PROGRESS TOWARDS A CONJECTURE ON THE MEAN-VALUE OF TITCHMARSH SERIES-II

By K. RAMACHANDRA

\& I. Introduction

The result of this paper may be considered as complementary to that of my earlier paper [2], on Titchmarsh series. Although not as interesting as the earlier result, the result of the present paper finds a nice application, (See [1]). In [3] I defined a class of series called Titchmarsh series and I now start by recalling its definition.

Titchmarsh Series. (or briefly K D T series).
Let $\mathrm{A} \geqslant 10$ be a constant.

$$
\begin{aligned}
& \text { Let } \frac{1}{\mathrm{~A}}<\mu_{1}<\mu_{2}<\ldots \text { where } \\
& \frac{1}{\mathrm{~A}}<\mu_{n+1}-\mu_{n}<\mathrm{A}(\text { for } n=1,2,3, \ldots)
\end{aligned}
$$

(In [2] the notation is slightly different and we have used there $\boldsymbol{\lambda}_{\boldsymbol{n}}$ instead of $\boldsymbol{\mu}_{\boldsymbol{n}}$ and for simplicity assumed $\boldsymbol{\lambda}_{1}=1$. Also we have used there a_{1}, a_{2}, \ldots in place of our present $b_{1}, b_{2} \ldots$ and assumed for simplicity $a_{1}=1$. We have written there $F(s)$ instead of $\left.\mathrm{F}_{0}(s)\right)$. Let b_{1}, b_{2}, \ldots be a sequence of complex numbers possibly depending on a parameter $\mathrm{H}>10$ such that $\left|b_{n}\right|<\left(\mu_{n} \mathrm{H}\right)^{\mathrm{A}}$. Put $\mathrm{F}_{0}(s)=\sum_{n=1}^{\infty} b_{n} \mu_{n}^{-s}$ where $s=\sigma+\mathrm{it}$.
$\mathrm{F}_{0}(s)$ is called a KDT series if there exists a constant $\mathrm{A}>10$ and a system of rectangles $\mathrm{R}(\mathrm{T}, \mathrm{T}+\mathrm{H})$ defined by $\{\sigma>0$, $\mathrm{T}<t \leqslant \mathrm{~T}+\mathrm{H}\}$ where $10<\mathrm{H}<\mathrm{T}$, and T (which may be related to H) tends to infinity, and $\mathrm{F}_{0}(s)$ admits an analytic continuation into these rectangles and the maximum of $\left|\mathrm{F}_{0}(s)\right|$ taken over $\mathrm{R}(\mathrm{T}, \mathrm{T}+\mathrm{H})$ does not exceed $\operatorname{Exp}\left(\mathrm{H}^{\mathrm{A}}\right)$.

I then made the following coajecture

Conjecture

For $a \mathrm{KDT}$ series $\mathrm{F}_{0}(s)$, we have,

$$
\left.\frac{1}{\mathrm{H}} \int_{\mathrm{L}}\left|\mathrm{~F}_{0}(\mathrm{it})^{2} d t>\mathrm{C}_{\mathrm{A}} \mu_{n}^{\Sigma} \leqslant \mathrm{X}\right| b_{n}\right|^{2},
$$

where $\mathrm{X}=2+\mathrm{D}_{\mathrm{A}} \mathrm{H}, \mathrm{L}$ denotes the side $(\sigma=0, \mathrm{~T}<t<\mathrm{T}+\mathrm{H})$ of $\mathrm{R}(\mathrm{T}, \mathrm{T}+\mathrm{H})$, and C_{A} and D_{A} are positive constants depending only on A , provided $\mu_{1}=b_{1}=1$.

I proved the following theorem.

Theorem 1

Under the restrictions $\mu_{1}=b_{1}=1$, we have,

$$
\begin{array}{r}
\frac{1}{\mathrm{H}} \int_{\mathrm{L}}\left|\mathrm{~F}_{0}(\mathrm{it})\right|^{2} d t>\mathrm{C}_{\mathrm{A}} \mu_{n}^{\mathrm{Z}}<\mathrm{X} \mathrm{X}_{n}^{|b|^{2} \hookleftarrow} \\
\left(\left(1-\frac{\log \mu_{n}}{\log \mathrm{H}}+\frac{1}{\log \log \mathrm{H}}\right)\right.
\end{array}
$$

where $\mathrm{X}=2+\mathrm{D}_{\mathrm{A}} \mathrm{H}$ and, C_{A} and D_{A} are effective positive constants depending only on A .

I now prove the following theorem.

Theorem 2

For some convenience let us assume in the definition of Titchmarsh series $\mathrm{F}_{0}(s)$ the rectangles $\mathrm{R}(\mathrm{T}, \mathrm{T}+\mathrm{H})$ to be $(\sigma>\beta, \mathrm{T}<t<\mathrm{T}+\mathrm{H})$ where β is a positive constant such that $0<\beta<\alpha_{1}<\frac{1}{2}$, where α_{1} is another constant. Let $k \geqslant 2$ be an integer and write $\mathrm{F}(s)=\left(\mathrm{F}_{0}(s)\right)^{k}=$
 is absolutely convergent. Put $\mathrm{Y}=(\mathrm{M}+\mathrm{H}){ }^{\boldsymbol{\lambda}}$ where

$$
\lambda=k \mathrm{~A}^{100}\left(\alpha_{1}-\beta\right)^{-10} \text { and } \mathrm{M}=\text { maximum of }\left|\mathrm{F}_{0}(s)\right|
$$

taken over $\mathrm{R}(\mathrm{T}, \mathrm{T}+\mathrm{H})$. Define the entire function $\phi(s)$ by

$$
\phi(s)=\sum_{n=1}^{\infty} a_{n} \lambda_{n}^{-s} \Delta\left(\frac{\mathrm{Y}}{\lambda_{n}}\right)
$$

where for $\mathrm{X}>0, \Delta(\mathrm{X})$ is defined by

$$
\Delta(\mathrm{X})=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \mathrm{X}^{\mathrm{W}} \operatorname{Exp}\left(\mathrm{~W}^{4 a+2}\right) \frac{d \mathrm{~W}}{\mathrm{~W}},
$$

a being a suitable positive integer constant at our choice. We now suppose that $\alpha, \beta, \alpha_{1}, \alpha_{2}, \alpha_{3}$ are constants satisfying

$$
\alpha<\beta<\alpha_{1}<\alpha_{2}<\alpha_{3}<\alpha+\frac{1}{2} .
$$

Put X $-\left[2^{-\mathrm{A}-100} \mathrm{H}\right]+2$ and
$\mathrm{V}(\sigma)=\frac{1}{\mathrm{H}} \sum_{\mu_{n}<\mathrm{X}}\left|b_{n}\right|^{2}\left(\frac{\mathrm{H}}{\mu_{n}}\right)^{2 \sigma}$.

Then we have,

$$
\frac{1}{\mathrm{H}} \int_{\mathrm{L}}|\phi(\alpha+i t)|^{2 k^{-1}} d t
$$

$$
\gg V(d) H^{1-2 \alpha}\left\{\frac{V\left(\alpha_{1}\right)}{V\left(\alpha_{3}\right)}\right\}^{\frac{\alpha_{2}-\alpha}{\alpha_{3}-\alpha_{2}}}
$$

providet only that $\mathrm{V}(\alpha) \neq 0$ and $(\log \mathrm{V}(\alpha))(\log \mathrm{H})^{-1}$ is bounded below by a negative constant. Here the constant implied by the Vinogradov symbol \gg depends only on $\mathrm{A}, k, \alpha, \beta, \alpha_{1}$, $\mathcal{\alpha}_{2}, \mathcal{\alpha}_{3}$ and the negative constant referred to just now. Further it is effective.

Remark: It will be clear from the proof that if $\mu_{n}=n(n=1,2,3, \ldots)$ then we can choose $\mathrm{X}=\left[\frac{\mathrm{H}}{100}\right]+2$.

The object of this paper is to prove theorem 2. The proof of the theorem is fairly long. The proof depends upon a special case of a convexity theorem of R. M. Gabriel which we state below (in the notation of D. R. Heath-Brown's paper [2] ; for the more general theorem of Gabriel see the reference in [2] or Titchmarsh's famous book [5] pages 203 and 337.)

Theorem 3

Let $f(z)$ be regular in the infinite strip $\alpha<\operatorname{Re} z<\beta$ and continuous for $\alpha<\operatorname{Re} z \leq \beta$. Suppose $f(z) \rightarrow 0$ as $|\operatorname{Im} z| \rightarrow \infty$, uniformly in $\alpha<\operatorname{Re} z \leqslant \beta$. Then for $\alpha \leqslant \gamma \leqslant \beta$, and any $q>0$, we have

provided the right hand side is finite.
Apart from this we have to use a well-known theorem of Montgomery and Vaughan. For reference see for instance my paper [4], where 1 give a simple proof of a weaker result which is sufficient for the purposes of this paper.

We now split up the proof of theorem 2 into several steps and give a brief sketch of these steps.

§2. Proof of Theorem 2

Step I. Let

$$
\begin{aligned}
& I(\sigma)=\frac{1}{H} \int_{\mathrm{T}}^{\mathrm{T}+\mathrm{H}}\left(\int_{-\infty}^{\infty}|\phi(s)|^{2 / k}\right. \\
&\left.\left|\operatorname{Exp}\left(\left(s-i t_{0}\right)^{4 a+2}\right)\right| d t\right) d t_{0},
\end{aligned}
$$

and assume that $\mathrm{I}(\alpha)<\mathrm{V}(\alpha) \mathrm{H}^{1-2 \alpha}$. The constant a shall be a sufficiently large positive integer. As already stated we set

$$
\begin{aligned}
\mathrm{X} & =\left[2^{-\mathrm{A}-100} \mathrm{H}\right]+2, \text { and } \\
\mathrm{V}(\sigma) & =\frac{1}{\mathrm{H}} \sum_{\mu_{n}<\mathrm{X}}\left|b_{n}\right|^{2}\left(\frac{\mathrm{H}}{\mu_{n}}\right)^{2 \sigma} \text { and }
\end{aligned}
$$

we impose $\alpha<\beta<\alpha_{1}<\alpha_{2}<\alpha_{3}<\alpha+\frac{1}{2}$.

Step 2. Next we write

$$
\begin{aligned}
\mathrm{J}(\sigma)=\frac{1}{\mathrm{H}} \int_{\mathrm{T}}^{\mathrm{T}+\mathrm{H}}(& \left(\int_{-\infty}^{\infty}\left|\phi(s)-\mathrm{P}^{\mathrm{k}}(s)\right|^{2 / k}\right. \\
& \left.\left|\operatorname{Exp}\left(\left(s-i t_{0}\right)^{4 a+2}\right)\right| d t\right) d t_{0}
\end{aligned}
$$

where $\mathrm{P}(s)=\mu_{n} \sum_{\mathrm{X}} b_{n} \mu_{n}{ }^{-s}$. It is easily seen that $\Delta(\mathrm{X})=O\left(\mathrm{X}^{\mathrm{B}}\right)$ and also $1+O\left(\mathrm{X}^{-\mathrm{B}}\right)$ where $\mathrm{B}>0$ is an arbitrary constant and the O-constant depends only on B and a. Again $a_{n}=\mu_{n_{1}} \ldots \mu_{n_{k}}=\lambda_{n}\left(b_{n_{1}} b_{n_{2}} \ldots b_{n_{k}}\right)$ and for all $\mathrm{N} \geqslant 1$, we have $\mathrm{N} \leqslant \mu_{n_{1}} \sum_{\mu_{n_{k}}} \leqslant 2 \mathrm{~N}=O\left(\mathrm{~N}^{k}\right)$. From these remarks it is clear that $\phi(s)-\mathrm{P}^{k}(s)$ decays fast enough to ensure $J(\sigma) \leqslant 1$ when σ is large enough. Now from an easy application of a theorem of Gabriel (Theorem 3 above) it follows that in $\sigma \geqslant \alpha, \mathrm{J}(\sigma)$ is $<_{\varepsilon}[\mathrm{J}(\alpha)]^{1-\varepsilon}$ for every positive constant ε uniformly in σ, and so in $(\sigma \geqslant \beta$, $\mathrm{T}<t \leqslant \mathrm{~T}+\mathrm{H}),|\phi(s)|$ is bounded above by a constant power of H . (Here for getting the last bound we have to use the fact that for any analytic function $\phi(s),|\phi(s)|^{2 / k}$ is bounded by its mean value over a disc of (positive but sufficiently small) constant radius with s as centre).

Step 3. An easy application of a well-known MontgomeryVaughan theorem (refer [4] for instance) shows that

$$
\begin{array}{r}
\frac{1}{\mathrm{H}} \int_{\mathrm{T}}^{\mathrm{T}+\mathrm{H}}\left(\int_{-\infty}^{\infty}|\mathrm{P}(s)|^{2}\left|\operatorname{Exp}\left[\left(s-i t_{0}\right)^{4 a+2}\right]\right| d t\right) d t_{0} \\
=O\left(\mathrm{~V}(\sigma) \mathrm{H}^{1-2 \sigma}\right) .
\end{array}
$$

From this and the estimate $J(\sigma)<_{\varepsilon}(J(\alpha))^{1-\varepsilon}$ it follows that

$$
\begin{gathered}
\int_{\alpha}^{\mathrm{A}^{3}}\left(\frac { 1 } { \mathrm { H } } \int _ { \mathrm { T } } ^ { \mathrm { T } + \mathrm { H } } \left(\int _ { - \infty } ^ { \infty } \left(\left|\phi(s)-\mathrm{P}^{k}(s)\right|^{2 / k}\right.\right.\right. \\
\left.\left.\left.\quad+|\mathrm{P}(s)|^{2}\right)\left|\operatorname{Exp}\left(\left(s-i t_{0}\right)^{4 a+2}\right)\right| d t\right) d t_{0}\right) d \sigma \\
=O\left((\mathrm{~J}(\alpha))^{1-\varepsilon}+\mathrm{V}(\alpha) \mathrm{H}^{1-2 \alpha}\right) .
\end{gathered}
$$

Note that $\mathrm{V}(\sigma)$ and $\mathrm{V}^{*}(\sigma) \mathrm{H}^{1-2 \sigma}$ are respectively monotonic increasing and monotonic decreasing functions of σ, where $\mathrm{V}^{*}(\sigma)$ is the same as $\mathrm{V}(\sigma)$ with the terms $\mu_{n} \leqslant 1$ omitted. From now on we assume that $\mathrm{V}(\alpha)$ is bounded below by a constant negative power of H . Under this assumption it follows that the integral just considered is

$$
O_{\varepsilon}\left(V(\alpha) H^{1-2 \alpha+\varepsilon}\right) \quad \text { for every positive constant } \varepsilon
$$ Hence there exist intervals I_{1} and I_{2} contained in $\left(T, T+\frac{H}{10}\right)$ and $\left(T+H-\frac{H}{10}, T+H\right)$ respectively, for which the lengths are $4 H^{\varepsilon}$ (δ being any fixed constant satisfying $0<\delta<\frac{1}{100}$) each, and further $\mathrm{I}\left(\mathrm{I}_{1}, \alpha\right)$

$$
\begin{aligned}
=\int_{\alpha}^{\mathrm{A}^{\mathrm{s}}}\left(\frac{1}{\mathrm{H}}\right. & \int_{\mathrm{I}_{1}} \int_{-\infty}^{\infty}\left(\left|\Phi(s)-\mathrm{P}^{k}(s)\right|^{2 / k}\right. \\
& \left.\left.+|\mathrm{P}(s)|^{2}\right)\left|\operatorname{Exp}\left(\left(s-i t_{0}\right)^{4 a+2}\right)\right| d t d t_{0}\right) d \sigma
\end{aligned}
$$

and $1\left(I_{2}, \alpha\right)$ defined similarly (by replacing I_{1} by I_{2}) satisfy

$$
\mathrm{I}\left(\mathrm{I}_{1}, \alpha\right)+\mathrm{I}\left(\mathrm{I}_{2}, \alpha\right)=O\left(\mathrm{~V}(\alpha) \mathrm{H}^{1-2 \alpha+\varepsilon}\right)
$$

Hence by the principle for the mean value over discs referred to in the second step, we see that in $\left(\beta \leqslant \sigma \leqslant A^{2}\right.$, t in any of the intervals I_{1}, I_{2}) we have

$$
|\phi(s)|^{2 / k}=O\left(\mathrm{~V}(\alpha) \mathrm{H}^{-2 \alpha+2 \varepsilon+\delta}\right)
$$

Step 4. Let H_{1} and H_{2} be the mid points of I_{1} and I_{2} respectively. We now obtain a lower bound for at least one of the mean-values $K\left(\alpha_{1}\right)$ or $K\left(\alpha_{2}\right)$ where $K(\sigma)$ is defined by

$$
K(\sigma)=\frac{1}{\mathrm{H}_{2}-\mathrm{H}_{1}} \int_{\mathrm{H}_{1}}^{\mathrm{H}_{2}}\left|\mathrm{~F}_{0}(s)\right|^{2} d t,\left(\beta<\sigma<A^{2}\right) .
$$

Note that when we replace H_{1} and H_{2} by other points in I_{1} and I_{2} the mean value $K(\sigma)$ changes by an amount which is at most $O(E)$ where $E=V(\alpha) H^{-2 \alpha+2 \varepsilon+28}$. Hence if σ denotes any of α_{2} or α_{3} and $H_{1} \leqslant t \leqslant H_{2}$, we see that if j is a large positive integer constant,
(1) $\frac{j!}{2 \pi i} \int_{\mathrm{L}_{0}} \frac{\mathrm{~F}_{0}(s+w)(2 \mathrm{X})^{w}}{w(w+1) \ldots(w+j)} d w$

$$
=\sum_{\mu_{n} \leqslant 2 X} b_{n} \mu_{n}^{-s}\left(1-\frac{\mu_{n}}{2 X}\right)^{j},
$$

where L_{0} is the line $\operatorname{Re} w=A^{2}$. Deform the line L_{0} to the contour described by the lines $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}$ (in this order) defined as follows. Let $H_{3}=H_{1}-H^{\delta}$, $H_{4}=H_{2}+H^{\delta}$ where δ is a small positive constant. L_{1} and
L_{5} are the portions $\operatorname{Im} w-\mathrm{H}_{3}$ and $\operatorname{Im} w \geqslant \mathrm{H}_{4}$ respectively of $L_{0} \cdot L_{2}$ is the line segment

$$
\left(\operatorname{lm} w=-\mathrm{H}_{3}, \alpha_{1}-\sigma \leq \operatorname{Re} w \leq \mathrm{A}^{2}\right)
$$

and L_{4} is the line segment

$$
\left(\operatorname{Im} w=\mathrm{H}_{4}, \alpha_{1}-\sigma<\operatorname{Re} w \leq \mathrm{A}^{2}\right)
$$

L_{3} is the line segment $\left(\operatorname{Re} w=\alpha_{1}-\sigma,-\mathrm{H}_{3}<\operatorname{Im} w<\mathrm{H}_{4}\right)$. Taking the mean square after deformation of L_{0} we find from the equation (1), (Note that the only pole to be taken care of is $w=0$),
(2) $\left\{\begin{array}{r}\mathrm{K}(\sigma) \ll \mathrm{V}_{1}(\sigma) \mathrm{H}^{1-2 \sigma}+\left(\mathrm{K}\left(\alpha_{1}\right)+\mathrm{E}\right) \mathrm{H}^{-2\left(\sigma-\alpha_{1}\right)} \\ \quad \text { (where } \mathrm{V}_{1}(\sigma) \text { is defined below) and also } \\ \mathrm{V}(\sigma) \mathrm{H}^{1-2 \sigma} \ll \mathrm{~K}(\sigma)+\left(\mathrm{K}\left(\alpha_{1}\right)+\mathrm{E}\right) \mathrm{H}^{-2\left(\sigma-\alpha_{1}\right) .}\end{array}\right.$

The reason for this is that the mean square of the RHS of (1) is \gg and $\ll \mathrm{V}_{1}(\sigma) \mathrm{H}^{1-2 \sigma}$ where $\mathrm{V}_{1}(\sigma)$ is defined by $\mathrm{V}_{1}(\sigma)=\frac{1}{\mathrm{H}} \sum_{\mu_{n} \leqslant \mathrm{X}}\left|b{ }_{n}\right|^{2}\left(1-\frac{\mu_{n}}{2 \mathrm{X}}\right)^{2 \mathrm{j}}\left(\frac{\mathrm{H}}{\mu_{n}}\right)^{2 \sigma}$.

Since $\mathrm{V}(\alpha) \leqslant \mathrm{V}(\sigma)$ we may omit the term containing E in the second of the equations (2), provided $\alpha_{1}-\alpha<1$ (which is true because of our assumptions). This gives us $\mathrm{V}(\sigma) \mathrm{H}^{1-2 \sigma} \ll \mathrm{~K}(\sigma)+\mathrm{K}\left(\alpha_{1}\right) \mathrm{H}^{-2\left(\sigma-\alpha_{1}\right)} ;\left(\sigma=\alpha_{2}, \alpha_{3}\right)$

If we put $\sigma=\alpha_{2}$ we get a lower bound for one at least of the quantities $K\left(\alpha_{1}\right)$ or $K\left(\alpha_{2}\right)$.

We now deduce from the last inequality $\mathrm{V}(\sigma) \mathrm{H}^{1-2 \sigma} \ll \mathrm{I}(\sigma)+\mathrm{I}\left(\alpha_{1}\right) \mathrm{H}^{-2\left(\sigma-\alpha_{1}\right)}$,

$$
\left(\sigma=\alpha \frac{1}{2}, \quad \alpha_{3}\right)
$$

This is possible since in the range $\left(\sigma \geqslant \alpha_{1}, \mathrm{H}_{3}<t \leq \mathrm{H}_{4}\right)$, $\left|\mathrm{F}_{0}(s)\right|^{2}$ is a very good appıoximation (in the mean) to $\left.1 \phi(s)\right|^{2 / k}$ and we leave the details as an exercise. From the last inequality it follows that $\mathrm{I}(\sigma) \gg \mathrm{V}(\sigma) \mathrm{H}^{1-2 \boldsymbol{\sigma}}$, for one at least of the values $\sigma=\alpha_{1}$ or α_{2}.

Next by the convexity theorem of Gabriel (Theorem 3), we find that with the value of σ (α_{1} or α_{2} determined),
(3) $(\mathrm{I}(\sigma))^{\alpha_{3}-\alpha} \leqslant(\mathrm{I}(\alpha))^{\alpha_{3}-\sigma}\left(\mathrm{I}\left(\alpha_{3}\right)\right)^{\sigma-\alpha}$.

Moreover by the arguments used in the first of the inequalities in (2) we get (by taking X in place of $2 X$ in (1)).

$$
\begin{aligned}
& I\left(\alpha_{3}\right) \ll V\left(\alpha_{3}\right) H^{1-2 \alpha_{3}}+(I(\sigma)+E) H^{-2\left(\alpha_{3}-\sigma\right)}+E . \\
& \text { Now } E=V(\alpha) H^{-2 \alpha+2 \varepsilon+2}<V\left(\alpha_{3}\right) H^{1-2 \alpha_{3}}
\end{aligned}
$$

(since by our assumptions, $\alpha_{3}-\alpha<\frac{1}{2}$) by a small choice of the positive constants ε, δ. Thus we get

$$
\mathrm{I}\left(\alpha_{3}\right) \ll \mathrm{V}\left(\alpha_{3}\right) \mathrm{H}^{1-2 \alpha_{3}}+\mathrm{I}(\sigma) \mathrm{H}^{-2\left(\alpha_{3}-\sigma\right)}
$$

and so by (3)
(4) $(\mathrm{I}(\sigma))^{\alpha_{3}-\alpha}$
$\ll(\mathrm{I}(\alpha))^{\alpha_{3}-\sigma}\left(\mathrm{V}\left(\alpha_{3}\right) \mathrm{H}^{1-2 \alpha_{3}}+\mathrm{I}(\sigma) \mathrm{H}^{-2\left(\alpha_{3}-\sigma\right)}\right)^{\sigma-\alpha}$.
This holds for either $\sigma=\alpha_{1}$ or $\sigma=\alpha_{2}$ and gives us

$$
\left\{\begin{array}{l}
\text { Either } \mathrm{I}(\alpha) \gg \mathrm{V}(\sigma) \mathrm{H}^{1-2 \alpha}>\mathrm{V}(\alpha) \mathrm{H}^{1-2 \alpha}, \\
\text { or }(\mathrm{I}(\alpha))^{\alpha_{3}-\sigma} \gg\left(\mathrm{V}(\sigma) \mathrm{H}^{1-2 \sigma}\right)_{3}-\alpha \tag{5}\\
\left(\mathrm{V}\left(\alpha_{3}\right) \mathrm{H}^{1-2 \alpha_{3}}\right)^{\alpha-\sigma} .
\end{array}\right.
$$

The second of these inequalities gives

$$
\mathrm{I}(\alpha) \gg \mathrm{H}^{1-2 \alpha} \mathrm{~V}(\sigma)\left\{\frac{\mathrm{V}(\sigma)}{\mathrm{V}\left(\alpha_{3}\right)}\right\}
$$

Since $V(\alpha) \leqslant V\left(\alpha_{1}\right) \leqslant \mathrm{V}(\sigma) \leqslant \mathrm{V}\left(\alpha_{3}\right)$ and since $\frac{u-\alpha}{\alpha_{3}-u}$ is an increasing function of u in $\beta \leqslant u<\alpha_{3}$, we get finally

$$
I(\alpha) \gg V(\alpha) H^{1-2: x}\left\{\frac{V\left(\alpha_{1}\right)}{V\left(\alpha_{3}\right)}\right\}^{\frac{\alpha_{2}-\alpha}{\alpha_{3}-\alpha_{2}}}
$$

Step 5. Step 4 nearly completes the proof. For we could have started with a slight modification of I (σ) by averaging over a slightly smaller interval contained in ($\mathbf{T}, \mathbf{T}+\mathbf{H}$) instead of $(T, T+H)$. For instance by cutting off bits of length H^{δ} on either side. The decaying factor $\operatorname{Exp}\left(\left(s-i t_{0}\right)^{4 a+2}\right.$) enables us to replace the modified

$$
\text { I (} \sigma \text {) by } \frac{1}{\mathrm{H}} \int_{\mathrm{T}}^{\mathrm{T}+\mathrm{H}}|\phi(s)|^{2 / k} d t
$$

in the last lower bound.
Steps 1, 2, 3, 4 and 5 complete the proof of theorem 2.

Theorem 4

With the notation of theorem 2, we have,

$$
\frac{1}{H} \int_{T}^{T+H}|\phi(\alpha+i t)|^{2} d t \gg
$$

$$
\left(v(\alpha) H^{1-2 \alpha}\left\{\frac{v\left(\alpha_{1}\right)}{v\left(\alpha_{3}\right)}\right\} \frac{\alpha_{2}-\alpha}{\alpha_{3}-\alpha_{2}}\right)^{k}
$$

where the constant implied by the Vinogradov symbol is effective Remark. This theorem will be used in [1].

References

I. R. Balasubramanian And K. Ramachandra, Some problems of analytic number theory-III, HardyRamanujan Journal, Vol. 4 (1981),
2. D. R. Heath-Brown, Fractional moments of the Riemann zeta-function, (to appear).
3. K. Ramachandra, Progress towards a conjecture on the mean-value of Titchmarsh Series, Proceedings of the Durham Conference on Analvitic number theory, (July-August 1979), (to appear).
4. K. Ramachandia Some remarks on a theorem of Montgomery and Vaughan, J. of Number theory, Vol. 11 (1975), 465-471.
5. E. C. Titchmarsh, The theory of the Riemann zetafunction, Oxford (1951).

Manuscript Completed In The Final Form On 11-Oct-1980

School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Colaba, Bombay 400005
(India).

