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ZETA-FUNCTION AND OTHeR REMARKS-1lI

By K. RAMACHANDRA

8§ 1. Introduction

Regarding the mean wvalue lower bounds for

2k
1
l L (? + it )‘ , Titchmarsh was the first to prove

(see Theorem 29 ov p.42 of |7] ) that
2T 2k 2 -
! ] k
+f Jrerio] asciuen”, w0

T
where T > 100 aad k is positive integer and Ck > 0 depends

only on k. (Howsver, Theorem 29 is stated without proof in
[6], and the reference in [6] to published pap:rs refering to

LHS
Theo.em 29 indicate that he proved lim sup lTﬁg > 0 as

T — »). Ia many of my recent papers ( {2, 1, II], [3, 1, I1])
I considered extension of (1) to ncn-integial vsiues of & »nd
more geaeral quesii.ns. Ia particular 1 proved 1hat (1) holds
f,rallk > 0 for whi.h 2k is aninteger. (1 proved also that
£i) holds for ell & > 0 on Rizmann hypothesis). My proof of
this was self-contained and did not make vse of Gabriel’s
convexity theorem. Hca)th-Browa ncticed [I] that the use
of Gabriel's thevrem for reference to Gabrici’s theorem sce
[I] ) w:uld nct only simp'ify my proof of (1) for iaregral k
aud balf an odd ictrgsr, but would yeild futther dividends
Like tbe proof of (1) for all rational k. In my papers [2, 1]



2 K. RAMACHANDRA

and [3, I1] , I dealt with the case k irrations] and proved for
2

. " log T k
the LHS of (1) the lower bound Ck (——_—Jog log T . It is the

puipise of this note to give a prcof of a more illuminaticg

leg T \k
lower bound Ck ( qg ) (to be made precise) which is
n
slightly a better lewer bouad. Itis still very far from the
2.

lower bound Ck (log T)k . The present lower bound is made

possible by Heafth-Browa’a idea [1] of using Gabriel’s theorem

to prove (1) for all rational &. As in our carlier papers we

start with the fundameatal fuaction '
T+H

?;il ( —;Tf [T (o + it) |2kdt). ()
T .
1

where T> H > 0, ol > Y and k> 0. We provc the

following (Hefcaftcr we suppose K > 0 and k is irrational)
theorem.

Theorem 1 :
Let HO = H + 10000 Then
' { 1 log H, k2
M\?)>Ck 9 ) )
n
Pm th
where Ck > 0 depends oniy on k. Here q-— is the m
m

conyergent to the simpie continued fraction expansion of k and
n is the unique integer such that 9, 9 41 > log log 1—10

> qn_l 94
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From this it is possible to deduce (as a very general
principle appliceble ia many situa:ioes) with the help of
Gabriel’s the>rem (using a suvi:able kernel function) the
following theoreu (See § 2)

Theorem 2 :
If T>H > 10000 leg log? > 108, then we have,

Lot 2k log H \k2
f 1T+t dt>C -~)
H k q
T n

4

where C k ard q, are as in theorem 1,
Remark 1 : Since log l-g HO >q, q, ,wecen replace

qn_,lﬂgH

k
tthHSm(4)bka( ) . Hoaever 991

log leog ﬁ(:

canaot in geaeral be replaced by a more explicit funciion
of HO'

Remark 2 If the s.c. f exparnsion of k has bounded
partial quotients, then it is well-known that q, fs around

(log log HO)’ and hence we can replace the RHS In (4) by

. P ey L
Ck ilog Hy) (lc g log HO) for such k. By an extension
of this argument we note thet (ny using a deep theorem of
K. F. Roth [6]) that we can replace the RHS of (4) by
K 1k €
C, (og H;)" (leg log H ) % , where € >0,

C
k, €
teaders Ck to be an ineffective constant for all small constans

€ > 0.

> 0 provided k& s elgebraic Roih’s result however
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Remark 3, Theciems 1 sand 2 have thelr extensions to
L-series ar d hyb:id analogues and ws do not b “ther to state
them here.

Remark 4. As rerarked already Theorem 2 shows tbat

2T
e ¥ t oy +1t) 2% ar ) is infininy of
T k2 N 3 ! 18 y
T (Irg T)
k2
V¥ (T) = (lrg Ieg T) . Theorem 2 also shows that if
K22 |
¥ (T) = (loglrg T) / then lim sup (...) > 0. Furtter if

T

¥ T) Is any fun.tlen whi-h t-nds to infini‘y as T theo there
ex!sts an irraticnal k (depending on the rature of the

function W) such that Jinsup {...) = o.
T>»

Remark 5: For any ratural number 7 ia its lowest teras,
let H (r) denote the sum of the abso ute values ¢f tbe
numerator and the denomipator and 100. Write Ll(x) =legx,

LY
L2 (x) = leg log x and 80 on  Considsr the iptewvals

[r— 3(r), r 48 (r) ], whee ¥ () = € (H(r))u2

('LI(H(r))-l (L,(H(") )“2 where € is any

; 1
coastant satisfyiog 0 < € < TR The sum of the leagths

of these intervsls s < 100 € (as can be easily seen by teking

al ratiouls r with H () lyleg 1o [ 2™,2" * 1),
m=1,2,3,..). This «birvatlon is due to Kbintchins
and gives following corsllsty to Theorem 1and 2 Naxzey
ws caa replace the RHS in 3) and (4) by

2 K

-1k
Ck (Ll (HO) (L4 (HO)) ) (L2( HO)L3 (HO) ) 2
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for almost all k. Ttis corrollary was printed out to me by
Dr. M Ram Murthy,

For some more results see § 4. These deal with
Titchma sh series.

$ 2. Deduaction of Theorem 2 From Theorem 1

Theorem 1 is more fundamentsl. Depending on the
availibility of byunds for and suiwable ke nels we can deduce
Theorem 2 from Theorem 1, wi h the help of Gabriel’s
The vem viz

Theorem 3

(R. M GABRIEL) Let f(z) be regu'ar inthe infinite strip
ol < Rez < 3 and continuous in Jf < Re z < B. Suppose
I f(z) ! >0 uniformly as ' z)—> oind < Re z2< 3. Then
Jfor any q* > 0, we have. .

® -
S rey s inl? arc
[» o]

® A @ « M
(f LS+ ir)!q‘dt) (f B+ iy 1 dr )

" *] s .
B-v Y -d
where x E= nd = ——
B—a "= Ba

(Note that the integrals are not required to converge If the

RHS is finite then s> is LHS ).

Later in § 4 we state The-rem 3° (also due to Gabriel)
fron which he deduced Tneor:m 3. Both the theorems 3
and 3’ were used by Heith-Brown in [1]

Remark : If ¢ (w) is a susitable kerse: fun.tion (which
&« *
is analytic) then replacirg | f (2) ;q by lfiz ¢ (w - 2) ’q

L 4
we can red'ace the thrze integ als | f(x+it) @ (iv—x —it) g
with x=Y, ol and B respectively. This would mean (in a
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certaln gense) alo-alisstion in a short nelghbourhood of ¥
(the sbo t ess dependirg on the fastness of tapering of the
function @ (w) ). Hence if we now average both sides of the
inequality with respect to v over a shert interval we geta

W
convemity resuit for the mean-value of |/ (x+it) lq
(x=Y, ol and B) as x varies over a short interval. Thus we
state the fotlawing the-rem. :

Theoram 4 :

We have, by taking f(2) = { (2) - ;—_‘T and ¢ (wy =

w 2 - -
Exp{(siu(*lao—)) } 4=—2~,3=2andyany
“number in [, B], we have,

T+H |

l *
ﬁf 1L (v +in) <
T
T+H4+ o T+H+D
+tH+ 3 A +H+7o p
s et ()
(Hflttoulm dt Hflt(ﬁ+ft)l dt
L H L_H
10 10

where T > H 510000 lcglog T > 108, and the constant
implied by < depends only on q*.

Prom Theorem 4 we can easi.y deduce Theorem 2asa
corollary to Theorem 1.

" § 3  Proof of Theorem 1. We give a brief sketch. We
can assume without Jjoss of ge:eralliy that H exceeds: a
sufficieatly large coanstast siuce 1 { (10 + it) | > 1. We can
now w.ite H for HO.

1

1, .
"Lemma 1l In (¢ > 2t ng-ﬁ TH1<t<T+H=-1)
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we divide the t-range into intervels 1 of length (1 g H)A
(where A > 0.is a suitable constant) ignoring a bit at ore end if

necessary. Denote the maximum of T (s)| ino> —+ lch
tia I by M (1). Then
2k , 2
? (L)) < HM (}) (ogH)".

?

Remark : Hereafter we assume that M ( § ) < (log H)k
since otherwise there Is nothing to prove. Hence the LHS is
2+2
< (log H)

2
Proof : Follows from the fact that | { (s! | k does mnot
ex.eed its meac—value over a disc with centre s and radius

< (logH)
Lemma 2: Let B > 0 be a constant. Then the number of

intervals 1 for which ¢ (1) > (log H;B. is not more than

2 4+ 2— 2Bk
H (log H) Denote any of the remaining intervals

by J. Then
k 2
300 12 a1, 1o d+oag ),
JJ J L
0 I
whet’ep-:_-pn,q:qn,a-— 3 and s = 5 +lgH+"'

Froof : The first part follows from Lemma 1. The
second part follows fiom the remark

S ay r 1 ()12
J LIT@® 121

> [ WP ~ (og WA

which is valid since, if (log H)B 2 1tw®I>1, tﬁen

RN =, Exp ( (2k—2a) log | { (s) | )>Exp (- 2B).
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{We have to use the well- kaown resuit

1 1
fk—8l< — (< T ) fcom tbe theory of
quqn+1 leg lecg H ,

contirued fracticns).

. 1 q .
Lemma 3 We have, withs = > + Tog H + it,

JljfK(Sitzkdt»lzjflt(s)lzadt+0(H)

p
wherca = {l- ,andq = q,, The same inequatity is also valid
. n
oo X D% e T3 '
ifs = 2+ g H + it where D > 0 is a corstant.

Psoef : Follows from Lemma 2.

The rest of the work censists in proving that if D is large
eacugh the RHS in the intquslity of Lawma 3 is
| L .
> H((logH,” ¢ , for a: least one of the two variabl s
» 4
s mentioned In Lemma 3. We put H - H , and define da(")

@

by the formula (L))" = 3 (4 @)n %), valid lno > 2,
n=1
Next we write P(s) = 3 (d (n)n_S)
l<n<H* -

for all complex s. We now compare
2

f(o) =sz/‘ | (Coritp? @@ +in)? ] 9 d

for @ L L I —L+-‘Dq'
ore =91 =2 T1gn =% =2 T1gu °M

o = oy = 10, where D is suitable posiiive constant.
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Lemnma 4 : We have,
1 797
( H “62) )i X

1 ’3"%3 [ 1 37 %1
(Hf(ci) ) (Hf(cs) ) ,

where the asterisk indicates the modification in the intervals J by
removing interyals of length log H at both the ends of J

Proof

Follows by arguments frem which we deduced
Theorem 4 from Theorem 3. We give some details. We take

the kernel function ¢ (w) = Exp ("1002) and dedace the

convexity for
2

q
L 1P (@] a
(log H) J '

From this result Lemma 4 foilows by Holder’s inequality.

Lemma 8: If
(__l_z 1T + i) (2t
max Ve ’
(&3]
1 2a k2 k2
EZ flC(02+it)| dt) = 0(GogH)* ¢ K,
J )
then for ¢ = 7 andeo = 7 g) We have,
t 1 )—--2
Hf(cr) >)and<<(d— : "

by a suitable choi-e of the constants A and B.

Proof ;

First we remark that for any two real numbers x, y,



10 K. ‘RAMACHANDRA

we have,
2 2 2 2
1m-y19% <29 (1x19 +1y19)
snd so
2 2 2 2 2 2

Ix-yl9—]yl T <29 21 9 +(29-1)1y1 9
From this snd the hypothesis of the lemma, it follows that

foro =¢land o = czwehnve

1 1 2
Il ~xf i
H f(v}.~ HJj |P(eo +it)| dt.

T+H

1 : 2
Here the LHS cen be replaced by (» -{ [P (o+it) ©dt,

with an error

1 xr 2
H 11 |P (0 +1it) |~ dt

Y H 1

by 1 5
= 0 {(log H) (i{ | P (o +it) |4¢1t)2 )

1 2
where b = T(k +2-Bk). Now (by a theorem of

Moni{gomery and Vaughan, for a simple proof of the result
pecessaty here see [4] ), we have

T+H
1 2
Hf | P +it) | dt
T

(@ ()
= ,,ZH« (l+0(%))~—;§—;—— ’
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snd
T+H p
1
H f | P(o+it) | dt

T

2

n (d2a (n))
< 1 + 4 ———26
n<H n '

We now use the well-known resulrs

2
1 2 -1
2 @ m) Dand Ldegn”
¥ x<wn<2x 8
and i
1 2 432 -1
— 2 (4, (@) >end & (ogn)
* z<ng2x “8 ’

where the constants implied by >> and & depend only on k.
From these remarks lemma 5 foliows by choosing A aad B

suitably.

Lemma 6 .
. We have,
(—“’2’).»( 79~ %)
. ( fep) & (- é)

1
1 T 100
(rep)<n ™4
where the constants implied by >> and < are independent of
D and H.
Proof

Yhe coefficients fn (L (s) )° —(P (s) )9 of n ™% are zero
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1 1
for 1 <0< H2 and for n > H 2 they are trivially

o (n2 (T ) )i’. ) Heaoce the last assett.on follows. The first
1

assertion follows from the definition of (-' f(o ))
H 2 Ja

provided A is chosen large. The second assertion follows
“from lemma J.

From Lemmas 4 snd 6, we have, by iuserting the values
of 0,09 %g the following lemma 7.

Lemma 7. We have,

42(-1 - )
l"gH logH

(qD
D
02(10— =4 )
log H log H

(1) (- 3)

where the constant implied by <& is independent of D and H.

Since lemma 7 is fulse for a suitable constaat D > 0,
we have by lemma 3,

Lemma 8. We have,

2
mas 1 z (T + 10 I?a dt) log Hya
- E > (%)
o 01,02(3 JJf q /,
L 1 Dg
wherur1 = 3 + logH’a"dcz- 2 + logH °*

Hence
2 2

M(3)»wemta * .
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Lemma 9. We have,
2 2

kW -k
M (}) > (logB) g ~F.
Proof
Pa
Follows from Jemwa 8 since a = g *0 ™
n

p
1
n2 =k2+0((k— —I-l) ),1k—al<————and
qn qnqn-f-l

qn an > loglogH > qn-l qn.

Theorem | is completely proved by lemma 9.

§ 4. Some general remarks

It s possible to prove a very general theorem which is
important for many applications. For example mc<an-value

lower-bounds for | { (§ -+ it) | e » k>0 integer (k >0
irrational and in this case w¢ have to assume Riemann
hypotbesis to obtain optimal tower bounds), Q theocems and
so on. This has already been done In [5]. The use of kernels

llke Exp ( (sin w)z) enables us to state improvements of
results in [5]. These are really corollaries toresults 1a [5]
(which look like impiovements) if we use the theorem 3’ due
to Gabriel to be s*ated at the end of this section. However
we cad also avold Gabriel’s theorem and prove the corollaries
by repeatir g the arguments of [5], replacing the old keinels

Exp (w4a+2). a > 0 loteger, by the new kernels. Here we
show hew to deduce from the results of [5] corollaries which
look like imprcevemeats. For this purpose we recaii the
defivition of Titchmarsh series with a modification,

Titchmarsh series

Let A > 1beaconstant. Let 1 = X\, < }\2 < )‘\3<__,,
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1 .
where A < A - >‘n < A. Next leta be

1°3g+8gs -
a sequence of complex numbers possibly depending onm a
A

n+l

parameter H > 0, such thas a, = 1, and lan'! < (nHo)

- .
where H. - H + 1000. PutF (s) = 3 (a X—')
=1

Y o n *n

where s = @ + it. Surely F (s) is absolutely convergent in
0 > A + 2. F (s) Is called a Titchmarsh series if there exists a
constant A > 1 and asystem of rectanrgles R (T, T+H) defined
by (¢ >0, T<t<T+ H)where 0 < H< TandT (which
may be related to H) tends to infinity and F (s) admits an
analytic continuation into these rectangles and is continuous on
the left boundary L of R(T, T+ Hi namzly (0 =0, T<t< T+ H).

I now s'ate a conjecture.

Conjecture
We have, for a Titchmarsh series F(s),
41 y 2 2
max(—fﬁl’jaﬂt)l dt)>C z fa_1
o>0\ H L # ngX o

where X =1 + D AH’ and C, and D A e positive constanli

A
dependi';g only on A,

The progress ia the direct on of this conjecture caa be
stated as a theorem,

[heorem 5

We have, for a Titchmarsh series ¥(s),
¢ >0

2 log n 1
¢ 3 11t (1o 22, ).
A n_zx ‘ n‘ log HO log log HO

max .lft'l?(c+it)|2dt) >
H L
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where C A’ D A and X have the same notation as in the conje. ture,

Further C A ard D A are effective. We have also,

lf ;
max [ = F(o t dt C
a>0(HL‘( i) )> A -

Remark
1
8ince we have | F( o +it) | > 2 for
o > 100 A (log Ho)z. we can assume without loss of generality

that H exceeds a constant depending only on A.
In [5] I proved (note that Xn {s > snd < n),

Theorem 6

We have, for a Titchmarsh series Fs),

i%{ﬁFﬁquﬂd:>

2 logn 1
C I ] 1 -
A z %a (1 log HO T log log HO )'

n< X
provided the maximum of |F (s) | taken over R(T, T+H:,
does not exceed Exp (HOIOOA ). We have, aiso

1 .
HgWRM\M>cA

As already stated we deduce T heorem 5 from Theorem 6.
(Ia fact for this deduction even a milder version of Theorem 6
namely
H 2

1 - it ,
H . l z oan I de >

n < Exp ( (log Ho‘;z)

. 2 ]
CA z i anl ( { o og n n 1 )'
pe X _ log HO lrg leg HO
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or even the result with (log H log log Hy)in place of

2. '
(leg HO) is enough). From Theorem 5 we deduce the

follewing Theorem 7 usi g the new kernel and Thecrem 3
below. As remarked already we can prove Theorems 5 and
7 directly repeating the arguments of [5] wish the new keinel.

Theorem 7

The assertions of Theorem 6 are true even with the assump-
tion that the maximum of | F (s) | taken over R(T, T+H)

does not exceed Exp Exp ( (10 A)~ 4HO)

'Ren‘ink 1

Theotem 5 is more fundamental. Given better kernels
we can deduce better Theorems than Theorem 7.

Remark 2
We can s:ate maay coroliaries to Theorem 7. We mention
some of taem here. The first is that }_i{ | TCa+it) ) dt

2
fs > (log H)k for all integers k > 0. The second Is the
validity of the same result forall irrational k > 0 on the
assumption of Riemana hypothesis. In both these cases we
need the condition T > H >> loglog T, and the constant
implled by > is Independent of T and H and is supposed
to be large eoough The pext is
max LT+ 18>
TSt<T+ H
1

' 2 -1 ] H—I)Qk

(2 (@ ) 0 (Clog log H) :
i
o< o0

mhere k > 1 is any integer subject to 3k < Hand C (> 0)
is independent of k, T and H. (We still nced the condition
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T> H > logleg T). By anoptimal choice of k the RHS
here was shown by R, Balasubramanian (Ref. On the
frequency of Titchmarsh pheromenon for { (s)—1V,J. of
Number theory, to appear. ) to exceed

_logH " It also ives simil g
Exp ( lcglcg H ) t also gives similar results for

max | {«1+4it) | and max | {(o +it) | where } < ¢ < 1. The

results for max | {({ +it) | and max | C(l+1t) | have some
perfection which is not yet available forf <o < 1. We

(log H)™
expect mex L0 +1t) | > Exp lef e I C1>0
(log log H)

a constant independent of T and H, but we bave such a result
with log leg H in place of (log leog H)c.

We pow deduce Theorem 5 from Theorem 6. Asremarked
alrecacy we can ssppose that H exceeds a large constant
depending on A. Suppose Theorem 5is false. Then by the.
fact that the mesn-value of the mecdulus of an enalytic
functicn over a disc_1is nct less than its value at the centre,

we sce ttat vhe maximum ¢ f | F(8) | takenover ( ¢ > —— logH ’

4A
T+1<t< T+ H=-1) does not exceed CAH . (We can

0

—8 X
now consider the teries 2 . ( ankn Exp (— ?n ) )wlth
e

for example Y =Fxp (4 log H log log log H). Let 0<01<02.
It is not hard to show that the absolute value of this series
8ts = s, = o+it does not exceed

2
: Re(w) _ dw
IF(¢2)I+ ‘vf |Fs +w) Y Fiwsl)| l’;v-' I,
R‘”""1 To

[ Imw—t' <t H
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X o dw
plus a negligible qoantity. We may use 1hings like f F 1.

the integral teken over | Im (w) | < 1 is O ((log |Re (W) | ).

Now by applying Theorem 6 to F (s) (or it’s truamcation), It

follews that ’
T+H-1

max ( (
H9f|F0’+lt)tdt)
">1ogH T+1
— 40 2 Irg n 1
> e C z la_| ( )
A pox O leg H log 1. gH

Hence Theorem 5 is proved with e l CA in place of CA .

Next we deduce Theorem 7 fiom 5.  For this purpase we
need the follcwing Theorem 3’ from wbich Gabriel deduced
his THeorem 3 stated in § 2.

Theorem 3/ (R. M. Gabriel)
Let R be the closed rectangle with vertices

z‘0 » Zg »— 2 ,—z0 . Let F (z) be continuous on the

doundary of R and regular in the interior of R. Then

[ 1F@1 Y |z
L

< { }{]F(z)lq‘ldzi }i {Jz F) 1Y ez }

Jor any q* > 0, where L is the line segment from } (z_0 - 2)

i

to } (z0 - i-;)) " P1 consists of three line segments connecting
i (i; - z,), Ea 12g and § (zy - {(;) ;and Py is the mirror
image of P1 in L.

Let 00 be the abscissa at which the maximum is attained.
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Now0<ao< A+ 2sin.efore > A + 2, we have,

IT+H
H f 'F(c+u)|2dt

- 5w (e

where the O-constant s absolute. We now choose F(z) In
Theorem 3’ to be G(s) defined by,

W-s§— c 2

= F t0 — } Ex sia -
Gys) st0, 4 ) p ( ( T 4 )
where we have written or z We now choose

iH
20=% =% + snd R, L, PI'P2 accordingly as in

Theorem 3°. We write w = ivand average the inequality

provided by Theorem 3’ with respectto vfromv =T - { H
3H

toT + DR "Theorem 7 follows since the borizontal sides

in P1 and P2

assumption on the size of (F.s) |. The detalls are as
follows. We have,

_}’if f«G(s)ldvdt<(iffIG(s)ldvdt)%
w L w ?1

¥
( E—lﬁ ff |Gs) | dvdt) + a negligidble quantity,
L

2
where P1 ard P2 denote the vertical portions of P1 and P2.

contribute a negligible quantity by our

Our choice of o, poses a slight difficelty. To avoid this we

choose 00 such that LHS here Is mazimum. This proves

Theorem 7, since the main term on the RHS is now,
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(";- fil(G(s)ldvdt)
w P

1
7

(21T1fo | (G (s) | dv dt )JI

w
Remark
The result
- 2T
= ) ;2
T 1 T (GG+it) | dt > Ck (log T)
T

for irrational k > 0 seems to be difficult. However using the
theorem that every real irrational Is the sum of two resl
numbers each of which have paitial quotients < 4 in their
simple continued fraction expansions one may hope to get

2
D |
some day the lower bound Ck (log T)k (ogleg T) tk,

The theorem on the decomposition into two real mumbers
referred to bere is cue to Marshal Hal Jr. (Ref. Annals of
Maths. 48 (1947), 966-993). For a simple proof of a weaker
result see J. W. 8. Cassels, Mathematika 3 (1956) , 109-110.
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