10.46298/hrj.1983.96
https://hrj.episciences.org/96
Ramachandra, K
K
Ramachandra
Mean-value of the Riemann zeta-function and other remarks III
The results given in these papers continue the theme developed in part I of this series. In Part III we prove $M(\frac{1}{2})>\!\!\!>_k (\log H_0/q_n)^{k^2}$, where $p_m/q_m$ is the $m$th convergent of the continued fraction expansion of $k$, and $n$ is the unique integer such that $q_nq_{n+1}\geq \log\log H_0 > q_nq_{n-1}$. Section 4 of part III discusses lower bounds of mean values of Titchmarsh series.
episciences.org
continued fraction
Riemann zeta function
Gabriel's theorem
[MATH] Mathematics [math]
2015-06-12
1983-01-01
1983-01-01
en
journal article
https://hal.archives-ouvertes.fr/hal-01104234v1
2804-7370
https://hrj.episciences.org/96/pdf
VoR
application/pdf
Hardy-Ramanujan Journal
Volume 6 - 1983
Researchers
Students