the form
∑
Aνe

λνT with
some exponents λν and some coefficients Aν . Our main result generalizes both that statement and
equations (5) and (6):

Theorem 1. The function ηs(κ+i/T s)/T s/2 for every natural number s and every rational number κ
can be expressed as a convergent infinite sum of pure exponentials in T .

The exact form of the expansion asserted by this theorem is much more complicated than the
special case κ = 0 as given in (6), and will emerge in conjunction with its proof in the course of
the paper. First, however, we will explain in §2 how one can guess this formula numerically in
any particular case, taking s = 2 and κ with denominator 5 as our working example. The next
section describes how to obtain the asymptotic expansion of ηs(κ+ i/T s) to all orders in 1/T for any
rational number κ by splitting the infinite product in (4) into finitely many subproducts according
to the value of m modulo the denominator of κ and then studying the logarithm of each of these
functions by a shifted version of the Euler-Maclaurin formula. This leads to formulas that are not
only more precise, but also simpler both to formulate and to prove, than the ones for the full product.
We will explain these calculations first in the case s = 1, even though the result is known there
anyway by virtue of the modularity of η(τ), because the method of calculation that is used gives a
somewhat different perspective on the behaviour of η(τ) than the usual one and also extends easily
to higher values of s. The key point for both s = 1 and the general case is that the logarithms of the
individual subproducts have asymptotic expansions that are factorially divergent power series in 1/T ,
but that when we combine them in pairs according to the value of ±m modulo the denominator of κ,
all but finitely many terms of these expansions cancel and we are left with only terminating series
which then are well-defined functions. In §4 we show how this finite expression can be upgraded to an
exact rather than merely asymptotic formula for log ηs(κ+ i/T s) by the addition of an explicit infinite
linear combination of exponentially small terms. Theorem 2 gives this exact formula for the individual
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symmetrized subproducts of Ps(q), which are generalizations of the classical Jacobi theta functions
as given by their Jacobi triple product expansions, and Theorem 1 in a more precise quantitative
version (stated for s = 2 as Theorem 3) follows easily from this. Finally, in §5 we study the large n
behaviour of the power partition function ps(n) by combining the results of the preceding sections
with the Hardy-Ramanujan circle method. The description turns out to be much more complicated
than in the original case s = 1, with the size of the contributions from the neighbourhoods of different
rational points (“minor arcs”) varying in an unpredictable manner rather than depending only on the
denominator of the rational point as in the classical case.

2. Numerical results

We originally found equations (5) and (6) by numerical experimentation. Since the right way of
doing these experiments is not obvious and will become crucial when we try to generalize (6) to the
behaviour of ηs near arbitrary rational arguments, we say something about this here. For convenience
we work with Ps rather than ηs and concentrate on the case s = 2.

The first step is to observe that the function defined in (1) has the asymptotic expansion

P2

(
e−x
)
∼
√
x

2π
eΓ(3/2) ζ(3/2)/

√
x
(
1 + ε(x)

)
(7)

with ε(x) = O(xN ) for all N > 0. This is an easy consequence of a version of the Euler-Maclaurin
summation formula, as will be explained in more generality in §3. To understand the number ε(x), we
compute its value numerically to high precision for many small values of x. This is easy because the
product (1) converges very rapidly. However, ε(x) not only decays very rapidly, but is also oscillatory,
so that its analytic nature is hard to recognize from a table of values or a graph. But even from a
table or a graph, by looking at the frequency of the oscillations and at the values of the functions
near its local extrema, we can see that it decays roughly exponentially in 1/

√
x and oscillates with a

period that decreases like x3/2. This suggests:

First simplification: Change variables by setting x = 2π/T 2 .

(Here the factor 2π is included to simplify later formulas, and the T 2 would be T s if we were looking
at ηs for s > 2.) After making this change of variables, we can recognize numerically without difficulty
that ε(2π/T 2) is equal to high precision (meaning to all orders in 1/T as T → ∞) to the function

A1(T ) := 2 cos(
√

2πT ) e−
√

2πT . We then subtract A1(T ) from ε(2π/T 2) and find that the difference
is equal to A2(T ) := A1(T

√
2) to high precision, and subtracting again and repeating we find that

the third term is A3(T ) := A1(T
√

3). But the fourth term is then not A1(2T ) as one might now

expect, but rather A4(T ) := (1 + 4 cos(2
√

2πT )) e−2
√

2πT . The next term is again the expected one

A5(T ) := A1(T
√

5), but now the difference ε(2π/T 2)−∑5
i=1Ai(T ) is much larger than e−

√
12πT and

it takes considerably more effort to recognize that to high precision it is given by the more complicated
function

B1(T ) =
(
2 cos((2 +

√
2)πT ) + 2 cos((2−

√
2)πT )

)
e−(2+

√
2)πT .

If we simply continue this way naively, the successive terms get harder and harder to identify, the
problem being that each of the functions A1, . . . , A5 and B1, and more generally each new remainder
term g(T ) obtained by subtracting from ε(2π/T 2) the contributions already identified, turns out to
have the form of a finite sum

∑
cνe
−λνT with complex exponents λν having the same real part, so that

g(T ) is the product of a pure decaying exponential function e−<(λν)T and a bounded but oscillatory
trigonometric function. If there were only one term g(T ) ≈ ce−λT , even with a non-real exponent λ,
then it would be easy to find eλ to high precision as the value of g(T + 1)/g(T ) for some large value
of T , and then to obtain c numerically as g(T )eλT for the same λ and T . Luckily, there is an easy
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trick1 to reduce to this simple situation:

Second simplification: Let x tend to 0 through complex numbers with a small fixed non-zero argument,
rather than through positive real values.

In terms of T , this says that we let |T | tend to infinity with the argument of T fixed and small. Then
each of the terms in the expected sum

∑
cνe
−λνT has a different exponential order of growth, so that

one of them will dominate all the others, and we can find this one as above and then the further ones
inductively by subtracting off one term at a time. In this way it becomes very easy to recognize the
precise forms of the next several terms in the expansion of ε(T ), and doing this for the first 15 terms

we find that ε(2π/T 2) is given up to precision O
(
e−
√

22.3πT
)

by

ε(2π/T 2) =
11∑
m=1

Am(T ) +
4∑

m=1

Bm(T ) + O
(
e−
√

22.3πT
)

with

Am(T ) = e−
√

2mπT ×


2 cos(

√
2mπT ) for m squarefree,

4 cos(
√

2mπT ) + 1 for m = 4 or m = 8,

6 cos(
√

2mπT ) + 4 cos(
√

2mπT/3) for m = 9

and with B2, B3 and B4 (we have already given B1) defined by

B2(T ) =
(
2 cos((

√
6 +
√

2)πT ) + 2 cos((
√

6−
√

2)πT )
)
e−(
√

6+
√

2)πT ,

B3(T ) =
(
2 cos((

√
6 + 2)πT ) + 2 cos((

√
6− 2)πT )

)
e−(
√

6+2)πT ,

B4(T ) =
(
2 cos((

√
10 +

√
2)πT ) + 2 cos((

√
10−

√
2)πT )

)
e−(
√

10+
√

2)πT .

It is still not easy to recognize the general pattern and to guess the next terms. However, here again
the solution is very simple:

Third simplification: Study log(1 + ε(x)) numerically rather than ε(x) itself, i.e., work with the
logarithm of Ps(q) or of ηs(τ) rather than with these functions themselves.

When we do this in our example, all of the mystery disappears: the whole sum is now just a
linear combination of the functions e−

√
2nπT cos(

√
2nπT ) with n ∈ N, with the more complicated

exponents involving numbers like
√

6 +
√

2 that we found above arising simply as products of these
when we exponentiate. Moreover, by looking at the first few terms, we find that the coefficient of
e−
√

2nπT cos(
√

2nπT ) is always 2 for n squarefree, is 3 if n is 4 times a squarefree number, and in
general is equal to 2σ−1(

√
n), where σ−1(

√
n) ∈ Q denotes the sum of the reciprocals of the positive

integers d with d2|n. This leads to the guess

ε(2π/T 2) ≈ 2

∞∑
n=1

σ−1(
√
n) e−

√
2nπT cos(

√
2nπT ) = −

∞∑
m=1

∑
±

log
(
1 − e−2πi±1/2√mT

)
,

where “≈” denotes equality up to arbitrarily small exponential terms. But when we compute the
(rapidly convergent) right-hand side of this equation, we find that it is not only very nearly, but
exactly equal to the numerical value of the left-hand side for every T , and exponentiating this formula
we indeed find (5), the only slightly subtle point being that to make the coefficients of

√
T in the

exponents match we have to use the functional equation of the Riemann zeta function to write

1found in connection with a joint paper with Stavros Garoufalidis [1] on quantum knot invariants that has some
formal similarities with the results of this note
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(2π)−1/2Γ(3/2)ζ(3/2) as −π
√

2 ζ(−1/2). Exactly the same type of calculation for Ps with s > 2 then
leads eventually to (6), the only difference being that now (7) is replaced by

Ps
(
e−x
)
∼

√
x

(2π)s/2
e−Γ(1+1/s) ζ(1+1/s)x−1/s+ζ(−s)x/2 (1 + εs(x)

)
(8)

with εs(x) of rapid decay as x → 0 and we have to use the functional equation of the Riemann zeta
function to write (2π)−(s−1)/2 Γ(1 + 1/s) ζ(1 + 1/s) as an algebraic multiple of 2π ζ(−1/s).

This completes our numerical discussion of the functional equations (5) and (6). We can now use
the experience we have gained to look also at the values of Ps(q) near roots of unity. As an example
we consider P2 near fifth roots of unity. Here a more complicated version of the Euler-Maclaurin
formula, explained in detail in §3, leads to the asymptotic formula

P2

(
ζ a5 e

−x) ∼ 5

2π

√
x eCa/5/

√
x
(
1 + ε2,a/5(x)

)
(a ∈ (Z/5Z)×) (9)

with ε2,a/5(x) of rapid decay (i.e., O(xN ) for all N > 0) as x tends to zero, where ζ5 = e(1
5) and

Ca/5 =
√
π

2
√

5

(
1
5ζ
(

3
2

)
+
(
a
5

)
L
(

3
2 ,
( ·

5

)))
. (Here L

(
s,
( ·

5

)
is the Dirichlet L-series associated to the Legendre

symbol
( ·

5

)
.) Finding an exact formula for ε2,a/5(x) by a direct additive approach would be essentially

hopeless, but using the same three tricks as above (setting x = 2π/T 2, approaching zero at an angle,
and taking the logarithm), we easily discover that the logarithm of 1 + εa,2/5(x) is given as a linear

combination of the pure exponential functions e−2π3/2(1±i)
√
m/125x with m ∈ N, and we can compute

the successive coefficients numerically without too much difficulty. However, when we do this they
turn out to be quite hard to recognize, since the nature of the coefficient turns out to be different for
m prime to 5, m exactly divisible by 5, and m divisible by 25. Only after computing 300 coefficients
can we guess the law of formation with some confidence:

− log
(
1 + ε2,a/5(x)

)
= Ga

(2π3/2(1 + i)√
125x

)
+ G−a

(2π3/2(1− i)√
125x

)
(x→ 0),

where

Ga(X) =

∞∑
m=1

σ−1(
√
m)D

(
a−1m

)
e−
√
mX +

1

5

∞∑
m=1

(a−1m

5

)
log
(
1 − e−5

√
mX
)

with σ−1(
√
m) as above and D : Z/5Z→ R defined by D(0) = −1, D(±1) = 1±

√
5

2 , D(±2) = 0.
As a final comment, we note that the constant Ca,5 in the exponent in equation (9) is positive

for a ≡ ±1 (mod 5) but negative for a ≡ ±2 (mod 5), so that the function η2, unlike η1 = η, is not
always exponentially small near rational values of its argument.

3. Asymptotics near rational points

In order to make sense of the coefficients of the expansion of ηs(τ) near a rational point, it turns out to
be useful to refine the statement by breaking up the infinite product defining ηs(τ) into finitely many
subproducts and studying the asymptotics of each one separately, since the formulas for these are
easier to recognize, easier to prove, and also stronger than the ones for the whole product. Above all,
this approach combined with a combination of the subproducts into pairs will produce terminating
asymptotic expressions and later (in §4) will lead to exact rather than merely asymptotic expressions
for ηs(τ).

We start by explaining this in detail in the case s = 1, where everything is known due to the
modularity properties of the Dedekind eta-function. Here it is more convenient to work with η = η1
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rather than with P1, since the action of the modular group can be seen more clearly. The fact that
η(τ)24 is a modular form of weight 12 on SL(2,Z) implies that

η
(aτ + b

cτ + d

)
= e

(N(γ)

24

)
(cτ + d)1/2 η(τ) ∀ γ =

( a b
c d

)
∈ SL(2,Z) (10)

where (cτ + d)1/2 denotes the principal branch and N(γ) is an integer depending on γ. Of course

one can prove this by checking it only when γ is one of the standard generators
( 1 1

0 1

)
(for which

it is trivial) and
( 0 −1

1 0

)
(for which several ad hoc proofs are known) of SL(2,Z), but since there is

no reasonable action of SL(2,Z) on ηs(τ) for s > 1 we want to sketch an argument that does not
use the group structure. In fact, this argument proves a stronger statement than (10), namely the
transformation law

H
(aτ + b

cτ + d

)
=

N(γ)

24
+ Log(cτ + d) +H(τ) (11)

where Log denotes the principal branch of the logarithm and

H(τ) =
πiτ

12
+

∞∑
m=1

Log(1− qm) (q = e(τ)) (12)

is the branch of log η(τ) that is real when τ is pure imaginary. Of course the formula (11) is well
known, going back to Riemann and to Dedekind’s paper on some “fragments” of Riemann in which
he defined and gave the transformation properties of the function now named after him. But our
approach is somewhat different than the standard one and in some ways more elementary, since it
does not use the group structure of the modular group, and also demonstrates that the widely-held
belief that it would be impossible to even guess, let alone prove, the full expansion of the partition
function coming from the circle method without using the modularity of the eta-function, is false.

The first step is to rewrite (10) with arguments τ = −d+i/x
c and aτ+b

cτ+d = a+ix
c , so that the behaviour

of η near a/c corresponds to τ tending to infinity or x tending to 0 and is more clearly visible. With
this substitution the variable q in (12), with τ replaced by aτ+b

cτ+d , is equal to e(a/c) e−2πmx/c and hence
very near a cth root of unity, so we have to break up the sum on the right in according to the value
of m (mod c). This gives

H
(a+ ix

c

)
= πi

a+ ix

12c
−

∑
` (mod c)

L
(`
c
,
a`

c
; 2πx

)
, (13)

where L(α, β; t) is defined for α, β ∈ R/Z and t positive (or complex with positive real part) by

L(α, β; t) = −
∑

ν∈Z+α
ν>0

Log
(
1− e(β) e−νt

)
. (14)

(The minus sign here is included for convenience, to simplify signs elsewhere.)
If we want only the asymptotics of L(α, β; t) to all orders in t as t → 0, we can simply use the

shifted Euler-Maclaurin formula. This formula, which is discussed in detail in [4], says that, for any
smooth function f on [0,∞) that is small at infinity and for any positive real number α (or complex
number α which is not a non-positive real number), the sum

∑∞
n=0 f((n+α)t) has a Laurent expansion

at t = 0 (valid to all orders in t, though in general not convergent) given by

∞∑
n=0

f((n+ α)t) ∼ If t
−1 +

∞∑
r=0

ζ(−r, α) ar t
r as t↘ 0, (15)
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where If =
∫∞

0 f(x) dx (so that the sum on the left is a Riemann sum for the integral If/t), the

ar are the Taylor coefficients f (r)(0)/r! of f(t) at t = 0, and ζ(−r, α) is the Hurwitz zeta function,
defined for s ∈ C r {1} by meromorphic continuation from its value

∑∞
n=0(n + α)−s for <(s) > 1.

The value of ζ(s, α) at s = −r is equal to −Br+1(α)/(r + 1), where Bn(α) denotes the nth Bernoulli
polynomial. We will use formula (15) in its equivalent periodic form∑

ν∈Z+α
ν>0

f(νt) ∼ If t
−1 +

∞∑
r=0

ζ(−r, α) ar t
r − a0

2
δα,0 (t↘ 0) , (16)

where α is now in R/Z and where ζ(s, α) is the meromorphic continuation of
∑

ν∈(Z+α)>0
ν−s, whose

value at s = −r equals −Br+1(α)/(r + 1). Here Bn(x) is the piecewise analytic periodic function
on R defined by B0(x) = 1 and by

Bn(x) =
(n− 1)!

(2πi)n

∑
m 6=0

e2πimx

mn
(17)

for n ≥ 1 (for n = 1 the sum is only conditionally convergent and must be interpreted as a Cauchy
principal value), which is equal to Bn(x−[x]) except when n = 1 and x ∈ Z, in which case B1(x) = 0 is
the average of B1(0) = −1

2 and B1(1) = 1
2 . If we apply this to the function f(t) = −Log(1−e(β)e−t),

for which If = Li2(e(β)) and ar = (−1)r

r! Li1−r(e(β)) if β 6= 0, where the polylogarithm Lik(z) is
defined on Cr [1,∞) by analytic continuation of

∑∞
n=1 z

n/nk and is a polynomial in z/(1− z) with
integral coefficients when k ≤ 0, we obtain the expansion

L(α, β; t) ∼ Li2(e(β))

t
+

∞∑
r=0

Br+1(−α)

(r + 1)!
Li1−r(e(β)) tr (18)

if α and β are both non-zero, and a slight modification of this formula if one of them vanishes. In
particular, if β = 0 then we must use the modification of the shifted Euler-Maclaurin formula (15),
also given in [4], that applies when the function f(t) has a logarithmic singularity at the origin.

Now comes the key point. The power series in x occurring in (18) is factorially divergent, since
both the Bernoulli polynomials and the negative-index polylogarithms grow factorially in their index.
But if we symmetrize, combining the two values (α, β) and (−α,−β) in (18) (which is all that is
needed for the application to log η since it corresponds to combining the terms ` and −` in (13)),
then because of the symmetry properties

Bk(−α) = (−1)k Bk(α), Li−k(1/x) = (−1)k−1 Li−k(x) (k > 0) (19)

of Bernoulli polynomials and negative-index polylogarithms there is a huge simplification and the
symmetrized function

Lsym(α, β; t) := L(α, β; t) + L(−α,−β; t)

is given by a terminating Laurent series. Explicitly, we have

Lsym(α, β; t) ∼ 2π2B2(β) t−1 + 2πiB1(α)B1(β) − 1

2
B2(α) t . (20)

if α and β are both different from 0, and a slight modification of this if one or both of them vanish.
Inserting this expansion into (13), we obtain a proof of the formula (11) asymptotically up to all
orders in 1/τ as τ →∞, including an explicit formula for N(γ) as a Dedekind sum.

This finishes our discussion of the situation for the original Dedekind eta-function. It is now easy
to repeat the whole calculation for ηs(t) with s > 1, with H(t) replaced by the function

Hs(τ) = −πi ζ(−s) τ +
∞∑
m=1

Log
(
1− qms

)
, (21)
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which again is the branch of the logarithm of ηs(τ) that is real on the positive imaginary axis. Arguing
exactly as before, we obtain the decomposition

Hs

(a+ ix

c

)
= −πi ζ(−s) a+ ix

c
−

∑
` (mod c)

Ls

(`
c
,
a`s

c
; (2πcs−1x)1/s

)
(x↘ 0) (22)

of Hs(τ) as τ approaches a rational point a/c, with Ls(α, β; t) defined by

Ls(α, β; t) = −
∑

ν∈Z+α
ν>0

Log
(
1− e(β) e−(νt)s

)
. (23)

The asymptotic expansion of Ls(α, β; t) as t tends to 0 can be obtained using the same shifted
Euler-Maclaurin formula (16) as before, this time applied to f(t) = −Log(1 − e(β) e−t

s
), for which

If = Γ(1 + 1/s) Li1+1/s(e(β)) by an easy calculation (expand f(t) as
∑

k>0 k
−1e(kβ) e−k(νt)s and

integrate termwise) and ar (for β 6= 0) equals (−1)`

`! Li1−`(e(β)) if r = s` with ` ≥ 0 and vanishes
if s - r. This leads to an infinite asymptotic formula for Ls(α, β; t) generalizing (18) which we do not
write out here. Once again the key point is that if we symmetrize Ls, this time by setting

Lsym
s (α, β; t) := Ls(α, β; t) + Ls(−α, (−1)sβ; t) (24)

then by virtue of the same symmetry relations (19) as before the divergent infinite series of the two
separate terms cancel and we are left with a finite expression. We omit the details of the calculation,
which are straightforward but fairly messy, but do write out the final formula completely because it
involves several case distinctions depending on the parity of s (we already saw this in formula (8),
which had an extra term ζ(−s)x/2 in the exponent that was not visible in (7)) and on whether one
or both of α or β vanishes.

Proposition 1. Let s be an integer greater than 1, and α and β elements of R/Z. Then the function
Lsym
s (α, β; t) defined by equation (24) is given asymptotically by the formula

Lsym
s (α, β; t) ∼ 2 Γ(1 + 1/s)

t
×
{

Li1+1/s(e(β)) if 2|s
<(Li1+1/s(e(β))) if 2 -s

+

{
0 if 2|s

2πiB1(α)B1(β) + ζ(−s, α) ts if 2 -s

+



0 if α 6= 0, β 6= 0

Log(1− e(β)) if 2|s, α = 0, β 6= 0

log |1− e(β)| if 2 -s, α = 0, β 6= 0

− s log |1− e(α)| if α 6= 0, β = 0

s log(t/2π) if α = β = 0

(25)

to all orders in t as t tends to 0.

This proposition has the following consequence for the asymptotics of Ps(q) near roots of unity.

Proposition 2. For s > 1 and κ a rational number with denominator c we have

Ps
(
e(κ) e−1/T s

)
= e

(
Ds(κ)

) (Ns(c)

2πT

)s/2
eCs(κ)T+ 1

2
ζ(−s)T−s Fs,κ(T )
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with Fs,κ(T ) = 1 + O(T−N ) for all N as T tends to infinity, where the constant Cs(κ) is given by

Cs(κ) =
Γ(1 + 1/s)

c

∑
` (mod c)

Li1+1/s

(
e(`sκ)

)
,

Ds(κ) is the generalized Dedekind sum 1
2

∑
` (mod c)B1(`/c)B1(`sκ) , and Ns(c) is the smallest

positive integer whose s-th power is divisible by c.

The reader can check that the statement of Proposition 2 agrees with equation (9) in the special
case κ = a/5 and s = 2 described in connection with the numerical experiments described in §2,
with Cκ = C2(κ) and N2(5) = 5. However, the generalized Dedekind sum is not visible in that case,
since Ds(κ) vanishes whenever s is even.

4. Exact formulas

We now come to the last step, which is the passage from asymptotic to exact formulas for ηs(τ) and
more generally for Lsym

s (α, β; t). Such exact formulas are clear in the case s = 1 from the modular
properties of the Dedekind eta function and more generally of the Jacobi theta function, since the
function Lsym

1 (α, β; t) is essentially equal to the logarithm of the latter by virtue of the famous Jacobi
triple product formula. But it is quite surprising that they are still present when these modularity
properties no longer hold. In particular, the classical proof of the modularity properties of the Jacobi
theta functions is not based on their product expansions, but on their additive representations as theta
series (the equality of the two, as found by Jacobi, being an easily proved combinatorial identity),
which are lattice sums of pure Gaussians and whose modularity is therefore an easy consequence of
the Poisson summation formula and the fact that Gaussian functions are equal to their own Fourier
transforms. But for s > 1 the holomorphic function defined by exponentiating −Lsym

s (α, β; t) does not
have any reasonable sort of additive expansion, because, as we already saw in §2 with our numerical
experiments and will prove in this section in general, the function Lsym

s (α, β; t) for β rational is an
infinite sum of terms q̃

s√n with n integral and q̃ fixed, and when s is larger than 1 the exponential
of such a sum is no longer a sum of the same type but rather a horrendously complicated linear
combination of powers of q̃ with exponents belong to infinitely many different number fields. The
multiplicative argument that we are about to give is therefore of necessity completely different from
the standard additive proof of modularity for the case s = 1 and may be of some interest even in that
case.

Before launching into the calculations we make one other observation about the nature of the
formulas that we want to obtain. At first sight it might seem unreasonable to expect to be able to
go from an asymptotic formula to an exact one, especially since in our case the asymptotic formula,
although itself finite, arose by combining two divergent series which do not even have well-defined
numerical values. But in fact it turns out that the combined exact formula is actually easier to get than
the individual asymptotic ones. The reason is very simple. In the standard Euler-Maclaurin formula,
which describes the asymptotics as x tends to 0 of

∑∞
n=1 f(nx) for sufficiently nice functions f , one is

summing over a half-lattice Z>0, and similarly in the shifted Euler-Maclaurin formula one is summing
over a half-lattice (Z + α)>0. Sums of this sort are intrinsically difficult because of the jump of the
summand at the boundary. But when it is possible to combine two sums over half-lattices into a single
sum over a full lattice, shifted or not, then (at least if one is lucky) the summation can be carried out
exactly by using the Poisson summation formula, which is more precise and also considerably simpler
than the Euler-Maclaurin formula.

In our case this works exactly when s is even, while for odd s a little manipulation will be required.
When s is even, we can apply the Poisson summation formula directly because we have

Lsym
s (α, β; t) − δα,0 Log(1− e(β)) = −

∑
ν∈Z+α

Log
(
1− e(β) e−(νt)s

)
, (26)



10 4. Exact formulas10 4. Exact formulas

where we no longer have to distinguish the cases ν > 0, ν < 0 or (if α = 0) ν = 0, and where the
doubly infinite sum is rapidly convergent. The right-hand side has the form

∑
ν∈Z+α f(νt), where

f(t) = fs,β(t) = −Log(1 − e(β)e−t
s
) as before, and hence is equal to t−1

∑
m∈Z f̃

(
mt−1

)
e(−mα) by

the Poisson summation formula, where f̃ denotes the Fourier transform of f . The constant term f̃(0)
is equal to twice the integral If whose value Γ(1 + 1/s) Li1+1/s(e(β)) we already gave, and the terms
m and −m for m > 0 can be combined since f is even. This gives the decomposition

Lsym
s (α, β; t) = Es(α, β; t) + εs(α, β; t) , (27)

where the “elementary term” Es(α, β; t) is given by

Es(α, β; t) =
2 Γ(1 + 1/s) Li1+1/s(e(β))

t
+ δα,0 Log(1− e(β))

and coincides with the right-hand side of the asymptotic equation (23) (for simplicity we are assuming
here that β 6= 0), while the “error term” εs(α, β; t) is given by

εs(α, β; t) =
1

t

∞∑
m=1

f̃
(m
t

) (
e(mα) + e(−mα)

)
.

In order to compute the Fourier transform f̃(y) we integrate once by parts, getting

f̃(y) = −
∫ ∞
−∞

Log
(
1− e(β) e−t

s)
e(ty) dt =

1

2πiy

∫ ∞
−∞

s ts−1 e(ty)

e(−β) ets − 1
dt .

For y positive, we can move the path of integration upwards, picking up contributions as the residues
of the poles of the integrand in the upper half-plane, all of which are simple. The residue of the
integrand at t = x with xs ∈ 2πi(Z + β) is simply e(xy)/y, so we find

1

t
f̃
(m
t

)
=

1

m

∑
x∈H

xs∈ 2πi(Z+β)

e
(mx
t

)
(m > 0).

Inserting this into the formula for εs and summing over m ∈ N, we obtain

εs(α, β; t) = −
∑
x∈H

xs∈ 2πi(Z+β)

(
Log

(
1− e(α+ x/t)

)
+ Log

(
1− e(−α+ x/t)

))
. (28)

We now have to interpret this result. The values of xs in (28) lie on two half-rays, the positive and
negative imaginary axes (the value 0 does not occur because we are assuming that β 6= 0), so the values
of x lie on s half-rays, namely the s-th roots of the positive and negative imaginary axes that lie in the
upper half-plane. The contribution of each such half-ray is a sum of terms −Log(1−e(±α)e

s√ν u) with
u fixed and ν ranging over the positive elements of the shifted lattice Z+β or Z−β, so (28) expresses
εs(α, β; t) as a finite linear combination of values of the function L1/s with suitable arguments. If we
write out the identity in this way the result is quite ugly, but it becomes more elegant after a change
of variables. The point is that the function Ls(α, β; t) as defined in (23) is actually a holomorphic
function of ts, not just of t itself, and we chose to use t rather than ts as its argument only in
order to make the application of the Euler-Maclaurin formula simpler to follow. We now obtain nicer
expressions by changing the variable from t to τ = its/2π, and also, for aesthetic reasons, by changing
the sign of Ls and exponentiating. We therefore define

Λ0
s(α, β; τ) := e−Ls(α,β; s

√
2πτ/i ) =

∏
ν∈Z+α
ν>0

(
1− e(β) qν

s)
(τ ∈ H) , (29)
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which for fixed α and β in R/Z is a holomorphic function in the upper half-plane. (The superscript “0”
here indicates that this is not yet our final normalization, which will be given below.) When s = 1 the
expression qν

s
with ν = n+α factorizes as qne(z) with an elliptic variable z = ατ+β, so that Λ0

s in this
case is just the classical q-Pochhammer symbol or shifted q-factorial (e(z); q)∞ =

∏∞
n=0(1− qne(z)),

but for s > 1 there is no such splitting. The multiplicatively symmetrized version of Λ0
s(α, β; τ)

obtained by exponentiating −Lsym
s (α, β; t), and also multiplying by the constant factor 1 − e(β)

when α = 0, is then the function

Θs(α, β; τ) :=
(
1− e(β)

)δα,0Λ0
s(α, β; τ) Λ0

s(−α, β; τ) =
∏

ν∈Z+α

(
1− e(β) qν

s)
, (30)

where the product is now over a complete (shifted) lattice and is absolutely convergent. (This is
simply the exponentiated form of equation (26).) We have denoted this function by Θs because it
can be seen as the analogue for even s of the Jacobi triple product formula for s = 1. Formula (28),
together with (27), now takes on the relatively simple form

Θs(α, β; τ) = ec/τ
1/s ·

∏
z∈H

zs=−1/τ
ε=±1

Λ0
1/s(β, εα; z) ·

∏
z∈H

zs=1/τ
ε=±1

Λ0
1/s(−β, εα; z) (31)

for an appropriate explicit constant c.
If s is odd, then the calculation above fails because replacing the sum over ν > 0 in (23) by a

sum over all ν ∈ Z + α would now give a divergent expression. The value of Lsym
s (α, β; t), modified

as before by adding a term −Log(1− e(β)) if α = 0, is given instead by

Lsym
s (α, β; t) − δa,0Log(1− e(β)) = −

∑
ν∈Z+α

{
Log

(
1− e(β) e−ν

sts
)

if ν ≥ 0,

Log
(
1− e(−β) eν

sts
)

if ν < 0,

which is once again a sum over the whole (shifted) lattice but to which Poisson summation cannot be
applied directly because the summands for ν ≥ 0 and ν < 0 are different. However, they differ only
by the addition of a linear combination of 1 and ts, or of 1 and τ after the change of variables used
above, so this problem can be cured by the simple expedient of differentiating twice in τ , or applying
the differential operator D = ∂/∂(ts) = s−1t1−s∂/∂t twice if we stay with the original variable t. The
resulting sum then has the value

∑
ν∈Z+αD

2f(ν) with the same function f(ν) = fs,β(ν) as before,
and since the function D2f(ν), unlike f(ν) itself, is exponentially small both for large positive and for
large negative values of ν, we can now apply Poisson summation to equate this with a sum of Fourier
transforms. But the differentiation and Fourier transformation operators are with respect to different
variables, so the Fourier transform of D2f is simply D2 of the Fourier transform f̃ of f , which we
have already calculated (for that calculation the parity of s plays no role), so we get a formula for
D2(Lsym

s ) as a convergent sum of terms D2f̃ , and then by integrating twice a formula for Lsym
s itself

as a sum of terms of exactly the same form as before. The only potential problem is that, since we
have differentiated twice and then integrated twice, the final answer might be off by a linear function
of τ (or of ts). But from the results of §3 we already know the value of Lsym

s (α, β; t) up to terms that
are smaller than any power of t, so we can read off the necessary constants of integration from the
asymptotic formula given in the Proposition of §3, and since these contributions are already contained
in the “elementary” part Es(α, β; t) in (27), the “error” part is given by a formula exactly like the one
for s even, the only difference being that the symmetrization process is now slightly different from
the one there. We do not write out the details, which are completely straightforward once one knows
the trick of differentiating twice and then integrating twice. The final result corresponding to (31),
but rewritten in a uniform way that applies to both even and odd s, takes the form

Λ0
s(α, β; τ) Λ0

s(−α, (−1)sβ; τ) = (elem.)
∏
z∈H

zs τ=±1

Λ0
1/s(∓β,−α; z) Λ0

1/s(∓(−1)sβ, α; z) . (32)
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where “elem.” denotes the elementary expression (which has the form of a constant times the product
of exponentials in τ−1/s and τ) obtained by exponentiating the negative of the right-hand side of (25)
with ts = 2πτ/i.

In principle this finishes the calculation, but we still need to make one final modification to the
definitions in order to put the formulas that we have obtained into the nicest form possible. When
we looked above at the case of odd s, we essentially wrote the sum of the two convergent half-lattice
sums defining Lsym

s as the sum of a single divergent sum over the whole lattice and a divergent
correction term defined formally as the sum over a half-lattice of a linear combination of 1 and ts.
But this latter expression has a standard “zeta regularization” by interpreting

∑
ν∈(Z+α)>0

νk when

k ≥ 0 as ζ(−k, α). In fact, it is natural to make the corresponding renormalization even for the
original convergent sum defining Ls, but now subtracting only one-half of the corresponding zeta
regularization term, i.e., to replace the function Ls(α, β; t) defined by (23) by the renormalized value

Ls(α, β; t) − πiB1(α)B1(β) − 1

2
ζ(−s, α) ts − δα,0

2
Log(1− e(β)) .

(Here we exclude the degenerate case α = β = 0 where one of the factors in the shifted product∏
ν(1− e(β)qν

s
) vanishes.) The symmetrization of this has a much simpler asymptotic form as t→ 0

than Ls itself, since all but the first term and the term δβ,0 s log(1− e(α)) in (25) now disappear. In
terms of the variable τ = its/2π and the exponentiated form of Ls, the renormalization in question
takes the form of replacing the function Λ0

s(α, β; t) defined in (29) by

Λs(α, β; τ) :=
(
1− e(β)

)δa,0/2 e(B1(α)B1(β)

2
+
ζ(−s, α) τ

2

) ∏
ν∈Z+α
ν>0

(
1− e(β) qν

s)
. (33)

For the reason just explained, the symmetrization Λs(α, β; τ)Λs(−α, (−1)sβ; τ) of Λs, which agrees
with the function Θs(α, β; τ) as defined by (31) if s is even and could be taken as the “right” definition
of Θs(α, β; τ) also for s odd, has a very simple asymptotic expression to all orders in t as the product
of a constant factor (1 − e(α))−δβ,0s/2 and a pure exponential ec/t. But now if we observe that the
definition (33) makes sense also for non-integral values of s, we can use it to also replace the factors
Λ0

1/s in the right-hand side of (32) by Λ1/s, and when we do this we find very pleasingly that the

two remaining elementary factors are also absorbed by the renormalization. (For the verification of
this, which we omit, one needs Hurwitz’s functional equation relating Li1+1/s(e(β)) to ζ(−1/s, β).)
In other words, if we replace every Λ0 in (32) by the corresponding Λ, then the elementary “fudge
factor” disappears entirely and we are left with the following much smoother statement, which is the
main result of this paper.

Theorem 2. Let s be a natural number and (α, β) ∈ (R/Z)2 r {(0, 0)}, and set (α∗, β∗) =
(−α, (−1)sβ). Then for all τ ∈ H we have the identity

Λs(α, β; τ) Λs(α
∗, β∗; τ) =

∏
z∈H

zs τ=±1

Λ1/s(∓β, α∗; z) Λ1/s(∓β∗, α; z) . (34)

The qualitative content of Theorem 2 is that the generalized theta-product Θs(α, β; τ) can be
expressed for every positive integer s and all β 6= 0 as a rapidly convergent infinite sum of pure
exponentials in τ−1/s. As a corollary of this and of the decomposition (22) we obtain the corresponding
assertion for the generalized eta-function ηs(τ), which was stated in a qualitative form in Theorem 1.
The quantitative form expresses the correction factor Fs,κ(t) occurring in Proposition 2 as a rapidly
convergent infinite product. For the sake of simplicity we state it fully only for the most interesting
case s = 2 in the form of the following theorem giving an exact formula for P2(q) near an arbitrary
root of unity, establishing and generalizing the formula found experimentally in §2 for its behaviour
near a fifth root of unity.
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Theorem 3. Let κ = a/c be a rational number with denominator c. Then

P2

(
e(κ) e−1/T 2)

=
N2(c) eC2(κ)T

2πT

∏
` (mod c), m>0
m≡±a`2 (mod c)

1

1− e(`/c) exp
(
−e(∓1/8) (2π/c)3/2

√
mT

)
with N2(c) and C2(κ) defined as in Proposition 2.

The corresponding statement for Ps
(
e(κ) e−1/T s

)
with s > 2 is similar but more complicated,

with extra terms Ds(κ) and ζ(−s) as in Proposition 2, with (2π/c)3/2 replaced by (2π/c)1+1/s, with
the congruence on n replaced by n ≡ ±a`s (mod c), and with the 8th roots of unity e(∓1/8) in the
exponent replaced by appropriately chosen (4s)-th roots of unity.

5. Application to the sth power partition function

We now return to the original reason for wanting to study the behaviour of the holomorphic function
ηs(τ) near rational points, which is to try to obtain as exact a formula as possible for the number
ps(n) of partitions of n into s-th powers by the Hardy-Ramanujan circle method. In this final section
we will describe some partial results in this direction, concentrating mostly on the case s = 2 of
partitions into squares, and contrasting the situation at each stage with the original one for s = 1.
We will derive an explicit formula describing the contributions to p2(n) (and in principle also ps(n)
for s > 2) coming via the circle method from neighbourhoods of all roots of unity, with each such
contribution being a finite linear combination of Bessel-like functions. Whether this can eventually
be refined to give an exact formula for ps(n), either as the nearest integer to some explicit finite sum
as in the original paper of Hardy and Ramanujan, or even by a convergent infinite sum giving the
value exactly as in the famous later paper [3] by Rademacher, still remains to be seen.

As already indicated, there are a number of differences to the original Hardy-Ramanujan situation,
which for simplicity we will discuss in detail only for p2(n), the simplest case after ordinary partitions.
Here the situation is simpler than the original one in a few respects (notably the absence of Dedekind
sums and hence of the complicated arithmetic coefficients that Hardy and Ramanujan found), but
are more subtle in several others. We describe them in turn, in numbered points of quite different
lengths and degrees of technicality.

1. The first and in principle quite minor point, but nevertheless one that affects everything, is that
p2(n) grows much more slowly than p(n) (exponentially in 3

√
n rather than in

√
n), and ps(n) for

s > 2 yet more slowly (exponentially in s+1
√
n).

2. The second obvious but important point is that we now have electronic computers, whereas Hardy
and Ramanujan had only the “practised and enthusiastic” computer Major McMahon (to quote the
nice phrase by Hardy in his book on Ramanujan), so that while they had to be content with the
values of p(n) up to 200, ending with the then very impressive number

p(200) = 3 972 999 029 388 ,

we can find all of the values of p2(n) up to 100000, ending with

p2(100000) = 389 977 344 281 488 282 064 568 879 923 715 009 879 905 617 086 319 698 551 970 ,

in just over two seconds with the one-line GP/PARI program

y = 1+ O(x)^100001; for(n=1, 316, y *= 1-x^(n^2)); y=1/y;

and the definition p2(n) = polcoef(y,n) .
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3. The next point concerns the nature of the higher Bessel-like functions occurring in the expansion
of ps(n). The idea of the circle method is to first write ps(n) by Cauchy’s theorem as

ps(n) =
1

2πi

∮
Ps(q)

dq

qn+1
=

∫ τ0+1

τ0

Ps(e(τ)) e(−nτ) dτ

(integral over any path from τ0 to τ0 + 1 in H) and then break this integral up into a sum over short
arcs Aκ near every rational point κ modulo 1 (“major arcs”) and a correction term coming from
the rest of the circle (“minor arcs”). This decomposes ps(n) itself into a finite or infinite sum of
contributions ps,κ(n) with κ ranging over a finite subset or all of Q/Z and a remainder term that has

to be estimated. Proposition 2 expresses Ps(q) at a point q = e(κ)e−T
−s

near a root of unity e(κ) as
the sum of an elementary function of the form cs(κ)T−s/2 exp

(
Cs(κ)T+1

2 ζ(−s)T−s
)

with a coefficient

cs(κ) = e(Ds(κ)) (Ns(den(κ))/2π)s/2 depending only on κ plus a much smaller (in fact, exponentially

much smaller, as we saw in §4) error term. This means that ps,κ(n) is the sum of a main term p
(0)
s,κ(n)

and a secondary term p
(+)
s,κ (n) (discussed in 5. below), where p

(0)
s,κ(n) is given as the integral over

a suitable contour of scs(κ)
2πi T

−1−3s/2 exp
(
Cs(κ)T + ñ T−s

)
with ñ = n + 1

2ζ(−s) and hence has the

form cs(κ) ñ−3/2Hs

(
Cs(κ) ñ1/s

)
for some transcendental function Hs(x). However, this function is

not unique, because we have some freedom in the choice of the arc Aκ : to find the main contribution
to the integral, we should let Aκ pass through the “saddle” point in H near κ where |q−nPs(q)| takes
on its maximum (this point corresponds roughly to T = (s n/Cs(κ))1/(s+1)) and then for purposes
of optimal approximation should move from that point along the direction of steepest descent, but
once we are away from the maximum we can deform the path in many ways, e.g. as a closed loop
starting at κ and passing through the saddle point, or into a path going from the saddle point to
−i∞ in the lower half-plane on both sides of κ. (We could not do this for the integral of Ps(e(τ))
itself, since it is not defined for τ in the lower half-plane, but we can for the elementary function
approximating it.) The result of this freedom is that the function Hs(x) itself is also not uniquely
defined, though any two choices differ by an exponentially small quantity, so that the choice is not
important in a Hardy-Ramanujan-like analysis where one takes a limited number of points κ (they
went up to denominator of the order of n1/4) and has a far larger error than this anyway. It would,
of course, be important if one wanted to get a Rademacher-like exact relation. In the classical case
s = 1 the functions H1(x) used by Hardy-Ramanujan and by Rademacher were, in our normalization,

HHR
1 (x) =

1

2
√
π

(√
x− 1

2

)
e2
√
x , HRad

1 (x) =
1√
π

(√
x− 1

2

)
sinh(2

√
x) ,

respectively for x. For general s different choices lead to any of the three functions

∞∑
r=0

xr

r! Γ( rs − 1
2)
, s

∞∑
r=0

xrs

(rs)! Γ(r − 1
2)
, s

∞∑
r=0

xrs+3s/2

r! Γ(rs+ 3s
2 + 1)

,

of which the second is obtained from the first by taking s times the sum of the terms with r divisible
by s and the third from the second by shifting r by 3s

2 . (We do not give the details of the calculations,
since as already remarked the specific choice of Hs will not play any role within the accuracy of the
calculations we are describing.) These three functions are all different in general, but it is amusing
to notice that in the classical case s = 1 the first two coincide but that the two remaining functions

1√
π

(√
x sinh(2

√
x) − 1

2 cosh(2
√
x)
)

and 1√
π

(√
x cosh(2

√
x) − 1

2 sinh(2
√
x)
)

are different from both

HHR
1 (x) and HRad

1 (x). In our main case s = 2, we will choose the third of the functions listed above,
but only for <(x) > 0, i.e., we will define H2(x) by

H2(x) = 2
∞∑
r=0

x2r+3

r! (2r + 3)!
if <(x) > 0, H2(x) = 0 if <(x) < 0,
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where the case distinction arises because the contour integral that originally defines H2(x) can be
moved to infinity without crossing the singularity at T = 0 if <(x) < 0 but not if <(x) > 0. The

main contribution p
(0)
2,κ(n) to p2,κ(n) is then given by

p
(0)
2,κ(n) =

N2(den(κ))

2π n3/2
e(−nκ)H2

(
C2(κ)

√
n
)
.

To deduce from this the precise asymptotic behaviour of p
(0)
2,κ(n), we use the asymptotic formula

H2

(
2X3/2

)
=

Xe3X

√
12π

(
1 − 17

36X
− 35

2592X2
− · · ·

)
for X large, which is easily proved using an integral representation or ODE of the function H2.

4. The next point is much more interesting. In the case s = 1 studied by Hardy and Ramanujan,
the number Cs(κ) = C1(κ) occurring in the exponent in Proposition 2 has the very simple form
ζ(2)/c2, where c as usual denotes the denominator of κ. This means that the contributions coming
from different rational numbers (“cusps”) with the same denominator are all of the same order of
magnitude and that this size decreases monotonically and rapidly as c grew, leading for n = 200 to
the famous table of Hardy-Ramanujan that began

3 972 998 993 185 . 896

36 282 . 978

− 87 . 555

5 . 147

1 . 424

and whose first five terms already gave p2(200) as the nearest integer. But in our case that does not
happen at all, since the coefficients C2(κ) depend erratically on κ and can even have real parts of
different signs for κ with the same denominator, as we already saw in §2 in the case of denominator 5.
Thus when we look, for instance, at the the sum of the contributions from κ with denominator
c = 1, . . . , 5 to the number p2(105) given above, they have the approximate values 3.9 ·1059, 1.8 ·1026,
−2.0·103, −8.3·1032, and 2.9·1015, respectively, of wildly varying sizes. In fact the biggest contributions
apart from the one from κ = 0 come from κ = 1/4 and κ = 3/4 (i.e., from q near i or −i), so that

the difference ∆2(n) between p2(n) and the leading term p
(0)
2,0(n) in the circle method approximation

to it has an approximate size that depends on n (mod 4), or more precisely, that changes sign when
n increases by 2, as one can see clearly in the following table

−8.3104 · 1032 , −1.3710 · 1032 , 8.3151 · 1032 , 1.3730 · 1032 ,
−8.3198 · 1032 , −1.3750 · 1032 , 8.3244 · 1032 , 1.3771 · 1032 ,
−8.3291 · 1032 , −1.3791 · 1032 , 8.3338 · 1032 , 1.3811 · 1032 ,
−8.3384 · 1032 , −1.3831 · 1032 , 8.3431 · 1032 , 1.3852 · 1032

giving the values of 16 consecutive values ∆2(105), . . . ,∆2(105 + 15) grouped in groups of four to

make this near-periodicity more visible. (We also see from this table that the term p
(0)
2,0(n) of the

approximation coming from the principal cusp k = 0 already gives p2(N) correctly in this range to
about 27 significant digits, whereas the exponential of the Hardy-Ramanujan asymptotic formula for
log(p2(N)) that we quoted in (3) would give a value that is more than twelve million times too big.)
To see why this is true, we give a table of values of the first numbers C2(κ), ordered by their real
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3 972 998 993 185 . 896
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− 87 . 555
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1 . 424

and whose first five terms already gave p2(200) as the nearest integer. But in our case that does
not happen at all, since the coefficients C2(κ) depend erratically on κ and can even have real parts
of different signs for κ with the same denominator, as we already saw in Section 2 in the case of
denominator 5. Thus when we look, for instance, at the the sum of the contributions from κ with
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3.9 · 1059, 1.8 · 1026, −2.0 · 103, −8.3 · 1032, and 2.9 · 1015, respectively, of wildly varying sizes. In
fact the biggest contributions apart from the one from κ = 0 come from κ = 1/4 and κ = 3/4 (i.e.,

from q near i or −i), so that the difference ∆2(n) between p2(n) and the leading term p
(0)
2,0(n) in

the circle method approximation to it has an approximate size that depends on n (mod 4), or more
precisely, that changes sign when n increases by 2, as one can see clearly in the following table

−8.3104 · 1032 , −1.3710 · 1032 , 8.3151 · 1032 , 1.3730 · 1032 ,
−8.3198 · 1032 , −1.3750 · 1032 , 8.3244 · 1032 , 1.3771 · 1032 ,
−8.3291 · 1032 , −1.3791 · 1032 , 8.3338 · 1032 , 1.3811 · 1032 ,
−8.3384 · 1032 , −1.3831 · 1032 , 8.3431 · 1032 , 1.3852 · 1032

giving the values of 16 consecutive values ∆2(105), . . . , ∆2(105 + 15) grouped in groups of four to

make this near-periodicity more visible. (We also see from this table that the term p
(0)
2,0(n) of the

approximation coming from the principal cusp k = 0 already gives p2(N) correctly in this range to
about 27 significant digits, whereas the exponential of the Hardy-Ramanujan asymptotic formula
for log(p2(N)) that we quoted in (3) would give a value that is more than twelve million times too
big.) To see why this is true, we give a table of values of the first numbers C2(κ), ordered by their
real parts. This table begins

κ 0 ± 1
4

1
2 ± 1, 4, 7

9 ± 1
8

C2(κ) 2.315 1.038 ± 0.383 i 0.819 0.709 ± 0.069 i 0.611 ± 0.477 i

κ ± 1, 9
16 ± 1, 4, 6, 9, 11

25 ± 1
3 ± 1

5 ± 1
12

C2(κ) 0.590 ± 0.360 i 0.461 0.446 ± 0.360 i 0.440 0.427 ± 0.363 i

κ ± 2, 3, 7, 8, 12
25 ± 5, 13

16 ± 1
24 ± 1, 13, 25

36 ± 1, 9, 17, 25
32

C2(κ) 0.419 0.418 ± 0.119 i 0.378 ± 0.398 i 0.362 ± 0.222 i 0.331 ± 0.298 i

16
(we have listed all values with <(C2(κ)) > 0.32) and clearly explains why the various cusps κ have
contributions to p2(n) of such unpredictably varying sizes. For n = 105, the 17 denominators whose

total primary contribution
∑

den(κ)=c p
(0)
2,κ(n) to p2(n) are largest in absolute value, sorted by that

absolute value, are c = 1, 4, 2, 8, 16, 3, 25, 12, 5, 24, 32, 48, 40, 64, 20, 96, and 17. (The individual
contributions from c = 9 are larger in absolute value than those from c = 8, but they sum to zero.)
The sum of these contributions differs from p2(105) ≈ 3.90 ·1059 by only 8.26 ·1013, so these 17 values
of c already give an excellent approximation. But if we continue to the next smaller terms, coming
from c = 80, 56, 120, 28, 100, 60, 13, . . . , then they are all much smaller than the number 8.26 · 1013,
which remains constant to this accuracy no matter how far we go with c. This remaining discrepancy
comes from the secondary terms already mentioned in 3., to which we now turn.

5. The last point is the most subtle one. Because η(τ) is a modular function, the generating function
1/η(τ) of partitions has an expansion near a rational number κ = a/c given up to an innocuous factor
(a constant times

√
τ − κ) by η(γ(τ))−1 = Q−1/24 +Q23/24 + · · · with Q = e2πiγ(τ) (where γ(∞) = κ),

and this always has precisely one exponentially large term Q−1/24 as τ tends to κ. This means that in
both the Hardy-Ramanujan approximation and the Rademacher exact formula only the leading term
(arithmetic function times exponential) coming from each κ plays any role. But for higher s this is
no longer true. In particular, Theorem 3 can be written in the form

P2

(
e(κ) e−1/T 2)

=
N2(c)

2πT

∑
µ:Xκ→Z≥0

e
(
L(κ, µ)/c

)
eC2(κ,µ)T

where Xκ is defined by

Xa/c =
{

(`,m) ∈ (Z/cZ)× (Z r {0})
∣∣ `2a ≡ m (mod c)

}
and the sum is over all functions from it to Z≥0 (these are the exponents of the various terms when
we expand the product in Theorem 3 as a product of geometric series), with L(µ, κ) ∈ Z/cZ and
C2(κ, µ) ∈ C defined by

L(κ, µ) =
∑

(`,m)∈Xκ

µ(`,m) ` , C2(κ, µ) = C2(κ) −
(2π

c

)3/2 ∑
(`,m)∈Xκ

µ(`,m)
|m| − im√

2|m|
.

Since there are only finitely many pairs (`,m) with (2π/c)3/2
√
|m|/2 < <(C2(κ)), this gives us a

finite expression

p2,κ(n) =
N2(c)

2π n3/2
e(−nκ)

∑
µ:Xκ→Z+

<(C2(κ,µ))>0

e
(
L(κ, µ)/c

)
H2

(
C2(κ, µ)

√
n
)
,
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(here we could even omit the inequality since we have defined H2(x) to be 0 if <(x) < 0) for the
contribution from the cusp κ to p2(n). As already mentioned in 3., we can now split this into a main

term p
(0)
2,κ(n) corresponding to µ = 0 and a secondary term p

(+)
2,κ (n) corresponding to all other values

of µ. But unlike the situation for s = 1, this secondary term no longer vanishes identically. As a
numerical example, we take n = 105 and consider the numbers κ = ±1

9 , ±4
9 and ±7

9 of denominator 9,
where we have grouped them in pairs differing by sign in order to have only real contributions.
The corresponding primary contributions to p2(n) ≈ 3.9 · 1059 have values approximately equal to
−3.39 ·1023, −1.15 ·1023 and 4.53 ·1023, respectively, but these actually sum to zero (this is connected
with the fact that 9 is a perfect square), so that the total primary contribution to p2(105) coming from
κ with denominator 9 vanishes. But there are secondary contributions coming from µ supported at
(`,m) with m = 1 or m = −2 in each case, and the total secondary contribution from the denominator
c = 9 to the value of p2(105) then turns out to be the non-zero number 8.30 · 1013, very close to the
amount 8.26 · 1023 that was still missing at the end of point 4. above. In fact, c = 9 turns out to give
by far the largest secondary contribution in this case. In particular, for κ with denominators up to 7
there are no non-zero multiplicity functions µ at all with <(C2(κ, µ)) positive. For κ = ±1/8 there are
four such µ (for κ = ±3/8 there are none), but they are given by µ supported at (`,∓1) with ` = 1,
3, 5 and 7 modulo 8, and the sum of the corresponding coefficients e(L(κ, µ)/8) = e(`/8) therefore
vanishes because the sum of the primitive 8th roots of unity is 0. If we continue to larger values of c,
then we find contributions of the order of 1011 from c = 25 and c = 36, with the remaining ones yet
smaller. Adding up all of the secondary contributions as far as I calculated gave a total of about
8.25 × 1013, accounting for very nearly all of the missing amount, and I assume that the remaining
very small discrepancy is a consequence of the numerical analysis and not something intrinsic.

Note added in proof. After an earlier version of this paper was finished and accepted for
publication, I discovered results in [2] that I had overlooked on a first reading. In the introduction
to the paper, the authors discuss the problem of partitions into sums of squares of higher powers,
and the asymptotic formula (3) for the logarithm of ps(n) is displayed prominently. But at the very
end of of the paper (p. 111 in subsection 7.3) they return to this problem as an example of a “wide
range of problems to which our results are partly applicable,” and there they give an asymptotic
formula for ps(n) as opposed to merely its logarithm. This formula gives only the leading term,
coming from the behaviour of Ps(q) near q = 1 and from the main exponential approximating the
function Hs(n), so that, for instance, in the case s = 2, n = 105 used as an example in §5 of this
paper, their formula would give the correct answer only within about one percent as opposed to the
27-digit accuracy achieved by computing the whole contribution from κ = 1 or the 48-digit accuracy
achieved by including contributions from all cusps. But of course it is still vastly more precise than
the equation (3) that I quoted, which as mentioned would be off by a factor of more than 107 in this
example. More importantly, they explicitly gave equation (5) relating η2(−1/τ) to a product of two
values of η1/2, though it is expressed rather differently, so that this result, which was the discovery
that gave rise to this whole paper, had actually been known a century earlier. The more general
equation (6) for s > 2 does not seem to be given explicitly in their paper, although it is clear that
they could have obtained it, and more importantly there is nothing about the behaviour at other
cusps than κ = 0, so nothing like our Theorems 1 and 3, and similarly no discussion of the analogue
for higher power partitions of the full formula for ps(n) as a sum of contributions from all cusps. I
therefore hope that the results of this paper are still of some interest. In the end I chose not to rewrite
my text since the description of the numerical approach that I used to “discover” (but actually to
rediscover) equation (5) sets the stage for the much more complicated analysis needed in the general
case.
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