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MEAII~VALUE OF THE RIEMANN 
ZETA-FUNCTION AND OTHtR REMARKS-Ill 

B1 K. RAMACHANDRA 

§ I. Introduction 

Regardtna the mean value lower bounds for 

. 2k I ~ ( ~ + it ) I ~ Titchmarsh was the first to provo 

(ree Thtorem 29 or.. p.42 of l7) ) that 

2T 2k 2 · 

~-J It H +it) I dt > ck (log T)k I (k >OJ, (I) 

T 

where T ;;;;. 100 and k is positive integer and Ck > 0 depends 

only on k. {How~.ver, 1heorcm 29 is stated wirbout proof In 
(6], and tbe reference ill (6] tJ publlsheJ pap:rs refertog to 

LHS 
Tteo.em 29 indicate that he proved lim sup RHs > 0 a1 

T-+ co). Io many of my recent papers ( [Z, I, llj, [3, I, IJ] ) 
I considered eilttensioo of (l) to ntn·integ1al v~lues of k and 
more geueral ques1i.ns . Io particular 1 proved \bat tl) hdds 
f ;fall k > 0 for \lthi.h 2k Is an integer . {I prt. ved also that 
{i) h"lds f. .. r ell k > 0 on Ri-tmafln hypothesis}. My pr,,of of 
this was self- < ontained and did not make usc of Gabriel's 
convexity theorem. Hcafth-Bown ncticed [l] that the usa 
of G!lbrlel'e tt.evrem ,Jor reference co Gabriel's lheorem s~e 

[I]) w: uld not only simp•ify my prcof of (I) for i.regral k 
a••d balf aa odd iut~g~r, but w ... uld yeild fu1tber dividends 
like lbe prvof of (1) for all r.nional k. In my papers [2, I] 
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and [3, II] , I dealt with the case k Irrational and proved for 

. 1 T )k
2 

the LHS of (I) the lower bound Ck ( 108°~0111- T . It II the 

purpt se of this oote to give a pre of of a more illuroinati'r.g 

( 
le-g T )k

2 

lower bound C k (to be made precise) which i1 
qn 

1light ly a better lower bouod. It is still very far frcm the 
2 

lower bound ck (Joe~ r/ . the present lower bound is o.ade 

possible by HeaAb-Browa'tt idea [l] of using Gahriel'a tbeorem 
to prove (I) for all rational k. As in our earlier papers we 
start with the fundame ntal fuDction 
M(el),.,. M (.L~ k, T, T+H) = 

l T+H 
max ( -. J I t (u 
a>J.. H 

T 
l 

. ) 2k d ) + 1t I t • (2) 

where T > H > 0, ol > 
2 

and k > 0. We prove the 

followiog (Hereafter we suppose k > 0 and k is irrational) 
theorem. 

Tbtortm 1: 

Let H
0 

= H + 10000 Then 

(3) 

where C > 0 depends oniy 011 k. Here 
k qm 

is the m tb 

convergent to the ~imple continued fraction expansion of k and 

0 is the unique ;,reger such that q
0 

q
11 

t 1 ;;> log log H
0 
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From this it is possible to deduce (as a very general 
principle applicr.ble io many situa:ioas) with the help of 
Gabriel's I he 'rem (using a sui<able kernel function) the 
followicg the ore u (See § 2) 

1beorem 2: 

8 
If T > H :> 10000 lrg Jog 1' > 10 , then we have, 

1 JT+H 2k ( logH )k2 
H I t a + it) I dt > Ck ----

T qn 

(4) 

where C k m:d q
0 

are as in the.)rem 1. 

Remark I : Since log leg H
0 

> q q 
1 

we can replace 
n n-

2 

( 

q l~'gH )k n-1 
the RHS in (4) by Ck log l

0
g H

0
- Ho.tever 

canoot io geoeral be replaced by a more explicit function 
ot' H

0
. 

llfmark 2 If the s. c f tiXpansion of k has bounded 
partial quotients, then it is well-known tbat q ts around 

n 
1 

(loa log H0 )~ and hence we ~an replace the RHS In (4) by 

2 2 
Ckllog H

0
)k (lrglogH0)--~k forsuchk.Byan'ellltension 

of this argument ~e note tb& t (ny using a deep theorem of 
K. F. Roth [6)) that we can revlace the RHS of (4) by 

k2 _tk2~ E 
Ck (Jog H0) (log Jog H

0
) '2" , where E > 0, 

Ck, E > 0 provided k Is Plgebraic Roih's result however 

1enden C k to be an ineffective constant for all small constants 

'> o. 
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Rt·mark ~. Tbei"J ems 1 end 2 hav~ tbe!r rxtenslont to 
L~urirs a1 d hybdd 11nakguu and w: do not b ' thrr to state 
them bere. 

Remark 4. As rurarhd already Tbeorem 2 abow• tbat 

lim ( 'lt (T) 
T-+oe 'l 

T (l r g T)k 

2T 

fT I t q +It) ,
2k dl) is lofiDi•y If 

'lt (T) 
k2 

Theorem 2 also shows that if = (Jrg lrg T) 

'lt (T) = (log k ·g 
k

2
J2 

Tl tbeo lim su~ ( . .. ) > 0. Further if 
T-+Xl 

'lt •T) Is any fun . tlnn whi , b t·nds to iof1ni ·y as T then tbrre 
extst ~ an h ral ir nal k ( dr pend log n" the r ature of the 
function 'l'l such 1bat lin fiUP ( .. . ) = ~. 

T-+JO 

Remark 5: For am ra 1oul number rio its lowest trra>s, 
let H (r) den ote the sum of •he abso ute v~lues r f the 
numt ra•or a!ld the dt nominator aod 100. Wr ite L

1 
(x) = 1~'1 x, 

"' L
2 

(~) = kg log lit and ao on Consid:r the iote1v .o h 

[r - ~(r), r+S(r)] , wbe·e ~(r) = E (H(n) -
2 

. -1 -2 
tL1 (H ( r ) ) ( L

2 
( H ( r) ) where E is any 

. 1 
roJshnt sati~fyiDg n < E < lOlO . The sum of the leogtbs 

e>f rlest infrrv~tla Is< 100 E (as can be easl}y eeen by taking 

a I rati nuls r with H (r) lylug In [ 2m, 2m + 1 
), 

m =I, 2. 3, ... ). This ( b ltrVatlon is due to Kbintcbin: 
and gives foll< .wing corollbJY to Theorem 1 and 2 Name y 
w~ cao rcplace the RH'l io 3) aod (4) by 
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for almost all k. Ttis c 'rollary wa• p )inted out to me by 
Dr. M Ram Mur•hy. 

For some more resul•s tee I 4. Tbese deal wltl 
Titchma §b •eries. 

I 2. Deduction of Theorem 2 From Tbeortm 1 

Theorem 1 is more fundamenbtl. Depending on the 
ava1libilit'V of bJunda for and suitable ke nels we can deduce 
Theorem 1 from Tbeorem 1, wi h the help of Gobri~t·s 

lhe u em viz 

Theort>m 3 

(R. M GABRIEL) Let f(z) be refu'ar in the infinite strip 
cl. < Re z < /3 and continuous tn cl. < Re z < /3. Suppo&e 
If (z) I -+ 0 uniformly as ' z 1-+ JO in J. <:; Re z < /3. Then 
for afly q• > 0, we have. 

f 
00

lf("Y t it) ,q• dt < 
00 

( 

oo q• II !._ 
00 

If I /3 + it) I dt) 

where A = /3-Y and fl = "Y -cl... 
/3·-cl... {3-r;l_ 

(Note that the int~gra/s are nnt n quired to converg~ Tf the 

RHS is finite then s1 is LHS ). 

V1ter In § 4 we state Ttle..,rem 3' (a!so due to Gabriel) 
fro .u whkh he deduced Tneor:m 3. Botb the theorrmt 3 
and 3' were u:;ed by He &th-Brown in [I] 

Rtma•k: 1f </> (w) is a Sditable kerne• fun.tion (~hlch 

is analytic) •hen replacir'g If (z) i q* by If (Z) ~ (w - z) lq• 

we ..:dll reJ'a~e th: thr~e integ als I /(~+it) f> (iv--x-it} ,,• 
wUb x ="Y, ,.£ and /3 re•p-=c!i~ely. This w.>uld men (jo a 
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~ertatn !ensc) a lo~aJintioo In a ah ''t neighbourhood of ' 
(the sbo t ess depeodlr.a 01 the fastness of taperillg of the 
function ' (w) ) . Hence if we oow average both aides of tbe 
inequality with respect to v over a shnrt int'erval we get a 

q* 
conveaal&y result for tbe meao-vc&lue of If IX+ it) I 
(x:aY, r:l and P) as X varies over a abort interval. Tbus we 
state the fo1\?wiog the~nm. 

Tbeoram 4: 

We have, by taking f (z) = t (z) z _ 
1 

and ¢ (w) 

2 

Exp { ( sin ( 1 ~0 ) ) } , r:l ~ + , ~ =2 and Y any 

number in [;,(, ~], we have, 

1 T+H • 
H f I t (Y + it) I q dt << 

T 

8 
where T > H :>·10000 leg log T :> 10 , and the constant 
implied by << depends only on q •. 

Prom Theorem 4 we cao easi.y deduce Theorem 2 as a 
coNilary to Tbcorem I. 

§. · 3 Proof of Theorem 1. We give a brief sketch. We 
can a\sume without Joss of ge •eralhy that H elllceeds a 
su.fftcteatly large conlta')t slnce 1 t (10 + it) I > l· We can 
now w lte H for 1-1

0
. 

I l I • 

In ( v :> z + hg H T t1 < t .;;;; T + H -1 ) 



we divide the t-range into intervals I of length (l g H) A 
(where A > 0 is a suitable constant) ignoring a bit at ore end if 

I I . • 
neeessaty. Denote the maximum of \ t ($}I in~tT"> -z+ kgH 

t ;, I • by II (1). Then 
tk . 2 

l ( II (I) ) .;;; H M ( t) (log H) . 
I 

k'}. 
Rtmark : HHeaftrr we assume tbat M ( i ) <:(log H) 

since otber"ise tbere Is nothlna to prove. Heoce the LHS is 
k2 + 2 

< (log H) 

2k 
Proof: Follows from the fact that I t (sl I does not 

ex .. eed its meac.-value over a disc with cenue s and radius 

~ (loa H) -l 

Lemma 2 : Let B > 0 be a constant. Then the number of 

Intervals I for which II (I) > (loa H) B, is not more thars 

k2 + 2- 2Bk. 
H tlog H) Denote any of the remaining i11tervals 

by J. Then 

l f It (s) I 2k dt >> ~ ( f l t(s)(
8 

dt + O(log B)A t ), 
J J J l 

p ·1 q . 
where p == p 

11
, q == q

11 
, a = q and s = 2 + leg H + Jt. 

Froof : The first part fcdlows from Lemma I. The 
second ,art follows fiOm the remark 

f I t (1) 1
2

k dt >> f I C (s) I 
28 

dt 
J J, I t ( s) I '> I 

2a · A 
> f I t <•>1 - (loa H) 

J 

which is valid since, if llog H)B ;> I t (s) I> I, tbeo 
2k- 2a I t (s) I = Exp ( (2k-2a) loa I ' (sJ I )>Exp (-- 2B). 



(We b•ve tG use tbe well- koowo reault 

1 I 
I k - a I <; quqo+-l ( ~ kg kg-H) fcom the theory o( 

co& tia. ued frac\kns). 

q ' 
Lemma 3 We have, wi1h 1 2 + log H + it, 

~ f \ t (sJ 1 
2

k dt >> % f I t (s) 1 
20 

dt + 0 (H) 
J ) . J J 

~'n 
where a = - , and q -= q . The same ineq,lality i• also valid 

q n • n 
1 Dq · . 

if• = 2 + log H + tt where D > 0 is a CO'IStant. 

Ptoef : FoHowa from Lemma 2. 

The rest of the wo1k crnsis1s in proving that if Dis large 
eoc.ugh the RHS In the intqutollty of Latnua 3 is 

. k2 -k2 >> H (l<"gHJ q , foJr at least C>De r.f tbe rwo va•iai)J . s 

s meo•ioned In Lemm!l 3. 

a 
by tbe formula ( t \S) ) 

., l 
We put H ~ l1 , and cefin~ d (•·) 

a 
00 

= ~ (d. (n) o · 8), valid In ff > 2. 
o. 1 a 

Ne~t we write P(s) -= l 
lc;n~H,. 

-s 
(d (n) n ) 

a 

for all complrx s. We now compare 
2 

f(ff) = "f 1 ct '(f t it))P - (P (ff + itJ )q 1 q dt 
J J 

·1 q , 1 Oq , 
for ff = .-1 = 2 + log H tl = tl 2 = 2 + J, g H and 

tt = ff 3 = 10, where Dis suitable posltivli constant. 
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Lemma 4: We have, 

where the asterisk indicates the modification in the ifllervals J by 
removing intervals oj length log Hat both the ends of J 

Proof 

Follows by arguments fr•m which we deduced 
Theorem 4 f1om Theorem 3. We give some details. We take 

. 1002 
tbe keroel fuocuon ~ (w) = Exp (w ) aod dedace tbe 
coa.vcxity fin 

2 

1 A J I ( ~\s) )p--- ( P (s) )q I .q dt 
(Jog H) J 

F•om tbls result Lemma 4 foalows by Holder's inequality. 

Lemma 5: If 

_!__L J I t(o- 2 +it) 1
28

dt) 
H 1 J 

then for u = o-
1 

and u == o-
2

, we have, 

~ 

~ f(cr) >> and<< ( u - -~- )-• , 

by t1 suitable choite of the constant1 A and B. 

Proof i 

First we remark tDat for any two real nutnben k, ~. 
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we have, 

2 2 2 2 ...... 
11111 - y I q < 2 q ( Ill: I q + l'y I q) 

and 10 

2 2 2 2 2 2 

lx-ylq-IYI q ..:;2q 1111 q +(2q-:-l)lyl q 

From -this and . the hypothesis of the lemma, it follows that 
for , "" , 

1 
and , .. , 

2 
we have 

1 l'Jf . 2 H f (ff) ,.._, H J J I P( ff +It) I dt._ 

1 T+H ~ 
Here the LHS c•n be replaced by H { ( p (ff +it) i dt, 

with an error 

b( 1 'I+H 
... 0 ( (log H) H { 1 P (tr +it) 

I 2 
where b = 2 ( k +2 -Bk ). Now ( by a theorem of 

Montgomery and Vaugllan, for a simple proof of the result 
oecessaty here 1ee [4} ), we have 

T+H 
_!f 
HT 
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and 
.T+H 

' ~ f I p (CJ +It) I 
4 

dt 
T 

2 

( 
n ) (d2a Cn) ) 

1 +-
H . 2CT • 

D 

We now u1e the well-known rtsulra 
2 

"" 2 a -1 L.. (d (n)) >> and << (lr g x) 
x :Xi~ 11 ~ 2x • 

I 

and 

1 "" ~ h~-1 
L.. ( d

2 
(o) ) >> and << (log ~) 

K B <;. D ~ 2x a 0 

where the con1tant1 Implied by >> and << depend ooly on k. 
Prom tbe1e remarks lemma 5 foHuWI by cbooslo1 A and B 
suitably. 

Lemma 6 . 

. We have, 

2 

( ~ flCT 2> ) • >> ( cr 2- ~ ) - a ' 

( ~ f (cr 1) ) « ( CT 1 -1 ) -a 
2 

an4 
·I 

( 
I ) - 100 q H f (cr s> << H , 

where the constants implied ty >> and<< are Independent of 
D and H. 

Proof 

the coefficitntl in ( ~ (s) )p - ( P (s j ) q of n -• are zero 
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for 1 < D < H 2 and for n > H 2 tbey are trivially 

2 p 
0 (n (C (2)) . ) Hence the last :uaeat .oo follows. The first 

allertlon follows from the definition of ( ~ r (G' 2) ) • 

prov1ded A is cboseo large. fhe aecoad assertion follows 
from lemma 5. 

From Lemmas 4 and 6, we have, by inserti11g the values 
of u

1
, u 

2
, u 

3 
tbe followiog lemma 7. 

' Ltmma 7. W1 have, 

( l~gDH ('(I- lo:H) 

2 ( Dq ) 

( 
los H )

11 
IO - j~g H ( D ) << -q- Exp - 50 , 

where the constant implied by << is independent of D and H. 

Since lemma 7 is false for a suitable constaot D > o. 
we have by lemma ~. 

Lemma 8. We have, 

ma• (..! L J I C ( u 
u::ocrl,u2 HJJ 

+ It) 14la de)>> cJ: H)~2 
1 q 1 D q 

wherl "1 "" l + leaH • and u 2 • 2 + Jog H • 

H1nc1 
2 2 

M ( ~ ) >> (loa H) a q - a 
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Lemma 9. We have, 

k2 - k 2 
MCU >> (logH) q n 

Proof 

Po 
Foll.:.ws from Jemwa 8 sime a = - , q q

0
, 

qn 

2 
a k

2 
+ 0 

q q 
1 

;> log log H > q 
1 

q • 
o ot o- ll 

----and 
Qo qo + 1 

Theorem 1 is completely proved by lemma 9. 

§ 4. Some general remarks 

It 11 possible to prove a very general theore.n which is 
impo1hnt for many applications. For example m:an - value 

lower-bounds for I ~ H ··t it) I 2k • k > 0 intrger (k > 0 
Irrational and in thls c11se w~ have to assume Riemann 
hypothesis to obtain opti mal 1ower bouods), n theo ; ems and 
ao on. Tbis has already been done In [5] . The use of kernels 

like Exp ({sin w) 
2

) entblcs us to state improv ~ments of 
results In [5]. These are really corollaries to Jes uit• ln [5] 
(whith look like impJOvemcnts) if we use the cb,orem 3' due 
'"Gabriel to b~ s~ated at the end of this section . However 
we can also avoid Gabriel ' • the r. rem and prove the corollarle1 
by rcpeatb g the araumcnts of [5], replacing the old kelllcls 

4a+2 
Exp (w ), a > 0 lllteger, hy the new kerotls. Here we 
show b c. w to deduce from the resul ta of [5] c01 oll.ules which 
look like !mprc,vemeats. F o r tl:.is purpoae w-: recall tho 
definiti on of Titchmarsh series with a modificatioll. 

Titcbmanh series 

Let A ;;<Jo 1 be a constant. T.et I 
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1 
where A <: An t-l - An < A Next let a1 , a2 , a3 , .•. be 

a sequence of complex numbers possiblp depending on a 

. A 
parameter H > 0, such that a1 = 1, and 1 aD 1 < (nH0) 

where H0 '"" H + 1000. Put F (s) = 

where s = a + it. Surely F (s) is absolutely convergent in 
a ;> A + 2. F {•) Is called a Titchmarsh series if thtre exists a 
comtant A ;> 1 ond a system of recta'lgles R (T, T +H) defined 
by (a > 0, T <: t ...;; T + H) where 0 < H < T and T (which 
may be related to H) tends to infinity and F (sl admits an 
ana/Jtic continuation into these rectangles and is continuous on 
the left boundary L of R (T, T + H1 namely (u =0, T<:tc; T +H). 

I now s•ate a conjecture. 

Conjecture 

We have. for a Titchmorsh series F(s), 

max ( _!__ J ij PJ a+ it) 1 
2 

dt ) > C A L t a 1 
2 

, ;>0 H L DCO.X D 

where X = 1 + D A H, and C A and D A are positive constant& 
I 

depending only on A. 

The progress ia the dired on of thls conjectu1e can be 
1tated as a theorem. 

rbeorem s 
We have, for a Tlt£hmarsh 1eries P(sl, 

max (.! f 1 F( a+ it) 1 ~dt) > 
4r;>O H L 

"\' 2 { logo 
CA L laD I 1- ----=:- + ---

D<X log H 0 log loa u 0 
). 
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whue C A' D A and X have the same notation as in the co11je. tu,. 

Further C A and D A are effective. We have also. 

max ( _!_ f I F( a + it ) I dt ) > CA 
CT;>O H L 

1 
IInce we have 1 F( cr +it) 1 > 

2 
for 

cr > 100 A 1log H
0

) 
2

, we can assume without loss of generality 

that H exceeds a constant depending only on A 

In [5] I proved 

Theorem 6 

(note that A. Is >> and<< n), 
D 

We have. for a Titchmarsh series F,a). 

J_ f I F(h) I 
2 

dt > 
HL 

~ 2 ( log n _ _ 1 _ ) 
CA L., I a 1 1 - + 

n~X o loll H 0 log log H0 . • 

provided the maximum of I F (s) 1 taken over R(T, T + H •, 
IOOA 

does not exceed Exp (H
0 

). We have, •lso 

_!_ f I F(it) 1 dt > C A 
HL . 

As already stated we drducc T hcorem 5 from Tbeorem 6. 
(h fact for tbls deduction even a milder version of Theorem 6 
namely 

H 2 

kJ 2 
- it I • A. dt > 

0 
n n 

n.;;:; Exp ( (log u
0

·,
2

) 

CA I . 2 
( 1 -

log n ). 1 an I -----· + 
n<X log u

0 kg lt1g H
0 
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or even the result with (log H
0 

log log H
0

l in place d 

(log H 0 >
2 

is enough). From Theorem 5 we deduce the 

follc:wlng Tbeortm 7 usi g the new kernel and Thcc.rem 3' 
below. As remarked already we can prove Throrems .5 and 
7 directly repeating tbe arguments of [5] with the new ker11el. 

Theorem 7 

The assertions of Theorem 6 are true even with the assump
tion · that the maximum of I F (s) 1 token orer R(T, T +H) 

. -4 
does not e~ceed Exp Exp ( (lOA) H

0
) 

Remark 1 

Theorem S is more fundamental. Given better kernels 
we tan deduce better Theorems than Theorem 7. 

Remark 2 

We can s •ate maoy corollarits to Tbeorem 7. We mention 

1 T+H . 2k 
some of them here. the first Is that -f I ~( i +tt) I dt 

HT 

k2 
Is >> tlog H) for all integers k > 0. Tbe second h the 
validity of the same result for all irration&l k > 0 on the 
assumption of Rieman'l hypothesis. In both these cases we 
need the condition T >H)) log IClg T, and tbe constant 
implied by >>is Independent of T and H and is supposed 
to be la•rge enough The nrx! is 

ma~ I rn + it)/> 
T<;t<;l'+H 

-1 -1 
o (C log log H) ) 2k • 

k 
~rhere k > l is any integer subject to 3 < H aod C (> 0) 
is lndcpendeot of k, T and H. ~We uill need the condition 
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T > H >> log· l.oK T). By ao optimal choice or k tbe RHS 
btre was sboV'n ty R. Bala•st~bramanlan (Ref. On tbe 
frequency of Titchmanh pheDoo::enon for t (s)-IV, J. of 
Number theory, 10 appear . ) to exceed 

( 
3 ( log H )! ) 

Bxp 4 lr g lr g H • It also gives similar results for 

max I t \1-t it) I and max I t (0' +it) I whne ~ < u < 1. The 
resulls for max ltH+it)landmax l t(l+it)l have some 
perfection whlcb Is liOI yet available for ! < u < 1. We 

{ 

(log H)t - u ) 
expect mex 1 t ~u +It) ! > Exp c

1 
-- ----~ , C

1 
>0 

(log log H) 

a comtant Independent ofT and H, but we bave !Such a reault 
tT 

with log lc11 H in place of (log IC"g H) • 

We now deduce Theorem 5 from Theorem 6. As remarked 
alrcaoy we can suppose ttat H exceeds a large constant 
depending on A. Suppose TheoremS is fahe. Tbeo by the 
fact that the mean-value of the mcdulus of an analytic 
funtcicn over a dlsc _ls not leas than its value at the centre, 

2 
we sc e tl at \he maximum t. f 1 F(s) I taken over ( " ;;;;, log H , 

4A 
T + 1 c;;; t c;;; 11 + H- ·1) does not exceed C A H (We can 

oo -s A. 
now consider lhe aeries n!l ( aoA.o Exp (- yo) )wtth 

for nample Y = Bxp U log H log log log H). Let O<u 
1 
<u 

2
. 

It Is not hard to show that the absolute value of thil scrie1 

at 1 = s
2 

= u +it does not e~~~:cced 

1 j Re(.-) 
IF(•2)1+ 2~ IF ,s2+w)Y r(wt-1)1 

Re w = u 
1

- u 
2

, 

1 I m w-t t .;;; t H 
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plus a negllalble quantity. We may use things like f I dww !• 
-l the integral tekeo over I Im (w) I < 1 Is 0 ((log 1 Re (w) 1 ). 

Now br applyl111 theorem 6 to F (s) (or It's truncation), It 
foll' w1 that 

1 T+H-1 

:

81 

_2_ ( H=i f I F (G' tit) 1
2 

dt ) 
> JogH 1'+1 

- 40 ' 2 ( k·g 0 ·1 ) 
> e C A o~at I 1o I 1 - l~"g H + Jog I a H 

Hence. Theorem S ls proved witb e-
4° C A in place orCA • 

Ncatt we deduce Theorem 7 from 5. For this purp:>.le we 
need tbe folle;wing Theorem 3' from wbich Gabriel deduced 
hi• 1lfeorem 3 stated in § 2. 

Theorem 31 (R. M. Gabriel) 

Let R be the closed rectangle with verticea 

z
0 

, z
0 

, - z0 , - z
0 

• Let F (Zl be continuou.J on the 

toundary of R and regular in the interior of R. Then 

f I F(z) I q• I dz I 
L 

} t { f I F (z) I q * I dz I } t 
p2 

for any q• > o, where L is the line segment from l (z
0 

- z
0

) 
/ 

to t (z
0 

- z
0

) , P 
1 

consists of three lin1 segments connecting 

l ~zu - z0 l, z0 , z
0 

and i (z0 - z0) ; and~ 2 ia the mirror 

Image of P 1 in L. 

Lot • 
0 

be the abscissa at which the ma~~timum i1 attalood. 
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Now 0 < u 
0 

< A + 2 sin e f ·H • > A + 2, we bave, 

I f + H 

H f 
T 

00 

2 
~ F(u+lt)t dt 

2 ( ( D ) \ -2t1 
1 a0 I 1 + 0 H J n , 

where tbc 0-constant Is absolute. We now choose F(z) ID 
Theorem 3' to be O(s) defined by, 

iH) ( w-s-«r0 -liH 2) 
Gls) = F (s-tu 0 + 2 E1p (aiD( --2-A.-.;-

4
- -)) , 

where we have written s for z We now choose 
iH 

z
0 

= s0 = u
0 

+ 4• and R, L, P1,P2 accordingly as in 

Theorem 3'. We wri1c • = iv and average the Inequality 
provided by theorem 3' with 'espect to v from ' = T - i H 

3H 
to T + T. 'Theorem 7 fol!owa eioce the horizontal sides 

in P 1 and P 
2 

contribute 8 nr gligible qu!lntlty by our 

assumption on the size of I F \s) 1 • The do ra lit are a1 
follo'tfs. We have, 

-
1 f f 1 G(s) I dv dt ...; ( _I f f I G(s) I dvdt )t 

2H L 2H _ 
w w pl 

i 
( 2~ J J ~I G(s) I dvdt) + 8 neglialble quantity~ 

w p2 

where P 
1 

ard P 
2 

denote the vertical portions of P 
1 

and P 
2

• 

Our choice of t1 
0 

poses a 1llght difficulty. To avoid this we 

chooae u 
0 

such that LHS here Is ma1imum. Tlis provet 

Theorem 7, since the malo term on tbc RHS Is now, 
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.;; ( :}H f f I (G {s) I dv dt / 

w p2 

( 2
1
H f f I \G (s) I dv dt ) ~ 

w L 

Remark 

Tbe retult 

i 2T 
T f I~ (i+it) i 

2
k 

T 

for irrational k > 0 seems to be difficult. Howerer u1111g the 
theorem that every real Irrational Is the sum of two reatl 
numbers each of which have pattial quotients <:; 4 In their 
siu.ple continued fraction expansions one may hope to get 

k2 -I k2 
some day the lnwer bound ck (log T) (Jog kg T) I • 

Tbe theorem on the decomposition Into two real numbers 
referred to here is (ue to Marshal Halt Jr. (Ref Annals of 
Maths. 48 (1947), 966-99l). For a simple proof of a weaker 
result see J. W. S. Cassels, Mathematltc.a 3 (1956) , 109 -110 
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