ON A QUESTION OF RAMACHANDRA

By Hugh L MONTGOMERY*

Let $\mathrm{a}_{\mathbf{k}}(\mathrm{n})$ be the Dirichlet series coefficients defined by the relation
(1) $\left(\sum_{p} \frac{1}{p^{8}}\right)^{k}=\sum_{n=1}^{\infty} \frac{a_{k}(0)}{n^{s}} \quad(\operatorname{Res}>1)$. Here k is a positive integer, and we see more explicitly that if $n=p_{1}{ }^{\mathbf{a}} \ldots p_{t}{ }^{\mathbf{a}}$ then
(2)

$$
a_{k}(n)=\left\{\begin{array}{cl}
\frac{k!}{a_{1}!\ldots a_{1}!} & \text { if } \Omega(n)=k \\
0 & \text { otherwise }
\end{array}\right.
$$

With possible applications to the Riemann zeta function in mind, Ramachandra has wanted to know the asymptotic size of the quantity
as a function of N and σ, where σ is fixed, $\frac{1}{2}<\sigma<1$. We settle this question by demonatrating the following

Theorem : Let σ be fixed, $\frac{1}{2}<\sigma<1$. With the $a_{k}(a)$ defined by (1), we have
(3) $\max _{k}\left(\sum_{n<N} \frac{a_{k}(n)^{2}}{n^{2 \sigma}}\right)^{\frac{1}{2 k}}=\frac{(\log N)^{1-\sigma}}{\log \log N}$

[^0]In addition, for any integer $\mathbf{k}>1$

$$
\begin{equation*}
\left(\sum_{n} \frac{a_{k}^{(n)^{2}}}{n^{2 \sigma}}\right)^{\frac{1}{2 k}} \approx \frac{k^{1-\sigma}}{(\log k)^{\sigma}} \tag{4}
\end{equation*}
$$

Here the implicit constants may depend only on σ.
With a little more care one could show that the values of k for which the maximum in (3) is attained satisfy

$$
k \approx(\log N) / \log \log N
$$

To establish that the right band side majorizes the left above we shall require the following two lemmas.

Lemma 1: Let $Y>2$, and put

$$
\mathbf{R}=\mathbf{R}(\mathbf{Y})=\{\mathbf{r}: \mathbf{p} \mid \mathbf{r} \Rightarrow \mathbf{p} \leqslant \mathbf{Y}\}
$$

Then for any $k>1$, and fixed $\sigma, \frac{1}{2}<\sigma<1$,

$$
\left(\sum_{r \varepsilon R} \frac{a_{k}(r)^{2}}{r^{2 \sigma}}\right)^{\frac{1}{2 k}} \ll \frac{Y^{1-\sigma}}{\log Y}
$$

Proof: Let $X_{2}, X_{3}, \cdots, X_{p}$ be independent random variables, each uniformly distributed on the circle $|z|=1$. Then

$$
\begin{aligned}
\left(\sum_{r \varepsilon R} \frac{a_{k}^{(r)^{2}}}{r^{2 \sigma}}\right)^{\frac{1}{2 k}} & =\left\|\sum_{p \leqslant y}{ }_{p}^{X_{p}^{\sigma}}\right\|_{2 k} \leqslant\left\|\sum_{p<y} \frac{X_{p}}{p^{\sigma}}\right\| \infty \\
& =\sum_{p \leqslant y} \frac{1}{p^{\sigma}} \ll \frac{Y^{1-\sigma}}{\log Y}
\end{aligned}
$$

Lemma 2: Let $Y>2$, and put

$$
S=S(y)=\{s: p \mid s \Rightarrow p>y\}
$$

Then for any $k>1$, and fixed $\sigma, \frac{1}{2}<\sigma<1$.

$$
\left(\underset{\varepsilon \in S}{a_{s^{2 \sigma}}(s)^{2}}\right)^{\frac{1}{2 k}}<\frac{k^{1 / 2} Y^{\frac{1}{2}-\sigma}}{(\log Y)^{1 / 2}}
$$

Proof: From (2) we see that $\mathbf{a}_{\mathbf{k}}(s)<\mathbf{k}$! for alls.
Thus

$$
\begin{aligned}
\sum_{s \in S} \frac{a_{k}(s)^{2}}{2 \sigma} & <k!\sum_{s \in S} \frac{a_{k}(s)}{s_{s}^{2 \sigma}}=k!\left(\sum_{p>Y} \frac{1}{p^{2 \sigma}}\right)^{k} \\
& <k!\left(\frac{c Y^{1-2 \sigma}}{\ln g Y}\right)^{k}
\end{aligned}
$$

and the stated bound follows on taking the $2 k$-th root.
We now prove the Theorem. We first show that the left hand side of (3) is at least as large as the right hand side. Let Y be the largest integer such that

$$
P=\bigcap_{p<Y} p<N
$$

Then by the prime number theorem with remainder,

$$
Y=\log N+0\left(\frac{\log N}{(\log \log N)^{A}}\right)
$$

Take $\mathbf{k}=\boldsymbol{\Omega}(\mathrm{P})=\boldsymbol{\pi}(\mathrm{Y})$. Then

$$
\begin{aligned}
& \sum_{n \in N}^{\frac{a_{k}(n)^{2}}{n^{2 \sigma}}>\frac{a_{k}(P)^{2}}{p^{2 \sigma}}=\frac{k!^{2}}{P^{2 \sigma}}>\frac{k!^{2}}{N^{2 \sigma}}} \\
& \text { so that } \quad\left(\sum_{n<N} \frac{a_{k}(a)^{2}}{n^{2 \sigma}}\right)^{\frac{1}{2 k}} \gg \frac{k}{N^{\sigma / k}} .
\end{aligned}
$$

Clearly $\mathrm{k} \sim \frac{\log \mathrm{N}}{\log \log N}$, and by more careful use of the prime number theorem we see that $\mathrm{k}>\frac{\operatorname{lig} \mathrm{N}}{\log \log N}$ for all large N. Thus $N^{1 / k}<\log N$, and we have the desired lower bouad. Io (4) the value of k is prescribed; we choose Y so that $\boldsymbol{n}(\mathrm{Y})=\mathrm{k}$, we take $\mathrm{N}=\mathrm{P}$, and procsed as above. We obtain the deaired lower bound since

We now complete the proof of (3). Let R and S be as in Lemmas 1 and 2 . where Y is a parameter to be chosen later. Aoy n is uniquely of the form $n=r$ with $r \mathcal{R}, s \in S$. If $\Omega(\mathrm{n})=\mathrm{k}$ and $\Omega(\mathrm{r})=\mathrm{m}$ then by (2)

$$
a_{k}(n)=\binom{k}{m} a_{m}(r) a_{k-m}(s)
$$

Hence

$$
\sum_{n \leqslant N} \frac{a_{k}(n)^{2}}{n^{2 \sigma}}=\sum_{m=0}^{k}\binom{k}{m} \sum_{i \in R}^{2} \frac{a_{m}(1)^{2}}{r^{2 \sigma}}
$$

Since $\binom{k}{m}<2^{k}$, this is

$$
<2^{k} \sum_{m=0}^{k}\binom{k}{m}\left(\sum_{r \in R}^{\left.\sum_{m} \frac{a_{m}()^{2}}{r^{2 \sigma}}\right)}\right.
$$

$$
\left(\sum_{s \in S} \frac{a_{s} k-m^{(s)^{2}}}{s^{2 \sigma}}\right)
$$

(5) $\quad<2^{k}\left(R^{2}+8^{2}\right)^{k}$.
where

$$
R=\max _{m}\left(\sum_{\varepsilon_{i} R}^{i_{m}} \frac{a_{m}(t)^{2}}{2 \sigma}\right) \frac{1}{2 m}
$$

and

$$
S=\max _{m}\left(\begin{array}{lll}
& \sum_{m} & \frac{a_{m}(s)^{2}}{8 \sigma} \\
s \in N & s^{2 \sigma}
\end{array}\right) \frac{1}{2 m}
$$

By Lemma 1

$$
\begin{equation*}
R \ll \frac{Y^{1-\theta}}{\log Y} \tag{6}
\end{equation*}
$$

To treat S we note that $\Omega(\mathrm{s})=\mathrm{m}, \mathrm{s} \in \mathrm{S}$, then $s>Y^{\mathrm{m}}$. If $m>\frac{\log N}{\log Y}$ then it follows that $>N$, and the sum defining S will be empty. Thus we may suppose that $m<\frac{\log N}{\log Y}$. From this bound and Lemma 2 we see that

$$
\begin{equation*}
S \ll \frac{(\log N)^{\frac{1}{2}} Y^{\frac{1}{2}}-\sigma}{\log Y} \tag{7}
\end{equation*}
$$

On combining (5), (6), and (7) it follows that

$$
\left({ }_{n<N} \frac{a_{k}(n)^{2}}{n^{2 \sigma}}\right)^{\frac{1}{2 k}}<\frac{Y^{1-\sigma}}{\log Y}+\frac{(\log N)^{\frac{1}{2}} Y^{\frac{1}{2}}-\sigma}{\log Y}
$$

and it suffices to take $Y=\log N$.
To complete the proof of (4) we may ponced more simply.
With the X_{p} as in the proof of Lemma! we see that

$$
\left(\sum_{n} \frac{a_{k}(n)^{2}}{n^{2 \sigma}}\right)^{\frac{1}{2 k}}=\left\|\sum_{p} \frac{X_{p}}{p^{\sigma}}\right\|_{2 k}
$$

By the triangle inequality this is

$$
\begin{aligned}
& <\left\|_{p<Y} \sum_{p} \frac{X_{p}}{q^{\sigma}}\right\|_{2 k}+\left\|\underset{p>Y^{\prime}}{\sum_{p}^{\sigma}}\right\|_{2 k} \\
& =\left(\sum_{r \in R} \frac{X_{k}(r)^{2}}{{ }^{2 \sigma}}\right)^{\frac{1}{2 k}}+\left(\sum_{s \in S} \frac{a_{k}(s)^{2}}{2 \sigma}\right)^{\frac{1}{2 k}}
\end{aligned}
$$

By Lemmas 1 and 2 this is

$$
\ll \frac{Y^{1-\sigma}}{\log Y}+\frac{k^{\frac{1}{2}} Y^{\frac{1}{2}-\sigma}}{(\log Y)^{\frac{1}{2}}}
$$

and it suffices to take $Y=k \log k$.

University of Michigan Ann Arbor, Michigan 48109.

[^0]: * Research supported in part by N S F Grant MCS 80-02559.

