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SOME PROBLEMS OF ANALYTIC NUMBER
THEORY -1lI

By R. BALASUBRAMANIAN AND K. RAMACHANDRA

$ 1. Introduction

The main theme of this paper is to systematize the
Hardy-Landau Q results and the Hardy Q _ results [3] on

the divisor problem and the circle problem. The method of
ours is general enough to include tne abelian group problem
and the results of Richert [9] and the later modifications by
Warlimont [11], and in fact theorem 6 of ours is an improve-
ment of their results. All our results are effective as in our
earlier paper 1I [2] with the same title. Some of our results

are new. For example 0) (x‘lr (log x)* ) and Q. (xa), with

92

a= T in the case of abelian groups. But our present

methods for O, results are imperféct in the sense that they

depend on the known O-estimates for the error terms and so
there is some loss and the exponents are not optimal. We first
record our abelian group result as ( for our earlier result see
see [1]).

Theorem |

Let A0 (x) denote the number of non-isomorphic abelian

groups of orders not exceeding x (x > 10). An approximation

1 1
20 =5 "

J J
to Ao (x) is z Cj x  where Cj x is the residue at
j=1 '
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I 28

1 x93 —800
S = 7 of(?k 1C(ks)). We have M (I) > 10 and

800 " 000 y)

m(I) < — 10" °°, where 1 denotes the interval (ev, )
and, M (I) and m (1) denote respectively, the maximum and
the minimum of the quantity

20 - et

—a 2

( AO ) - z Cj x )x (logx) as = varies
‘ =

|

‘ ' 1
over I. Herea = and y > 1000. Also ifa = r the

1221

0_8000 as x

Square of the last quantity has a maximum > 1
varies over 1.

Remark : Although we do not compute the constants
explicitly our method surely leads to these constants. We get
optimal results for the () problem in almost every case (Circle
problem, Divisor problem and so on ) and we get for

(3 d(m) — (xloge+ (2y —1)x))% x4
n< x
and also for
{/ 3 1 \ }2 -
mz—{-n2 < X /
m,n 4+ ve, —ve Or Zero

results which are analogous to the statement of theorem 1.
However for the analogue of the first statement we have to take

1
a="cor slightly bigger exponents (O-results of G.A Kolesnik

19
[4] enable us to take anya < 08 ). The exponent
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92

a =

1221
of B.R. Srinivasan (See Acta Arith., Vol. 23 (1973), 195-205)
in our work. For an improvement of theorem 1 see § 4.

(in theorem 1) comes from the use of the O-estimate

Our method of attack is as follows. Let A (x) be a
complex valued (Riemann) integrable function defined by

A() =0if0<x<1,and subjectto|A (x) | < (x+2) C
in x > | where C is a positive constant. Then the following
theorem is an easy consequence of a theorem:of H.L
Montgomery and R. C. Vaughan (for a simple proof of a
special case which we actually need see [6].)

Theorem 2
Let s = 0-+ it, @ >0,T<t<2T,X>T*,
Y > T + 2X where T > 1000. Then with

24+ i
1 w a 42 dw
A(X)=2'uif “ EXP(W )W >0
2 —-iw
o0
1 4
=;f sin(vlogx)exp(—va"'z)%'.'
0
(a > 0 being an integer constint), we have,
2T oo
1 3 -8 ,Y 2
S TaF) e |t a
T 2X
’ 2
. A (u) 2 Yy B du
-,0((X+T)f, 3o(2))® 2,
u

where B > 0 is an arburary constant, A (x) = min (1, x), and

the O-constant depends only on a, B, @ and C (and in an effective
way).

From this we deduce the following
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Theorem 3

Let 1 = )\1 < Ay< .. be a sequence of real numbers

1 ' ;
with c < }\ >‘n < C, where C is a constant > 1, and

n=123,.. Let {an} be a sequence of complex numbers .

subject to la,l < (n + 1)C . Let L bea curve consisting of

finitely many fixed straight lines all contained in
(O<Re w<1+0, |Im wiC), where @ >0. Let H (W) be analytic

Junction analytic on L such that is analytic on L and

W
w
let L be provided with a definite orientation. ~For u > 0, put
1 W
2R .f Hiw) @
L

Then with s = ¢ 4+ it, ¢ > Oand

aw
D@ = W

A@ = 2 a — D (u), (u>0),
paSu n

T x < T2 Exp(T4")>Y>T3+2X we have,
2T o )
-8 -8
Tf 12 (5 e
<2X
2 2 =
X T 2 Y B du
=O(T2)+O((T+7(—)f A(u)) u—)’
i A

where B > 0 is any arbitrary constant, Ay X) = min (I, X)

T > 100, and the O-constant depends only ona, B, e and C,

H(W)
it being assumed without loss of generality that max l W
as W varies on L does not exceed C. Moreover the O-constant

is effective.
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Remark
x2
The term —, can be replaced by
T
2(N\ - 0)
X 4a 2(N—¢
: +Bp(-TH ¥ & 77,

T.’.

where A\ = max Re (w) as w varies onL.

It is completely
absent if D (u) = O foru > 0.

It is easy to indicate how theorem 3 follows from theorem 2.

From A (v) = 2 ey = D (u), it follows that

o
- z ana(%ﬂ—)xn_»s— z anA(il)b
n=1 A, <2X

N0+ L6,

e

(- -]
1 () = fu—SA(—i“) (yj‘—ifH(W)uw_ldw)du
0 L

I
=“1TifH(W)Jl(W—-s)dW‘ and
L
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2X
f . 2 ( _1('_ ) ( 1 f W—ld P
u > i H(W)u W) u
0 L

1
2w

I ()

L}

j H(W) J, (W=-s) dW
L

where, for complex Z,

Jl 2 =‘f uz—l A (%—)du
0

®
Z Z—1 1 '
=Y f v A(*)dv and
y
0

2X
12(Z)=f uZﬁl(l-}-(A(Z’)—l)) da,
0
ex? Y Z—1
=" +[ (A(-};)—l) u du.

By using the result on page 7 (Chapter 1, the section on Mellin
transforms) of Titchmarsh’s book [I0], we find that

3, @=Y2z7 Exp %Y. Alo since A (1) =1

+0(x'B) for every positive constant B, it follows that
J2 (Z) — (2)()Z Z 1 is an entire function of Z. Thus

-fau—‘A (%) dA (u)
2X

[ -]
=z aﬁa(%)x;s- z ana(%’)x;s
n=1 A, <2X
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W-—gs? -1

2a1f HMWY (ﬁ’j
Bxp ((W =8 10) dw

-5 dW
f HW) @0 s

2K1

2mf H(W)(f (A( -1)uw"""ldu)dw

This is an 1dcnt1ty valid for all complex s. Trivially this
identity gives theorem 3 once theorem 2 is granted. We will
prove theorem 2 in § 2.

Theorem 3 is a step in the proof of our main theorem
which we prove in § 3, and is an interesting lemma by itself.
Since for any two complex numbers Z1 3 22 we have

2 2 2 ;
|Z1 —-Zzl >}|Z1 | —122| , the LHS of the main

inequality of theorem 3 is

2T
2

> 7 LG (s)| dt

T

1 2T — Y 2
_Tf l z an>\" A(.AR)I lf,
T A, <2X
-3 Y

whereG(s):nglan X, A( )\n)’

Here the second term (and in fact the mean value over

(0,2T) ) is Z
A

n< 2X
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where the O-constant can be taken to be 6%. Hence the main
problem is to obtain fairly economical lower bounds for

the mean value — f ’ G(eo + 1:) dt Then we choose

X properly and get lower bounds for

STEO o (218

If we now substitute an upper bound for : A (v) | then we end
up with a lower bound for

£ 150 (a0 ) 4

where [ is a non-negative constant coming from the loss due
to a (possibly ) non-optimal upper bound for | A () |.

While the first lower bound leads to an ) result which is
nearly optimal the second leads to (), resuits which are not

optimal by the method of our earlier paper [2]. In both these
results it is necessary to see that Y does not exceed a fixed

power .of T.

The main problem which we concentrate in this paper is

@ — th
the case >‘n =nF@$)= 3 a,n  being the k  power
nes}
-
of a Dirichlet series F (s) = z b,n . Here k is a
n:—.

positive integer constant > 2. All that we need is that F 5 (s)

eonverges somewhere in the complex plane and that it should
admit an anmalytic continuationin (¢ >4 -8, T <1 < 27)
for some positive constant ¥ and in that region
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max FO(s)|<Exp (TC ), T > 100. We have to borrow a result

from Ramachandra’s paper [8]. Using this we deduce from
Theorem 3 an ) result which is nearly optimal. We prefer to

state the General theorem on F (s) = (Fy (s)) k in § 3. Allour

results are effective. Next we would like to say that it is
possible to unify the circle problem and the divisor problem
and state a general theorem on F (s) = Fy (s) F; (s), where

F 0 (s) has a functional equation and Fl (s) is a Dirichlet

series satisfying some conditions. We can also generalize, to
some extent, the result

2T

1 @ 1 . 2

T—f Iknll(k(—G' + n))] dt > TlogT,
T = ‘

whose proof will be sketched after the statement of theorem 4.

Before closing the introduction we record here a theorem
on the zeros of Dirichlet series which can be obtained by the
method of an earlier paper; (On the zeros of a class of
generalised Dirichlet series V, J. fur. Reine u. Angew. Math,
303/304 (1978), 295-313) by the second of us. The reason is
that the function A (x) employed in the present paper is very
helpful and can be used to improve Theorem 16 of that paper.
However we state only a special case of the improvement for
simplicity. The full paper with details will appear as a joint
paper by us as a continuation of Ramachandra’s paper V cited
above, as paper VI with the same title.

Theorem 4

Let { a,’ } bea sequence of complex numbers such that
: &—\' a W
ﬂn' = 0 (1) and . Z Re (an’) is bounded below[for all x

x<n 2
exceeding a certain positive consiunt, Suppose that the Dirichlet
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= o]
. - § . -1
series an' n  can be continued in (¢ > 5 = 3,
n=1

T <t < 2T) analytically and the absolute value of the function
does not exceed a fived power of T. Then the number of zeros of

1 1—¢
the function in (¢ > 7 = /. Tt 2T)is> T (logT)

- 1 1
provided T is large enough and 0 < € < 10° 0«8 < 0
The constant which T should emceed is effective.

To close up the introduction we sketch a proof that

2T =
1
—T_ f ’ ~ { (ks)
T k1
By the functional equation this result follows from a similar
result where the integrand is replaced by

. 3 6 2
TI( =~ C(l—ks) ( =~ L (ks))|

2 1
d>TlogTone = i

6 2
=T[( ™ L(1 =20 4ks)) (= z(ks))\.
k=1 k =4

w

Now there are several methods of deducing the lower bound
> T log T. The most general and powerful method is to apply
the following theorem. ,

Theorem 5
(> o] a 4
n 1
Let F(s) =1+ z ~—s—be analytie in (a>~—2—,
. g 2 n

T <t < 2T) and there max |F (s)| < Exp (TA) where A is a
positive eonstint and'T > 10. (The series for F (s) is assumed te
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converge for at least one complex number s and the an' s are

assumed to be complex numbers with |an”| < (n+ I)A). Then

2T

Ll e a)f o

Tf | 2+1t >

T

L 12 ——1(1 log n )

z " wlogT-'-IoglogT ’
T

n T+ 1

100

where the constant implied by the Vinogradov symbol >> depends
only on A.

/]
| n

Remark

This is the special case of a more general theorem of
Ramachandra (See [7].) >

Thus the result

2T oo
1
'rf }wz(k.s)i dt > T log T, (.z—g)
k=1
is complete]y provcd except for the verification that for the
choice F (5) = I(l ‘+k:))( I(ks)), the

right hand side of the main inequality of theorem 5 is > log T.
This is left as an easy exercise.

$ 2. Proof of Theorems 2 and 3.

We begin with
Lemma 1. Subject to the convergence of integrals and subject
oY = 2X, we have
2X
dx
“}?
X

2T
f {%f ifu“sa(?u.)dA(u)z
X T «A
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=o((02 +‘T2)()% + %) El‘),

where, X >2, T> 2,58 =0 + it, and, *

(mm(l -)) B f_’f

where B > 0 is any constant, and the O - constant depends only
onBanda.

=<}

A ()2
LG
1
x %

w

Proof.
We apply Montgomery — Vaughan theorem ‘(see [6]) as follows.

-5 Y
Putting f(u) = u A ( ; ), we see that

2X 2T @®
ws- [ f1f [[2awrw]
. X | T u=x
—f A(u)f’(u)du2 dt}'?
x
” 2[ _X_(‘_ ( ) 2 dx
&

2T -
+2f { If A W) f (u) du

Next we observe that the innermost integral in the second term
here

4
dt} s
I

I 00
S F Aarutnrarusn)) w
0 n=0

and so the second term does not exceed
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2 2

{f Z‘A(fl’:-uu:’;)"‘} (;:‘—ii;i (A(n+:+x))2

Y2
+ — (A'(

))2)E (n+u+x))du} &
(n+u+x)4 2 x

n+ u+x

where E2 =1+ 0(*——'—) (and the O-constant can be

1
taken to be 6% since log (1 + —n ) = on forn > 1).

Hence the second term does not exceed
o 4]
. f i
X
2

2
o° + 4T Y 2
where E3 (u) = (a (“ ) %

a7y avo(r)).
Now ‘
2

+o( 44T2( (Y)) oo (A( )

Y
Next for u >Y wehave A (—*) =0 ( (X)B ),
u u

o () =0 (5P -o((%) )
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for every B > 0 and hence the constribution from u > Y is

°<f U

2 5 irim’ 3 )
A(u)‘ <a + 41 fg)B_ _Y_(YZ)B 2

u 3
u u

B-2 Hu ‘i’f
x

u2T
where B is any positive constant.
For u < Y the contribution is [by using A'(X) = oxB)

= O(X_B) and A (X) =1+0X" B), for every constant
B> 0] -

o {f POF (T

a1\ duydr

T T)'u}x)
o(f { A(u)2(_<_7_{+4T2+_1
u u

X

, orar? +4T2 ) (mm " __))B a’u} )

and hence the LHS of Lemma lis

o(f { 2

2
o2 + 4T? o +4T2
( + )
u T

(mu’%w"%}%)

Lemma 1 easily gives theorem 2 and this in turn gives
theorem 3 in a fairly obvious way as was already seen in the
introduction.

This gives the lemma.
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¢ 3. The Main Theorem.

We now start with an easy lemma. As stated already we put

® b

Fo(s) -"z n:

n .1
K ®
(F,©) =F(@) =y

Lemma 2. For all N > 1, we have,

|-
|-

2
_Gll
an
n

1l<n<N
1
P

O{ N (z

2 k
W) )
l€«n< N

where € > 0 is arbitrary and the O-constant depends only
on € and k.

Proof -
LHS - sz b , b, (n _._n")—ul
ny ny ”1 n, 1 k
n on n = n n2'...nk'=n<N
< 2 z b b d (n ) (n =2
n n k k)
n < N
€ 2 —24
=0 (N
( z bn1 b”k (n) o my) )
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The lemma follows on applying a simple inductive argument
on k, to estimate the last sum. Here we have used

2 2
IZIZZ’< 2, Izz

. We next state our main theorem and sketch its proof.

Theorem 6.
@ bn
Let Fo sy = z " be a Dirichlet series with complex
n=1 "
coefficients b,, which converges at least at one point of the

complex plane and define F (5) = (Fo (‘s) )k where the series for

F A (s) is absolutely convergent (note ihat if F 4 (s) converges at

1 1
3 it converges absolutelyat s + 2). Let J = v2‘ - 2—-," and let
L
1a A
A be a constant > 2k. Suppose thatin (¢ > 5—;‘-, T

<t<2D,F, (s) admits an analytic continuation and there M

defined by M = max ] F, () ,a‘oes not exceed Exp (TB) where

B is a positive constant, and T > 10. Let L be a curve consisting
of finitely many fixed strcight lines all contiined in (0 <L Re
w14+, |Im wi| < B), and assume that H (W) is an

analytic function (defined on L) such that is analytic
onL. Put

D (u) =

w

1
|
|

W aw
Iwi fH‘W)" wo @>0

and next
B (v)

it
M
Q
|
o
~
=
~—

(u > 0).
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Let L |, o 5, ol 3, @ 211 C be positive constants subject to

A<y~ 7 <d ; <d,<dy< 5,0<1-73 an

further assume thit the ma«imum of | b, | Jor 1 €& n <

oo~ ! exceeds T~ © and P} < (n+1)C
max H W)
(n = 1,2,3,...,) and W on L W l < C. Then there

exists an effective positive constant To = To (k, A,B,C, 0, °(l
42, o(3) > 2 such that for all T > To there holds,

20 ()2 p

1 E (v u

A~ 1 i (,{ I ol u)

T (log T) ™" + maximum ('Y u

T
T<U<M+T) °
> T(;l minimum &
1 -
T <t T
k (.:12—:1)
k -1 °‘3 - °‘2
VD (VL) V(L) ) :
1 2 20
where V (¢) = = z bn (% ) ’ provided only
T
"< 100
k
-1 12
that( 2 n lbnl ) does not exceed T0 times the
n<g T '

RHS of the main inequality .
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1
Remark. Actually the term A

; _ .
(log T) 1 on the

1
' - -1 —(3-2Xx4+2) (1-
LHS can be replaced by (log T) : T ' A .

where X = max (ReW). It isin fact absent if we take
WonL
HW) = 0.
K o— 4™
Corollary. We have (wizh @) = 2 : ),
nal n ;

ol 1 1 .
z dk(n) & Dk(X) + 0 (X ), where J - = Z_k and
ng X
D, (X) X~ 1isa polynomial in log X of degree k — 1. In
particular D, (X) x~1is log X + 2y — 1, where Y is the

Euler’s constant.

Our method gives ) (X%) for the circle problem as

well. We can formalise in this direction to some extent but
not yet with such a full satisfaction as we have given Theorem 6.

In the rest of this section we sketch the remaining part
of the proof of theorem 6. We wili first handle the function

0
G A (Y
= @n s )
1
where Y = (M + T)b where b > 10 is a positive constant

depending on Aandol;. Let H = T} Now G (s) is an entire

function and it is very close to F (s) in



SOME PROBLEMS OF ANALYTIC NUMBER THEORY-TII 31

] — —

A

1 1 1
(">2(2"*A‘ +o[1), T +H<t<2T-H).

Alsofor X = T, T <t < 2T and ¢ > 0, we have,

(= =}

-5 Y (C+10)k
f W A(D)AEMWD®W) -G ©+0(X ).

2X
Thus on integrating by parts, we get,

(- ]

f L VS SO
@ A())E@ du
2X

m—s Y

=__fu A (5)D’ () du+ G (5) + O(T
2%

-G (4 0T6C+2ky

by an argument similar to the one we used, in the introduction,
to deduce theorem 3 from theorem 2. In other words if |G (s)]
exceeds a large constant power of T somewhere in

(6C + 20) k

]_.g_
A
(6 >0, T < t « 2T) then

du

f l—d WA Co)E
du u
2X

o0
(and hence [ ... du) also exceeds a large constant power of T
x i

for this value of 5. From this it is not hard to show that our
Theorem 6 follows except when |G (s)| is bounded by a

1

1_—-

copstant powerof T in (¢ >0, T A gt <2T) . We
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now consider the excluded case which is possibly exceptional.
As already remarked F (s) is close to G (s) in
=2

11 1 o
(a>2(2—x+dl),T, +H<r<2T H|

Hence in this region | F (s) | is bounded by a constant power
of T. Hence we can take a new A transform G, (s) of F ()

(witha different Y, now a large constant power of T) in
place of G (s), such that in

1. L
! ! *1 3 ) T A Hgr 2T H)

' G’v1 (s) is a good approximation to F (v). It follows now from

the results of Ramachandra’s papsr [8] (see Theorem 4 of [8] )
that

2T -2H , ,
@f ,Gl(d-i-it)l dt
A
1 ¢
-2
T + 2H

> P logT minimum

(! S
’ . 1 e )
(VD))" (V) V(dy) )
where the constant implied by the Vinogradov's symbol is
effective. Theorem 3 and lemma 2 now complete the proof of

theorem 6. We have only to replace A by a larger constant
which is not a loss of generality.

lelW‘A’WM:FC% \'«w./y{:.f

L
T

]

bl £ cnoten [ T
| Gt Ties, l ‘4{,-

Mise B A b e alon
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$§ 4. Some Concluding Remarks. In our remarks preceeding
theorem 4 we have stated that it is possible to unify the circle
lattice point problem, the divisor problem and generalise it
very .much. We can also generalise the abelian group problem
very much. We can proceed much along the lines of this paper
of course with an appropriate generalisation of the results of
[7] and [8]. But our Q1 results are not so satisfactory as our

results [2] which are linked up with the singularities. Our Q
results are fairly satisfactory but our ) Y results are not. Fer
example the abelian group result reads Q_ (Xa) with
X _l_

. d th ted result is (XG) Thi
a = 1221 and the expected result 1s Q:t— . 18

imperfection results frem the fact that we have to depend upon
the known O-results which are far from being satisfactory.

However there is one method of quite a general character
which leads to

1
R (10g 371

N'»—A

s d =D, X))+ 0, X
neX k(") k() :L:(

(k, an integer constant > 3) and

1
10 log X )2))
X
:i:( Exp ( (loglogX

in the abelian group problem. Moreover the results are
effective in the same sense as:theorem 1. For this we have some~

2X

o1
how to get a lower bound for X f |E(x)| ds. The rest of
X

the procedure is the same as in [2]. To obtain a lower bound
for this first power mean value we prove that the generating

functions F(s) [=(Z(s))k for the divisor problems and
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w
= = { (sk) for the abeiian group problem] have a large

absolute value fairly frequently' on the relevaat lines

1 ] . 1
(¢ = 5 ~ ) for the divisor problem, ¢ = T for the

abelian group problem) This leads to the results. We noew
state two theorems.
Theorem 7.

Let k > 3 and let bn be all real and let the cenditions of

R T 1
theorem be satisfied with o = 5 .k(mstead of o = 2 "%
and A > k (instead of A = 2k). Then forall T > Ta =

’Ilo (ka A; B9 C> 0 dlq 0‘27 d})s (TO = 2) there holds

1 . . E @
T t (log T) max o
1 u
T T
T?< U< M+T) °
5 k (42 —d)
- Y ~1 2@, — oLy
> 17 e 2 iy G TP T

where V(o) is as before, (butwith t = T) provided that
( 3 n1 |bn|2)k/2 does not exceed T9 times the RHS of
n<T

L)
o

the main inequality. Also the same ine;uality holds with —
u

in place of the quantity Further we have to make the

u
tions that F F ( “ ! 1.8
assumptions tha () = ( 0(3) ) isregular (at s = > T 11k

i 12
and) in 0 = 3 7 1k except possibly for singularities on the
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line t = 0 and that H(W) = F(W) and further L is an anti-
clockwise oriented rectangle enclosing all the singularities of F(s)

1 ) '
which lie in (al—m<¢ <1l + ¢ :0) and o > 1 + ol
is free from the singularities of F(s). Finally without compli-
cating the other conditions we have te impose that

log T
RHS > Exp (— 20k

Corollary :

’ 11

3 d(m-D,(0+0a, @2 ¥ gnTh

k k % *
n<x .
1 k sds
Jor k > 3 and Dk (x) = i f TE) =x e
ls—11 = 4%

We next state one more theorem.

Theorem 8.
Let M* (1) and m* (1) denote the maximum and minimum
of the quantity (for notation not explained here, see Theorem 1)

20 1 1
= ~n 3 log x
- j 10 _2f loB¥ )2 )
(Ae ) z Cj it E EXP( 4\ log log x
—
in the interval 1 definedas (¢’ , 9%y . 3 > 1000.
Then, we have, M (1) > 10890 angam” (1) < —10

We now make some remarks about the proofs of
theorem 7. The first step in proving the two theorems is

— 800

Theorem 9.
We have, with the notation of theorem 7,
i 2U
E (x) | dx
7t (logT) max f 4 |

T<U<(M¢Do U x
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k(aly — o)
= 2 (a3 ~ ialy)

o

kj2 -1
> 1,7 v (v v )

Proof : Follows from the fact that we can assume first
of all that | G (5) | does not exce:l a fixed power of T. Next
we derive a lower bound for

o .
lf E (u) i l .t
: L1 . (s = i+

from the mean square (over (T, 2T)) lower beund for it.
From thls theorem 9 follows.

— Ul

We now observe that if Sfu) = (E (e )) e 7", then
2U o | d logU+3log2 + A :
E (x X
f e <f |f ()] du,
U logU ~}log2 - X\

(A >0). Wenowput A = uy+uy+ ... +u, and inte-
grate over a cube of dimension m of side length A (a positive
constant, which is small).

Denoting the average over the cube by A (A, U, m), we have,

1

T + (log T) max A (A, U, m)
TSKU<S M+T) o

> RHS of Theorem 9.

Next we denote the average above but this time with | f (4) |
replaced by f (u) by B (A. U, m). We see that B (A, U, m)
is the average of

1
FU@+0) 4+ f@-0)

C1+ioo
u(W- o) dwW
= f F (W)= TRIW
C, ~-iw

1
| ImW | > ¢
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d—38 + 1Ig Wod) AW
" (W
+f F(W)e IRiW
o — 3 — ig

+ 2 other integrals over horizontal paths

where g is a positive constant and § is equal to =/ 11 %5 C >0

is a suitable constant. The average of I, is O (g" 0 ), where

u,, is the smallest value of u in process of averaging. The other

. m lcl -m :
integrals have in all the average O ( (2A) g ) where

u is the largest value of # in the process of averaging and so

‘ -8 1

u1<logU +mA. Putm = [10 log U]land A = 10
Choose g to be a large constant. This shows that B (A, U, m)
= O(e"“oa) = O(u"'t/ 2). To deduce Theorem 7 we need

Theorem 10,

IfQ > 0 and ifinthe cube occurring in the definition of
A (AN, U, m)and B (A, U, m) we denote by J (Q) the portion
where |f(u)| > Q then either f (u) changes sign in the region
J(Q) or
A(A,Um<2Q+IB(A, U, m|.
From these remarks theorem 7 follows.

In the case of the abelian group problem we have to start with
the following result

Theorem |1,
1
. We have, with ¢ = 10 and s = ¢ + it
o0
max (| ® [ (ks)|)>T Exp( 3( log T )i)
T<et€2T k=1 log log T

for all ¥ exceeding a positive constant.
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Remark :

This is due to us and extends over some papers on
“ Titchmarsh’s phenomenon *. This is nearly the best known
result in this direction. See a paper by R. Balasubramaniam
(to appear) to whom the constant } and in fact a better
constant is due. From theorem 11 it follows as before that

20

T .
. E (u) ﬂ 3 log T )
]T 'uc 'r u >EXP(T( log log T ))-

From this result theorem 8 follows very much like theorem 7.

We hope to publish a fuller account of our investigations -
on O , results when they reach some finality.
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In theorem 8, we can take at present, only the

expression:

0 L1
(- 36 )

j=1

log x ]
EXP( 20(log logx) )
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But we have not changed theorem 8 for some reasons. - Indeed
1

we hope to prove a stronger version with things like x % in

1

place of x 10,

Finally we note for comparison the result
2X -20 1 12

f ‘(AO (%) ~Z ij7)x—6 dx = O (X (logX)z),
X j=1

which can be prbved by standard methods.
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